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Abstract: With the widespread use of deep-learning models in production environments, the value
of deep-learning models has become more prominent. The key issues are the rights of the model
trainers and the security of the specific scenarios using the models. In the commercial domain,
consumers pay different fees and have access to different levels of services. Therefore, dividing the
model into several shadow models with multiple weights is necessary. When holders want to use the
model, they can recover the model whose performance corresponds to the number and weights of the
collected shadow models so that access to the model can be controlled progressively, i.e., progressive
recovery is significant. This paper proposes a neural network model secret sharing scheme (NNSS)
with multiple weights for progressive recovery. The scheme uses Shamir’s polynomial to control
model parameters’ sharing and embedding phase, which in turn enables hierarchical performance
control in the secret model recovery phase. First, the important model parameters are extracted.
Then, effective shadow parameters are assigned based on the holders’ weights in the sharing phase,
and t shadow models are generated. The holders can obtain a sufficient number of shadow parameters
for recovering the secret parameters with a certain probability during the recovery phase. As the
number of shadow models obtained increases, the probability becomes larger, while the performance
of the extracted models is related to the participants’ weights in the recovery phase. The probability
is proportional to the number and weights of the shadow models obtained in the recovery phase, and
the probability of the successful recovery of the shadow parameters is 1 when all t shadow models
are obtained, i.e., the performance of the reconstruction model can reach the performance of the
secret model. A series of experiments conducted on VGG19 verify the effectiveness of the scheme.

Keywords: secret sharing; neural network model; progressive recovery; multiple weights

MSC: 94A62; 68T07

1. Introduction

In recent years, deep learning has achieved amazing results in computer vision [1–3],
speech recognition [4,5], natural language processing [6–8], bioinformatics [9,10], and
other fields. Trained deep-learning models are highly valuable. There have been numerous
attacks against the intellectual property of models using methods such as building detectors
to attack ownership verification and thus obtain the model [11]. Malicious users who obtain
models may illegally copy and redistribute them or use them to provide services without
permission. In addition, in the commercial domain, different levels of consumers have
different permissions. Therefore, it is necessary to control permission to use the models.

Many model-permission control strategies are proposed for this purpose. Digital
watermarking is a technology that hides specific information in a digital cover and can
confirm the ownership of a cover after piracy. Neural network digital watermarking is the
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permission-control strategy that has received the most attention from researchers. Zhang
et al. [12] enable the neural network to learn a specific pattern by changing the label
and establishing a correspondence between the specific pattern and the changed label.
By adding a regularization term for the associated watermark, Wang et al. [13] enable the
neural network to automatically embed the watermark in the model parameters during
the training phase. Encryption of the model is different from digital watermarking, which
can verify the visitor’s authority when using the model. In general, the straightforward
strategy for encrypting a model is to encrypt all model parameters by traditional encryption
methods such as RSA [14], AES [15] and so on. For resource-constrained devices, encryption
and decryption are very expensive, so some schemes use a selection strategy to encrypt
some of the parameters in the model. Tian et al. [16] propose a probabilistic selection
strategy (PSS) to determine the importance of parameters in convolutional neural networks
(CNN) and protect CNN by encrypting important parameters. Chen and Wu [17] propose
a novel framework for deep-learning models that provides access control to the trained
deep neural networks so that only authorized users can utilize them properly.

Although both digital watermarking and encryption can protect deep-learning models,
neither enables permission control over the co-trained models in the federation. They also
do not enable progressive recovery of models and control over the weights of participants.
For these reasons, we need to apply secret sharing (SS) to the permission-control scheme of
the models. SS is a data-protection technology that divides a secret into several shadows
and shares them to different participants [18,19]. Only the participants that satisfy the
conditions can recover the original secret information. Compared with information hiding,
SS has the property of loss tolerance. The SS technique is of great value in permission
control and identity authentication.

Participants in most SS-based schemes have the same weight. However, in some
scenarios, some participants need to be given different weights to indicate thei importance
compared with other participants. Hou et al. [20] proposed a permission-based visual
secret-sharing (VSS) scheme where the participants of a scheme have the same image size
and different weights. In the recovery phase, the greater the participants’ weight, the
better the quality of the recovered images. However, the recovered images in their scheme
are lossy. Liu et al. [21] proposed the (k, n) threshold for random-lattice VSS which provides
both OR and XOR recovery. It has the property of lossless recovery in XOR recovery.

Participants contribute differently to the generated model, so they should have dif-
ferent abilities to recover the model if the model is protected. Different fees are paid in
the process of upgrading the model by the consumer, and the corresponding degree of
performance upgrade varies. This feature is not yet possible with the current research on
the permission protection of models.

This paper proposes a (k, n, t) threshold neural network model secret-sharing (NNSS)
scheme with multiple weights for progressive recovery. The model parameters are encrypted
using Shamir’s secret sharing (SSS) and control of the embedding process of shadow parameters
to achieve hierarchical performance control in the recovery phase. The results achieved by the
scheme proposed in this paper are shown to be as follows.

The performance of the reconstructed model starts to improve when the number
of participants in the recovery phase reaches k; the performance of the reconstructed
model can be comparable to that of the secret model when the number of participants
reaches t. Meanwhile, the performance of the reconstructed model is related to the
weights of participants.

This paper is structured as follows. Section 2 reviews related works. Section 3 proposes the
NNSS scheme with multiple weights for progressive recovery. Section 4 shows experimental
results and analysis. Conclusions about the work in this paper are given in Section 5.

2. Related Works

In the scheme of this paper, Shamir’s secret-sharing scheme embeds the secret param-
eters into the shadow parameters. The weighted polynomial-based secret-image sharing
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scheme achieves the property that the probability of the successful recovery of secret pa-
rameters is positively correlated with the participants’ weights. The probabilistic selection
strategy (PSS) can select the part of the parameters that have an enormous impact on the
model performance. SS only, for this part of the parameters, can reduce the computational
effort of the sharing phase. The above work is presented in this section.

2.1. Shamir’s Secret-Sharing Scheme

Shamir [18] proposed a scheme capable of partitioning one secret into n shadows, and the
secret can be reconstructed if k number of shadows or more are gained. For n participants in the
sharing phase, each participant holds an integer x. The shadow f (x) held by this participant
can be computed by substituting x into a polynomial as shown in Equation (1):

f (x) =
(

a0 + a1x + · · ·+ ak−1xk−1
)
(modP) (1)

The reconstruction secret is based on a Lagrange interpolation formula as shown
in Equation (2). The integers and the shadows held by the k participants of the recovery
phase are substituted into the formula to calculate the secret, i.e., the constant term of the
computed formula.

Φ(x) =
k

∑
j=1

(
f
(
xj
) k

∏
i=1,i 6=j

(x− xi)(
xj − xi

))(modP) (2)

2.2. Weighted Polynomial-Based Secret-Image Sharing Scheme

Secret-image sharing (SIS) is an application of the SS technique in the image
domain [22], where each pixel point is treated as a secret and shared as n shadow pixels by a
Shamir polynomial. The secret image can be reconstructed only if at least k shadow images
are gained. Wang’s proposed weighted polynomial-based SIS scheme [23] uses polynomial
SIS based on a (k, k) threshold to generate k shadow images and assign corresponding
weights to them. Then, the remaining n− k shares are filled with invalid values. When
the threshold is satisfied, the number of shares and the weights affect the quality of the
reconstructed images. The image can be recovered losslessly when all participants are
involved in the recovery phase. Wang proposed the definition of the correct recovery
probability (CRP) to measure the quality of the reconstructed image. CRP is the ratio of the
number of identical pixels in the same position between the reconstructed image and the
secret image to the total number of pixels. The larger the CRP value, the higher the quality
of the reconstructed image. The NNSS scheme proposed in this paper is closer to this
scheme regarding ideas. It is considered that the more the number of identical parameters
at the same position between the reconstructed model and the secret model, the closer the
performance of the reconstructed model is to that of the secret model.

For a secret image S of size A× B, the CRP of its reconstructed image is calculated as
shown in Equation (3).

CRP =
T

A× B
(3)

T is the number of identical pixels at the same position in both images.

2.3. Probabilistic Selection Strategy

Tian et al. [16] proposed PSS to select the important parameters from the convolutional
layer parameters of CNN. Many studies [24–27] have shown that the parameters in CNNs
are not of equal importance, so the performance of CNNs can be controlled by selecting a
small number of more important parameters. The specific principle of PSS is as follows.
Θl represents the parameters of the l-th layer. When changing the inputs of the training
instances, for each input instance, a subset Θ̂l ∈ Θl exists, and the performance of the
pre-trained model degrades the most when the subset does not exist. The probability pθ
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that the parameter appears in Θ̂l represents the importance of the parameter. They describe
this problem as an optimization problem, as shown in Equation (4).

min
pθ∈[0,1]

1
N

N

∑
n=1
L
(
FΘ

(
xn,
(

I− Z(n)
)
�Θl

)
, yn

)
+ λ

∥∥∥Z(n)
∥∥∥

0
(4)

where I represents a vector of equal length to Θl , Z(n) =
{

z(n)θ

}
θ∈Θl

, z(n)θ ∼ Bern(zθ | pθ)

represents a sample of the binary random variable zθ , and λ is a weighting factor for the
regularization term.

3. The Proposed Scheme
3.1. Motivation

Deep-learning models face many threats. For example, Oracle [28], by which an
attacker can study the relationship between input and output and use these results to
gain training data; poisoning, by which an attacker can modify the behavior of a machine-
learning algorithm through modified data or models; adversarial attack, model or data
disclosure, and so on. Threats such as Oracle and model disclosure can be addressed
by controlling access to the model. Taking the Oracle as an example, if only legitimate
visitors can access the model, then the attacker cannot obtain the input–output pairs.
Therefore, permission control of the model is significant.

Many studies exist for permission control of deep-learning models, including adding
watermarks to the models and encrypting the models. Watermarks can verify ownership of
the model when illegal access to the model is detected [12]; encrypting a model can prevent
illegal access to the model. However, none of these can realize the permission control of the
jointly trained models in the federation; meanwhile, different participants have different
importances in some permission-control application scenarios with multiple participants.
Thus, the different shadow models should have different abilities to recover the secret models.
Most of the current model-encryption schemes generate only one copy of the encrypted
model [15], which the model cannot recover after loss or error, and thus cannot achieve
loss tolerance. Although PSS enables hierarchical control of model performance, it does not
enable progressive performance recovery during the recovery phase.

Therefore, a multi-weight model-permission-control scheme for progressive-recovery
characteristics that can realize the federated permission control is of some significance.

3.2. NNSS with Multiple Weights for Progressive Recovery

In this paper, we propose a (k, n, t) threshold NNSS with multiple weights for progres-
sive recovery, which works as follows. In the sharing phase, shadow models are generated
based on the secret model and assign t of them to t participants. Each shadow model held
by each participant has the same performance. The performance of the shadow models is
the initial performance for recovering the model during the recovery phase. In the recovery
phase, at least k participants exist to recover the model. The performance of the recon-
structed model is related to the weights and number of participants. When the number of
participants reaches t, the performance of the reconstructed model can be comparable to
that of the secret model. The workflow diagram of the NNSS scheme proposed in this paper
is shown in Figure 1, where the dark blue area of the model represents its performance.
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Figure 1. Workflow diagram of the NNSS scheme proposed in this paper.

3.2.1. Sharing Phase

1. Calculate m = t− k+ n. m is the number of candidate shadow models. m is calculated
based on the following. When obtaining t shadow models, the secret parameters can
be recovered by t shadow parameters at any position of the model. In other words,
even if t shadow parameters contain all invalid parameters, there are at least k valid
parameters, i.e., k 6 t− (m− n).
Next, m candidate shadow models are generated, from which t models are selected and
assigned to t participants. Each participant has exactly one shadow model.

2. According to the scenario, weights are assigned to the m candidate shadow models.
The size of the weights is set manually. Generally, the shadow models held by the
participants with the least important weight and the excess m− t shadow models are
assigned as 1. The weights of other shadow models are assigned a number greater
than 1 according to their importance difference. The importance of the shadow model
can be measured by the participant’s contribution to the model training process, such
as the amount of data provided, the number of CPU operations provided, etc.

3. Determine the SS phase’s finite domain GF(P). Assign m candidate secret models with
mutually different m integers in the finite domain to generate shadow parameters.

4. Use PSS to extract important parameters of the secret model.
5. Convert important parameters to integers in a finite field. It is well-known that

traditional SS is for non-negative integers. However, the parameters in the secret
model are floating-point numbers, so consider transforming floating-point numbers
into a finite field for SSS. Θ is the set of parameters for the deep-learning model.
Floating-point numbers are converted to non-negative integer space by Equation (5):

trans(x) = (x + max(|Θ|))× 10U (5)

The larger U is the more decimal places the parameters retain, and the higher the
accuracy of the parameters of the reconstructed model. However, the converted
integer must be in (0, P), so U must satisfy 2 max(|Θ|)× 10U < P. Thus, this paper
calculates the specific value of U by Equation (6).

U = blog10
P

2 max(|Θ|) c (6)
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6. Iterate through the generated integers. Perform the (k, n)-threshold SSS for each
integer using polynomials to generate n integers in a finite field. These n integers
are called valid integers In addition, generate m− n invalid integers Iinv. Iinv can be
calculated by Equations (7). {

10H−1 < P < 10H

P < Iinv < 10H (7)

where H is a positive integer and P is the number of finite field features in Equation (1).
7. Assign integers based on the candidate-shadow-model weights. The higher the weight

of the candidate shadow model, the easier it is to assign a valid integer. The details of
this operation are shown in Algorithm 1.

Algorithm 1 Assign integers based on the candidate shadow model weights.

Require: The number of candidate shadow models m, the number of effective shadows
n, list of weights of candidate shadow models weights_list, set of valid integers, set of
invalid integers

Ensure: allocation of integers
1: while There are valid integers that have not been assigned do
2: weights_sum = sum(weights_list)
3: Generate empty list prob_list
4: while i = 1 to m do
5: t = sum(weights_list[1:i])

weights_sum
6: Append t to prob_list
7: end while
8: Generate a random number random_num in (0,1)
9: index = 1

10: while i = 1 to m do
11: if random_num < prob_list[i] then
12: index = i
13: Stop the loop
14: end if
15: end while
16: Take any valid integer and assign it to the candidate shadow model with index.
17: weights_list[index] = 0
18: end while
19: Randomly assign invalid integers to candidate shadow models that have not yet

been assigned.

This step enables the recovery phase to acquire with a certain probability a sufficient
number of shadow parameters used to recover the secret parameters. As the number
of shadow models acquired increases, the probability becomes larger. When all t
shadow models are gained, the reconstructed model has the performance of the
secret model. The performance of the extracted models is related to the participants’
weights in the recovery phase. Now, each important parameter selected corresponds
to m integers that have been assigned to the candidate shadow model.

8. Embed integers into candidate shadow models. Each candidate shadow model takes
a copy of the secret model as its initial state. Fill the generated shadow parameter
p′ to the corresponding positions of their corresponding candidate shadow model
by solving the system of equations shown in Equation (8) for each integer. Finally, m
copies of the candidate shadow models are generated. Select t of these candidate
shadow models to assign to t participants based on their weights, with each participant
having exactly one copy of the shadow model.



Mathematics 2022, 10, 2231 7 of 17

{
|random_value| ≤ δ

p′ = b(p + random_value)× 10Rc × 10−R + I × 10−R−H (8)

where I is the integer currently being processed, and p is the secret parameter at the
corresponding location. H corresponds to the eponymous parameter in the system
of Equation (7). δ represents the deviation that determines both the performance of
the participant’s shadow model and the reconstructed model’s starting performance.
R is the precision that controls the precision of the effect of δ on performance.

3.2.2. The Recovery Phase

The recovery of the reconstructed model can be started when there are at least k
participants in the recovery phase.

1. Select any shadow model as the initial state of the reconstructed model.
2. Iterate through the positions of all model parameters. It is skipped if all the shadow

models have the same parameters at the current position. Otherwise, it means that the
parameters of the shadow models at the current position hide the shadow parameters.
At this time, the integers I are extracted from parameter p of the shadow model at the
current position by Equation (9).

I = p× 10R+H%10H (9)

where R and H mean the same as they do in Equation (8).
When the number of valid integers in the extracted integers is k or more, the La-
grangian interpolation formula, as shown in Equation (2), is used to recover the
integers x corresponding to the secret parameter at the current position. Then, x is
converted to the secret parameter by Equation (10) and filled to the corresponding
positions in the reconstructed model.

transrev(x) = x× 10−U −max(|Θ|) (10)

where U and Θ mean the same as they do in Equation (5).
The corresponding parameter of any of the shadow models is selected to fill the
corresponding position of the reconstructed model when the number of valid integers
among the extracted integers is less than k.

3.3. Validity Analyses

We consider that if a reconstructed model has more of the same number of param-
eters as the secret model at the corresponding position, its performance is closer to the
secret model. For any location where the secret parameter is hidden, the parameter of
the secret model can definitely be obtained in the recovery phase when the number of
valid integers extracted, j, is more than k. Thus, the probability of j > k (i.e., P(j > k))
in a sharing state which is determined by the weights of the m candidate shadow mod-
els, and the weights of the t selected shadow models, can reflect the performance of the
reconstructed model.

Based on the above, this subsection attempts to calculate P(j > k) and analyze this
scheme’s progressivity and weight validity.

3.3.1. Progressivity Analyses

In the scheme proposed in this paper, progressivity means that the more secret model
involved in the recovery, the better the performance of the reconstructed model. We need to
calculate the variation of P(j > k) as x is changed when x shadow models are randomly se-
lected from t candidate shadow models to participate in the recovery phase at a determined
sharing state, and the progressivity is analyzed accordingly.

There are two points to note in the analyses.
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• The expected performance of the reconstructed model at a certain x needs to be con-
sidered to measure progressivity. Therefore, x shadow models are chosen randomly.

• P(j > k) is for a location where the secret parameter is hidden, not for the whole
recovery phase. Considering the huge number of parameters, there must be the case
where j > k in the whole recovery phase.

For the (k, n, t)-threshold NNSS with multiple weights for progressive recovery,
P(j > k) = 1 when x = t as, even if t shadow models contains all invalid integers, there are
t− (m− n) = k valid integers remaining.

Consider the more general case, i.e., the value of P(j > k) when x is a variable.
The calculation procedure is as follows.

1. Calculate the probability of the combination setn of all candidate shadow models
with getting valid integers in one process of assigning n valid integers to m candidate
shadow models, i.e., PA(setn)
There are An

n different valid integer-assignment orders for each setn. The probability of
each assignment order is not the same. PA(setn) is equal to the sum of the probabilities
of all assignment orders, and its solution algorithm is shown in Algorithm 2.

Algorithm 2 Solution for the probability of the combination setn of all candidate shadow
models with obtaining valid integers.

Require: setn, the list of participants’ weights W
Ensure: PA(setn)

1: Compute all possible full permutations of setn and their combination is called SETn.
2: Initialize PA(setn) = 0.
3: while There are still unretrieved permutations in SETn. do
4: Take any of the permutations a in SETn
5: Reset W
6: prob = 1
7: while There are still unretrieved model number indexs in a do
8: Find the smallest index indexmin in a
9: Calculate the probability list setprob according to W

10: prob = prob ∗ setprob[indexmin]
11: W[indexmin] = 0
12: end while
13: PA(setn) = PA(setn) + prob
14: end while

2. t shadow models are selected from m candidate shadow models according to their
weights, and their combination is sett. Since the number of valid integers in sett is
related to both setn and sett, but sett is a constant for the entire the recovery phase,
it is determined after all important model parameters have been shared. Let the
number of valid integers contained in sett be c(setn) during a certain parameter
sharing phase. Consider the number j of valid integers extracted at any one location
when x shadow models are randomly selected from sett. The range of values of
j is [max(0, x − (t − c(setn))),min(c(setn), x)]. Where x − (t − c(setn)) means that
all t − c(setn) invalid integers in sett are included in the x person selected at the
current position. At setn determination, the probability is as shown in Equation (11)
for each value j taken.

PB(setn, j) =
(c(setn)

j )(t−c(setn)
x−j )

( t
x)

(11)

where (c(setn)
j ) denotes the number of cases in which any j integers are selected from

all valid integers of sett. Furthermore, (t−c(setn)
x−j ) denotes the number of cases in which
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any x− j integers are selected from all invalid integers of sett. In addition, ( t
x) denotes

the number of cases in which any x integers are selected from sett.
3. P(j > k) when x is a variable is shown in Equation (12).

P(j > k) = ∑
setn∈S

(PA(setn) ∗
min(c(setn),x)

∑
j=k

PB(c(setn), j)) (12)

where S represents the combination of all possible cases of setn.

With n in [3, 6] and x in [2, 10] for the (3, n, 10)-threshold NNSS, the relationship
between x and P(j > k) for different determined sharing states is shown in Figure 2. With k
in [2, 6] and x in [1, 10] for the (k, 6, 10)-threshold NNSS, the relationship between x and
P(j > k) for different determined sharing states is shown in Figure 3. The correspondence
between the subgraph, candidate-shadow-model weights and shadow-model weights is
shown in Table 1.

Table 1. The correspondence between the subgraph and the determined sharing state.

Subfigure Number Candidate Shadow Models’ Weight Shadow Models’ Weight

a all of them are 1 all of them are 1
b 3 of them are 10, the rest are 1 3 of them are 10, the rest are 1
c 3 of them are 1, the rest are 10 3 of them are 1, the rest are 10
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Figure 2. When k is constant, the relationship between x and P(j > k) for different determined
sharing states. (a) All candidate shadow models’ weights and shadow models’ weights are 1. (b) 3 of
candidate shadow models’ weights are 10, and the rest are 1. 3 of shadow models’ weights are 10,
and the rest are 1. (c) 3 of candidate shadow models’ weights are 1, and the rest are 10. 3 of shadow
models’ weights are 1, and the rest are 10.
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Figure 3. When n is constant, the relationship between x and P(j > k) for different determined
sharing states. (a) All candidate shadow models’ weights and shadow models’ weights are 1. (b) 3 of
candidate shadow models’ weights are 10, and the rest are 1. 3 of shadow models’ weights are 10,
and the rest are 1. (c) 3 of candidate shadow models’ weights are 1, and the rest are 10. 3 of shadow
models’ weights are 1, and the rest are 10.

The above results show that the proposed scheme is feasible in progressivity.
Its progressive effect is inferred as follows.

When x < k, P(j > k) = 0 it is impossible to reconstruct a model with better per-
formance than the shadow model. When x = t, the reconstructed model can have the
performance of the secret model. When k and t are determined, the P(j > k) correspond-
ing to different x increases in different magnitudes as n increases, and when n and t are
determined, the P(j > k) corresponding to different x decreases in different magnitudes as
k increases, which has an impact on the progressivity of model recovery. Specifically, when
n = k, the progressivity exists but is not significant in the case of a small number of x. As
n increases, the progressivity becomes more pronounced for a smaller number of x. The
progressivity becomes less pronounced for a larger number of x. As k increases, the pro-
gressivity becomes more pronounced for a larger number of x. The progressivity becomes
less pronounced for a smaller number of x.

3.3.2. Weight Validity Analyses

In the proposed scheme, weight validity means that the larger the weight of the people
involved in the recovery phase, the better the performance of the reconstructed model when
the number x of secret models is selected from t secret models is constant in a determined
sharing situation. Therefore, we need to calculate P(j > k) for weight validity analyses
when selecting specific x shadow models from t secret models, which is different from
randomly selecting x shadow models when analyzing progressivity. Then the selected x
secret models are changed without changing the current sharing situation and the change
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in P(j > k) is observed. When the selected x shadow models are determined, P(j > k) is
calculated as follows.

1. Calculate PA(setn) according to Algorithm 2.
2. In the case where setn is determined, t shadow models are selected from m candidate

shadow models according to their weights, and their combination is sett. The P(j > k)
is considered when selecting specific x shadow models from sett. In the case that
setn and setx are determined, the number of valid integers contained in setx is also
determined. For the whole of the recovery phase, setx is a constant, so let the number
of valid integers contained in setx be c′(setn). Thus, when the chosen x shadow models
are determined, P(j > k) is calculated as shown in Equations (13) and (14).

ξ(x, j) =

{
1(x > j)

0(x < j)
(13)

P(j > k) = ∑
setn∈S

(PA(setn) ∗ ξ(c(setn), j)) (14)

For (3, n, 10)-threshold NNSS with the weights of sett {10,10,10,1,1,1,1,1,1,1}, P(j > k) is
related to the number of shadow models with weight of 10 in setx, as shown in Figure 4
when x = 5. For (3, n, 10)-threshold NNSS with the weights of sett as {10,20,30,40,50,1,1,1,1,1},
P(j > k) is related to shadow models with weights other than 1 in setx when x = 5, as
shown in Figure 5.
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Figure 4. The relationship between P(j > k) and number of shadow models with weight of 10 for
different determined sharing states.
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Figure 5. The relationship between P(j > k) and weight of shadow models with the weights other
than 1 for different determined sharing states. (a) The number of shadow models with weights other
than 1 in setx is 1. (b) The number of shadow models with weights other than 1 in setx is 2.

The above results show that the scheme proposed in this paper is feasible in weight
validity. Its weight validity is inferred as follows. The larger the sum of weights of setx,
the higher the performance of the reconstructed model for a determined sharing state.



Mathematics 2022, 10, 2231 12 of 17

However, either figure’s weight validity is not obvious or almost non-existent when n = 3.
As the probability of obtaining a valid integer for the secret models with weights of 1 at
n = 3 is minuscule, when the number of shadow models with weights other than 1 in setx
is less than 3, P(j > k) is limited by the probability of obtaining valid integers for shadow
models with weights of 1. As n increases, the proportion of candidate shadow models
with weights of 1 increases, and its limitation on P(j > k) becomes smaller and smaller.
The weight validity is reflected.

4. Experiments and Comparisons

In this section, we will use experiments to demonstrate the progressivity and weight
validity of NNSS and analyze the experimental results compared to the theoretical results
of the feasibility analyses in the previous section. Since there has not been any research on
applying SSS to model sharing, this section will compare the NNSS scheme qualitatively
with other model permission-control schemes.

4.1. Experiments and Analyses

This paper validates the proposed scheme using the classification model VGG19
trained on CIFAR-10. The CIFAR-10 dataset consists of 10 categories of 32 × 32 color
images, containing a total of 60,000 images, each containing 6000 images. The CIFAR-10
dataset is divided into five training and one test batch, each containing 10,000 images.
The test-set batch consists of 1000 images randomly selected from each category, and the
training-set batch contains the remaining 50,000 images in a random order. The working
environment of the experiments is as follows: windows 11 ver 21H2 22000.675, python
3.8, PyTorch 1.10.0, Cuda 26.21.14.4166, NVIDIA Quadro P5000 (16 G), Intel(R) Xeon(R)
CPU E5-2620 v4. The classification accuracy of this model after pre-training is 91.16%.
The relevant parameters during the experiments are shown in Table 2.

Table 2. The relevant parameters during the experiments.

Parameter Value

The number of layers where important parameters are located in VGG19 1, 2, 3
Ratio of important parameters per layer 2%

Finite field prime P 40,009
Deviation δ 1.5
Precision R 2

The reasons for choosing the VGG19 model are as follows. First, according to the
study of Tian [16], encrypting the parameters of the VGG model by a few layers can control
the model’s performance to a greater extent. Second, VGG19 is a classification model with
a greater tolerance for fluctuations in the output results in terms of values than models
with complex output results such as the style migration model. Therefore, the NNSS
experiments on VGG19 can be effectively conducted.

The scenario we choose in our experiments is the same as the one for which P(j > k) is
computed in Section 3.3.1. Considering the random nature of the shadow-model parameters
generated and the models selected in the recovery phase, we performed 20 experiments.
We averaged them for each (k, n, 10)-threshold NNSS determined by k, n and model weights.

Specifically, for different determined sharing states, with n in [3, 6] and x in [2, 10]
for the (3, n, 10)-threshold NNSS, the relationship between x and the performance of
the reconstructed model is shown in Figure 6, and with k in [2, 6] and x in [1, 10] for
the (k, 6, 10)-threshold NNSS, the relationship between x and the performance of the re-
constructed model is shown in Figure 7. The correspondence between the subgraph,
candidate-shadow-model weights and shadow-model weights is shown in Table 1.
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Figure 6. When k is constant, the relationship between x and the performance of reconstructed model
for different determined sharing states. (a) All candidate shadow models’ weights and shadow
models’ weights are 1. (b) 3 of candidate shadow models’ weights are 10, and the rest are 1. 3 of
shadow models’ weights are 10, and the rest are 1. (c) 3 of candidate shadow models’ weights are 1,
and the rest are 10. 3 of shadow models’ weights are 1, and the rest are 10.

For (3, n, 10)-threshold NNSS with the weights of sett as {10,10,10,1,1,1,1,1,1,1}, the perfor-
mance of the reconstructed model is related to the number of shadow models with a weight of
10 in setx, as shown in Figure 8 when x = 5. For (3, n, 10)-threshold NNSS with the weights of
sett as {10,20,30,40,50,1,1,1,1,1}, the performance of the reconstructed model is related to the
shadow models with weights other than 1 in setx when x = 5, as shown in Figure 9.

From the above experiments, it can be found that:

• According to Figures 6 and 7, it can be seen that the scheme proposed in this paper is
progressive. In addition, the progressive effect is consistent with that postulated in
the last paragraph, in Section 3.3.1.

• According to Figure 9a, when the number of shadow models with large weights
involved in the recovery phase is much smaller than k, the performance of the re-
constructed model does not correlate with the weights of the shadow models in the
recovery phase. The reason may be that the number of significant parameters recov-
ered is so tiny that it does not offset the performance impact of the randomness of the
recovered parameters. The low number of important parameters was described in the
last paragraph of Sedction 3.3.2.

• According to Figures 8 and 9b,c, it can be seen that this scheme has weight validity
when the number of shadow models with large weights is involved in the recovery,
and the values of n are large. The larger their values are, the stronger the correlation
between the performance of the reconstructed model and the weights of the shadow
models in the recovery phase.
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Figure 7. When n is constant, the relationship between x and the performance of reconstructed
model for different determined sharing states. (a) All candidate shadow models’ weights and shadow
models’ weights are 1. (b) 3 of candidate shadow models’ weights are 10, and the rest are 1. 3 of
shadow models’ weights are 10, and the rest are 1. (c) 3 of candidate shadow models’ weights are 1,
and the rest are 10. 3 of shadow models’ weights are 1, and the rest are 10.
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Figure 8. The relationship between the performance of reconstructed model and number of shadow
models with weight of 10 for different determined sharing states.

4.2. Comparison with Other Schemes

No research has been proposed to apply SS to model permission control while existing
model permission-control strategies mainly contain digital watermarking and encryption
of models. Thus, this subsection compares the NNSS scheme with multiple weights for a
progressive recovery scheme with digital watermarking and encryption schemes.

Embedding a digital watermark into a model generally occurs during the model’s training.
It can confirm the ownership of the model after piracy occurs [29]. The timing of using an
encrypted model is different from that of digital watermarking. It can verify the visitor’s
privileges when the model is used. The hierarchical service of the model can be achieved
by giving different keys to different users. The NNSS scheme in this paper is one of the
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encryption schemes that enables permission control of the common training models in the
federation. It also enables the progressive recovery of models and control over participants’
weights.
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Figure 9. The relationship between the performance of reconstructed model and weight of shadow
models with the weights other than 1 for different determined sharing states. (a) The number of
shadow models with weights other than 1 in setx is 1. (b) The number of shadow models with
weights other than 1 in setx is 2. (c) The number of shadow models with weights other than 1 in setx

is 3.

The comparison of the NNSS scheme with other encryption schemes in terms of
complexity is shown in Table 3. The number of model parameters being encrypted is h.
In the NNSS scheme proposed in this paper, m copies of candidate shadow models need to
be generated in the encryption phase, so the space complexity is O(m ∗ h). As only part of
the parameters needs to be encrypted, the time required for the NNSS scheme will be less
than the general encryption scheme. However, the number of parameters of the encrypted
part is related to h, so the time complexity is still O(h).

Table 3. The comparison of the NNSS scheme with other encryption schemes.

Complexity The NNSS Scheme General Encryption Scheme Encryption Scheme with Selection Strategy

Time Complexity O(m ∗ h) O(h) O(h)
Space Complexity O(h) O(h) O(h)

Although the advantages of the NNSS scheme proposed are small in terms of com-
plexity, the increase in space complexity is exchanged for more features. Compared with
other encryption schemes, the NNSS scheme can achieve hierarchical performance control
during the recovery phase without requiring the dealer to provide keys. It is also highly
fault-tolerant. Even if a few shadow models are lost, it can allow the reconstructed model
to keep a certain performance. If the number of distributed shadow models is greater than
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t, then a full-performance model can still be recovered when x− t shadow models are lost.
The shadow models also have a certain performance, so they are more concealed during the
transmission process. At the same time, the sharing phase can be controlled by adjusting
the value of n for progressivity.

5. Conclusions

This paper proposes a (k, n, t)-threshold NNSS scheme with multiple weights for
progressive recovery. It enables progressive recovery and the control of the participants’
weights in the recovery phase. The feasibility of the proposed scheme is verified by calcu-
lating the probability of the successful recovery of important parameters and evaluating
the performance of the reconstructed model. When the number x of shadow models in-
volved in the recovery phase is greater than k, the larger x is, the better the reconstructed
model’s performance. When x = t, the performance of the reconstructed model is compa-
rable to that of the secret model. Compared with other deep-learning permission-control
schemes, our scheme has the advantages of high fault tolerance, high concealment, and the
ability to control participants’ weights. However, there are still some issues that need to be
fixed in future research:

• It is currently only applicable to classification models and may be challenging for applica-
tions on models with a high complexity of output results, such as style migration.

• There is a minimum number of participants k in the recovery phase. It will not be
possible to calculate any important parameter values for the reconstructed model for
fewer than k participants.
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