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Abstract: We present a DPLL SAT solver, which we call TrueSAT, developed in the verification-
enabled programming language Dafny. We have fully verified the functional correctness of our
solver by constructing machine-checked proofs of its soundness, completeness, and termination. We
present a benchmark of the execution time of TrueSAT and we show that it is competitive against an
equivalent DPLL solver implemented in C++, although it is still slower than state-of-the-art CDCL
solvers. Our solver serves as a significant case study of a machine-verified software system. The
benchmark also shows that auto-active verification is a promising approach to increasing trust in SAT
solvers, because it combines execution speed with a high degree of trustworthiness.
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1. Introduction

Modern high-performance SAT solvers can efficiently handle large satisfiability in-
stances that occur in practice and they have many practical applications ranging from
software and hardware verification to combinatorial optimization.

For maximal performance, state-of-the-art high-performance SAT solvers implement
advanced algorithms and data structures with an inherent degree of conceptual complexity.
Due to the subtleties involved in the implementation and the many possible corner cases,
SAT solvers might contain bugs, which invalidate the trust in their result. Furthermore,
such errors might not be found in the usual process of testing the solver, as shown by
Brummayer and others [1], who have used fuzzing to find serious soundness bugs in
state-of-the-art SAT solvers.

To mitigate this issue for satisfiable instances, SAT solvers can easily output a satisfying
truth assignment, which serves as a witness that can be independently checked by another
computer program. This increases the degree of confidence in the result of the solver.

For unsatisfiable instances, the situation is somewhat less nice. Since 2016, the annual
Satisfiability Competition requires SAT solvers competing in the main track to also output
UNSAT certificates [2]. These serve as witnesses for the unsatisfiability of the instance
and they can also be checked independently by another computer program; however,
unlike satisfiability witnesses, certificates for unsatisfiability could be exponentially large,
the SAT solver might not even be able to output them due to various resource constraints,
and checking the certificate could also be computationally intensive.

Additionally, checking SAT and UNSAT certificates generated by SAT solvers is not
the ideal way to increase the trust in their output, because such a check must be performed
for every run of the solver.
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We propose a fully verified SAT solver, which is more trustworthy. We have imple-
mented our solver, TrueSAT (for trusted and efficient SAT solver), in the Dafny system [3].
Dafny is a high-level imperative programming language with some object oriented fea-
tures. Its main characteristic is that all methods in the project can be formally specified
by using preconditions, postconditions, and invariants. The specifications are checked
at compilation time by using the satisfiability modulo theories (SMT) solver Z3 [4]. If a
postcondition cannot be established (either due to a timeout or due to the fact that it does
not hold), compilation fails; therefore, we can place a high degree of trust in a program
verified using the Dafny system. For readers unfamiliar with the Dafny system, we feature
a brief overview in Section 3.

Typical modern high-performance SAT solvers implement a backtracking-based al-
gorithm that searches for a truth assignment satisfying the input formula. As the search
space is exponentially large, several algorithmic improvements to the search are necessary
in order for the solvers to be fast:

A Unit Propagation. Also called boolean constraint propagation, this is a core optimization
in high-performance SAT solvers [5]. It refers to the idea of speeding up the search
process by using unit clauses, which are clauses whose literals are all currently false,
except for one, whose value is not yet set. For every unit clause, the value of the unset
literal must be true in any satisfying assignment. Forcing these literals to be true in
the current assignment is called unit propagation.

B Fast Data Structures. In order to perform unit propagation as efficiently as possible,
the solver must be able to quickly identify unit clauses. To this end, the solver either
maintains for each clause counters with the number of literals currently known to be
true (resp. false) [5], or uses lazy data structures [6,7].

C Variable Ordering Heuristics. The search space might be very different depending on the
order in which the propositional variables are assigned. Variable ordering heuristics
use information such as the number of occurrences of a variable in the formula to
guide the algorithm [8] by choosing variables in a order that typically reduces the
search space.

D Backjumping. In typical backtracking search algorithms, if the current truth assignment
does not satisfy the formula, we go one level up in the search tree and reset the value
of the last assigned variable. Backjumping [9] takes this idea a step further: if the
reason that the current assignment does not satisfy the formula is a variable that has
been set earlier, we may go up several levels, thereby improving speed.

E Conflict Analysis. This improvement is intimately tied to backjumping. The idea is
to analyze the conflict clause, a clause that is not satisfied by the current assignment,
in order to identify a level to which to backjump that is as early as possible [10] in the
search tree.

F Clause Learning and Forgetting. Introduced in the GRASP solver [10], clause learning
means that, each time a conflict is found in the search, a clause that explains the
conflict is added to the initial formula. The idea is that the learned clause is logically
entailed by the initial formula and therefore does not change its satisfiability status.
The learned clause however prevents the same conflict from manifesting in the future,
thereby reducing the search space. Because not all learned clauses are useful, a strategy
to delete (forget) such clauses is also typically used.

G Restart Strategy. In addition to using variable ordering heuristics, SAT solvers some-
times choose the next variable to assign in a random manner. This makes the search
nondeterministic and the running times follow a heavily tailed distribution [11]. To im-
prove on this distribution, SAT solvers regularly drop the current assignment [12] and
start the search process over, a process known as restarts.

In addition to the ideas above, all of which are algorithmic in nature, careful engineer-
ing choices in the implementation are also necessary for maximum efficiency.

The algorithm consisting of items A, B, and C is usually referred to as the Davis–
Putnam–Logemann–Loveland (DPLL) algorithm [13,14]. SAT solvers extending DPLL with
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the ideas D, E, F, and G are called conflict-driven clause learning (CDCL) solvers [10,15]
and they are the most efficient solvers known.

We have implemented, specified, and fully verified in the Dafny system items A, B,
and C, which make up the DPLL algorithm. We leave the further items (D–G) for future
work. For variable ordering, we have chosen to base our solver on the maximum occurrence
in clauses of minimum size (MOMS) heuristic [8]. Our Danny solver has machine-checked
proofs of soundness, completeness, and termination. It takes as input a formula that is in
conjunctive normal form (CNF); it does not perform the CNF conversion, although the
CNF conversion has been verified [16] independently of this work. The parser, which
reads the input formula from a file in the DIMACS format, has also been written in Dafny.
The parser is therefore also verified not to contain, for example, bugs such as out-of-bounds
errors; however, we do not provide a full functional specification for the parser. Specifying
the parser as a function from strings to CNF formulae and proving its correctness is an
orthogonal concern. Parsing is therefore the only part of our solver that must be trusted
without a computer-checked proof.

Our work is part of a larger research context where artefacts such as mathematical
statements [17] or computer software ranging from compilers [18] to system software [19–22]
are computer-verified for correctness.

The main difference between our solver, TrueSAT, and previous work on verified or
certified SAT solvers is that we have directly verified an imperative implementation of the
DPLL algorithm using deductive verification. Other approaches might verify, for example,
functional code, and rely on a mechanism to refine the functional code or to extract it into
imperative code, but this could make the resulting solver less efficient. We have bench-
marked our verified implementation and it is roughly as efficient as a C++ implementation
of the same algorithm. Because it does not implement CDCL (only DPLL), it is still one
order of magnitude slower than that of a state-of-the-art verified solver and two orders of
magnitude slower than a state-of-the-art unverified solver. Despite currently being less
efficient than the best verified solver, our solver has the potential to meet the efficiency of
unverified solvers once it is extended to implement the full CDCL algorithm.

Structure. In Section 2, we recall the DPLL algorithm. In Section 3, we feature a brief
overview of the Dafny system and of auto-active (assertional) proofs, the verification style
used in Dafny. In Section 4, we present TrueSAT, our verified DPLL implementation in
Dafny. We first present its most important data structures, together with their invariants
(Section 4.1). In Section 4.2, we then go over the main operations that our data structures
support. We present the core of our DPLL implementation, its specification, and discuss the
guarantees that it provides in Section 4.3. In Section 5, we benchmark the performance of
our solver. In Section 6, we discuss related work. We conclude in Section 7. We also discuss
here the main challenges faced in the verification process, together with a set of verification
patterns that we have identified and used in order to make the entire process feasible.

Contributions. We present the first (to our knowledge) assertional proof of the DPLL
algorithm. The implementation is competitive in running time with an equivalent C++
solver. Our solver also has value as a significant case study for the Dafny system.

Comparison with the workshop version. This paper is a revised and extended version
of our previous work [23] published in the Third Working Formal Methods Symposium, in 2019.
We feature an improved presentation, additional explanations, and a benchmark of the
performance of our solver. In addition, the solver has been significantly improved over the
workshop version:

1. The new implementation features machine integers, which improve performance
approximately 10 times in our tests. Going to machine integers from unbounded
integers requires proving upper bounds on indices throughout the code.

2. The new implementation features mutable data structures for identifying unit clauses.
Our previous approach used Dafny sequences (seq), which are immutable and cause
a performance drawback because they are updated frequently. The new mutable data
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structures make the solver significantly faster, but they are more difficult to reason
about and verify.

3. We have implemented and verified a variable ordering heuristic.
4. We have also improved the methodology of our verification approach. In particular

we have significantly reduced verification time. By carefully specifying invariants and
separating concerns in the implementation, the verification time is now approximately
5 min for the entire project.
In contrast, in our previous implementation, one method (setLiteral) took approxi-
mately 10 min to verify on its own (the entire project used to take about 2 h to verify
in its entirety).

2. The DPLL Algorithm

DPLL can be seen as an optimized version of searching for a truth assignment that
satisfies the input formula. If such an assignment is found, then the formula is satisfiable.
If no such assignment is found, the formula is unsatisfiable.

The search tree is pruned whenever the current assignment makes the formula false.
The main improvement in DPLL is to use a form of deduction called unit propagation to
speed up the search.

A clause is called unit if it has the following property: all of its literals are false in the
current truth assignment, except for one literal, which has not yet been assigned a value.
If we were to set this unknown literal to false, the assignment would make the unit clause
false and then the entire formula would also be false; therefore, in a satisfying assignment
extending the current one, the unknown literal in any unit clause must be true. Identifying
all unit clauses and setting their single unknown literal to true is called unit propagation (or
sometimes boolean constraint propagation).

Example 1. We consider a formula with three propositional variables, x1, x2, and x3, which has
four clauses:

(x1 ∨ x2)∧ (x1 ∨ ¬x2)∧ (¬x1 ∨ x2 ∨ x3)∧ (¬x1 ∨ ¬x2 ∨ ¬x3).

The formula is satisfiable, because, for example, the truth assignment (true, false, true) makes
it true.

We present the procedure [23] that we have implemented and verified in Algorithm 1;
it is based on the well known DPLL algorithm [24]. We have chosen a recursive formulation
of the procedure for its simplicity. In Section 7, we discuss how it can be changed into an
iterative formulation, in preparation for implementing further optimizations.

Algorithm 1: The DPLL procedure [23] that we have implemented and verified.

Function DPLL-recursive(F, tau)
input :A CNF formula F and an partial assignment tau
output :SAT/UNSAT, depending on whether there exists an assignment

extending tau that satisfies F
while ∃ unit clause ∈ F do

`← the unset literal in the unit clause
tau← tau[` := true]

end
if F contains the empty clause then return UNSAT;
if all clauses in F are satisfied then

Output tau
return SAT

end
`← some unset literal (based on variable ordering heuristic)
if DPLL-recursive(F, tau[` := true]) = SAT then return SAT;
return DPLL-recursive(F, tau[` := false])
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We describe how DPLL works in Example 1, with the search tree summarized in
Figure 1. We start with the empty truth assignment (where all variables are unknown).

·

(x1, false)

(x1, false), (x2, true)

conflict

x2 = false

x2 = true

x1 = false

(x1, true)

(x1, true), (x2, false)

(x1, true), (x2, false), (x3, true)

x3 = true

x2 = false

x1 = true

Figure 1. The search space of the DPLL algorithm on the formula in Example 1. Each node contains
the current truth assignment and the edges represent assignments made by the algorithm. Vertical
edges represent unit propagations, whereas the oblique edges represent decisions.

There are no unit clauses at this point, and therefore our algorithm must choose a
so-called decision variable (or branching variable) and set its value. We first set the value of
the variable to false, and then, if no satisfying assignment is found, to true.

The heuristic that we have implemented based on MOMS chooses the variable x1 (it is
the most frequent to occur in the clauses that have the least number of literals) and first
assigns it the value false. The first two clauses, (x1 ∨ x2) and (x1 ∨ ¬x2), become a unit.
The literals x2 and ¬x2 must be set to true by unit propagation, generating a conflict.

At this point, the algorithm backtracks the assignment made to the last decision
variable (x1) and changes its value from false to true. The first two clauses are satisfied and
no clause becomes unit; therefore, a second decision variable is selected, x2, and it is set
to false. The third clause, (¬x1 ∨ x2 ∨ x3), becomes unit and the literal x3 is set to true by
unit propagation. At this point, all clauses are satisfied by the current truth assignment and
therefore the DPLL algorithm returns true—the formula is satisfiable.

At any given point in the search space, any propositional variable whose value is
set is either a decision variable or its value was set by unit propagation. The variables are
grouped by decision levels into layers: the decision variable and the subsequent variables
assigned by unit propagation belong to the same layer. The DPLL algorithm keeps track of
a trace of the current assignments; each assignment is in some layer, with one layer for each
decision level.

The assignments trace corresponding to the last search state in Example 1 is shown in
Figure 2.

(1) x1 ∨ x2

(2) x1 ∨ ¬x2

(3) ¬x1 ∨ x2 ∨ x3

(4) ¬x1 ∨ ¬x2 ∨ ¬x3

Layer 1:

Layer 2:

(x1, true)

(x2, false), (x3, true)

Trace:Example formula:

Figure 2. The assignments trace corresponding to the last search state in Figure 1. The first layer
consists only of the decision variable x1. The second layer consists of the decision variable x2 and the
propagated variable x3. Literals colored in blue are true. As each clause has at least one true literal,
the formula is satisfied by the current assignment.

When a conflict is reached, the algorithm must undo all assignments in the last layer.
This process of undoing all assignments is required by the data structures that we use
(counters of literals that are true and false, respectively, in each clause) for identifying
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unit and conflict clauses. In future work, when we implement the two watched literal
data structure, reverting should consist of simply decreasing the current decision level,
without affecting the post-conditions significantly.

3. Brief Overview of Auto-Active Proofs in Dafny

Dafny is an imperative programming language with object-oriented features. It is
special because it allows us to write code with a high degree of confidence in its correctness.
This is achieved by proving that the code satisfies a specification, and the proof is machine-
checked by the Dafny system.

Both the specification and the proof are given as annotations in the code. Each method
in Dafny is annotated with its specification: the preconditions are given after the requires
keyword, and the postconditions are given after the ensures keyword. The proof is given
as a set of annotations consisting of invariants, variants, helper lemmas, and others.

Below is a typical example of Dafny code implementing the binary search algorithm,
which searches for the key k in the sorted array T.

method binarySearch(T : array <int >, k : int) returns (r : int)
requires ∀ i, j • 0 ≤ i < j < T.Length =⇒ T[i] ≤ T[j];
ensures r ≥ 0 =⇒ 0 ≤ r < T.Length ∧ T[r] = k;
ensures r < 0 =⇒ k 6∈ T[..]

{
var start : int := 0;
var end : int := T.Length - 1;
while (start ≤ end)

invariant 0 ≤ start ≤ T.Length;
invariant -1 ≤ end < T.Length;
invariant k 6∈ T[.. start];
invariant k 6∈ T[end + 1..];
decreases end - start;

{
var mid : int := (start + end) / 2;
if (k < T[mid]) {

end := mid - 1;
} else if (k > T[mid]) {

start := mid + 1;
} else {

return mid;
}

}
return -1;

}

The precondition to the binarySearch function states that the array argument should
be sorted in increasing order of values, while the two postconditions state that the result
should be either an index where the key k appears in the array, or a negative number
indicating that the key k is not in the array T.

At verification time (usually during compilation), Dafny establishes with mathematical
certainty that whenever the method is called with arguments satisfying the preconditions,
it terminates and its result satisfies the postconditions.

It achieves this by relying on Hoare logic and translating the annotations into first-
order logic formulae called verification conditions or proof obligations. These formulae
are sent to the Z3 SMT solver, which tries to prove their logical validity. If for whatever
reason the SMT solver cannot prove a verification condition, compilation of the entire
Dafny development fails.

The verification problem is undecidable: the SMT solver is in general not capable of
proving the post-conditions directly from the pre-conditions. This is why helper annota-
tions given by the programmer, such as invariants, are required. Invariants help simplify
the proof obligations given to the SMT solver. Instead of a single but intractable proof
obligation stating that precondition entails postcondition, Dafny generates several proof
obligations that are simpler to prove. In particular, for loop invariants, Dafny generates
three obligations: (1) the invariant is preserved by the loop body, (2) the invariant holds
at the start of the loop, and (3) the invariant implies the postcondition after the end of
the loop.
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As the verification process is a mix of automatic verification (SMT solver) and in-
teractive verification (adding annotations), the Dafny system is called an auto-active prover.
Auto-active proofs are sometimes also referred to as assertional proofs.

One of the main difficulties in auto-active verification is that, when verification fails,
there could be many reasons why:

1. The code might not satisfy the specification, either due to

(a) an error in the code or
(b) an error in the specification;

2. There might be missing helper annotations that are needed for Dafny to be able to
perform the proof;

3. The underlying SMT solver might simply not have enough computational resources
to finish the proof.

Developing a sense for which of the four cases we are in is very important when
developing Dafny code.

Here is an example of the same binarySearch method as above, which now fails to
verify. The only difference is that the precondition stating that the array is sorted, marked
by (*), is specified in a syntactically different manner:

method binarySearch(T : array <int >, k : int) returns (r : int)
requires ∀ j • 0 ≤ j < T.Length - 1 =⇒ T[j] ≤ T[j + 1]; // (*)
ensures r ≥ 0 =⇒ 0 ≤ r < T.Length ∧ T[r] = k;
ensures r < 0 =⇒ k 6∈ T[..]

{
// [ . . .] the same code as above; the method now fails to verify

}

The precondition now states that any two elements on consecutive positions are
in increasing order of values. Verification now fails, because Dafny requires help in
generalizing this fact to elements which are not necessarily on consecutive positions.
To establish this fact, we require a helper lemma:

lemma plusOne(T : array <int >)
requires ∀ j • 0 ≤ j < T.Length - 1 =⇒ T[j] ≤ T[j + 1];
ensures ∀ j, k • 0 ≤ j < k < T.Length =⇒ T[j] ≤ T[k];

{
∀ j | 0 ≤ j < T.Length

ensures ∀ k • j < k < T.Length =⇒ T[j] ≤ T[k];
{

var kp := j + 1;
while (kp < T.Length)

invariant j < kp ≤ T.Length;
invariant ∀ kpp • j < kpp < kp =⇒ T[j] ≤ T[kpp];

{
assert T[j] ≤ T[kp - 1]; // (**)
kp := kp + 1;

}
}

}

In Dafny, lemmas are similar to methods, but their code is erased before execution; it is
only used for the verification of proofs. The lemma above helps the system understand that
the initial formulation of the precondition is entailed by the later one. The implementation of
the lemma acts as a proof. It starts with a construct called a forall statement, which basically
implements the well-known natural deduction rule ∀-introduction. This is useful when
proving universal statements, such as the one in the postcondition of the lemma. The while
loop essentially works as a proof by induction, with the invariant serving as the induction
hypothesis. In order to help the system prove the invariant, the helper assertion in the
line marked (**) is required. This assertion is an immediate logical consequence of the
invariant, obtained by instantiating the ∀ quantifier; however, it is impossible for Dafny
to make all such instantiations by itself, because in general there are an infinite number
of possible instantiations. This is one case where Dafny requires help on the part of the
developer. With the lemma verified, it remains to call it in the binarySearch method that
uses the alternative formulation of the precondition:
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method binarySearch(T : array <int >, k : int) returns (r : int)
requires ∀ j • 0 ≤ j < T.Length - 1 =⇒ T[j] ≤ T[j + 1]; // (*)
ensures r ≥ 0 =⇒ 0 ≤ r < T.Length ∧ T[r] = k;
ensures r < 0 =⇒ k 6∈ T[..]

{
plusOne(T); // helper annotation : ‘‘call ’’ the lemma
// [ . . .] the same code as above; the method now verifies successfully

}

The method now verifies successfully, but it required significant help on the part of
the developer in the form of annotations.

Large Dafny Projects. In the example above, some important features of Dafny that
make the verification of large projects feasible are not displayed. Among these, we mention
reads clauses and modifies clauses, which restrict the use of the heap and are important in
developments using data structures such as arrays.

A particular difficulty in verifying large projects is that, even on a very fast computer,
the number of proof obligations and the intrinsic complexity of each proof obligation makes
for a large verification time. This can lengthen the development loop (code, specify, verify)
significantly. To achieve a reasonable verification time on a large project, several strategies
need to be employed. These strategies range from technical (only verify the method being
worked on) to fundamental.

A fundamental method of keeping the verification time reasonable is to structure
the data structures, the code, the specification, and the helper annotations in such a way
that the SMT solver can quickly discharge the verification conditions. This structuring
gives rise to verification patterns, somewhat similar to design pattern in object-oriented
code. We discuss a number of patterns that we have identified while developing TrueSAT
in Section 7.

4. A Verified Implementation of the DPLL Algorithm

In this section, we describe our verified SAT solver. The full source code to the
solver, together with instructions on how to compile and run it and how to reproduce the
benchmark described in Section 5 is available at: https://github.com/andricicezar/truesat
(accessed on 1 June 2022).

4.1. Data Structures

We first describe the data structures that we use to represent the formula and the
current search state (decision level, truth assignment by layers). We also explain how we
quickly identify unit clauses using counters.

4.1.1. Representing the CNF Formula

We represent propositional variables and literals by bounded integers, represented by
values of the type Int32.t, which we define in the file int32.dfy:

module Int32 {
newtype { : nativeType "int"} t = x | -2000000 ≤ x < 2000001
const max : t := 2000000;
const min : t := -2000000;

}

The type Int32.t represents bounded integers. This type requires to prove that all
computations involving values of type Int32.t remain within the bounds. The bounds
themselves can be set to any larger constants without affecting the proofs. The advan-
tage is that values of type Int32.t are represented by machine integers and hence these
computations are very fast.

The mathematical integers (unbounded), represented in Dafny by the type int, have
the disadvantage that they should be compiled to big integers, which have a significant
performance overhead; therefore, by representing variables and literals as values of type
Int32.t instead of int, we gain efficiency.

We store the CNF formula, together with the solver state, in the trait DataStructures (a
trait is similar to an abstract class in other object-oriented languages), presented in Figure 3.

https://github.com/andricicezar/truesat
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trait DataStructures {
var variablesCount : Int32.t;
var clauses : seq <seq <Int32.t 〉;
var clausesCount : Int32.t;
var clauseLength : array <Int32.t>;

var decisionLevel : Int32.t;

var truthAssignment : array <Int32.t>; // from 0 to variablesCount - 1, values : -1, 0, 1

var traceVariable : array <Int32.t>;
var traceValue : array <bool >;

var traceDLStart : array <Int32.t>;
var traceDLEnd : array <Int32.t>;

ghost var assignmentsTrace : set <(Int32.t, bool)>;

var trueLiteralsCount : array <Int32.t>; // from 0 to |clauses| - 1
var falseLiteralsCount : array <Int32.t>; // from 0 to |clauses| -~1

var positiveLiteralsToClauses : array <seq <Int32.t 〉; // from 0 to variablesCount - 1
var negativeLiteralsToClauses : array <seq <Int32.t 〉; // frm 0 to variablesCount -~1

// [ . . .] methods and function elided for brevity
}

Figure 3. The fields (file solver/data_structures.dfy) we use for storing the formula and the solver
state. The fields are presented in a slightly different order to improve presentation.

The field variablesCount stores the number of propositional variables in the formula.
The field clauses stores the formula itself, as a sequence of clauses (each clause being
a sequence of literals). Sequences (seq) are immutable in Dafny, but storing clauses as
sequences has no significant performance impact, because the clauses are set once at the
beginning and never changed. The number of clauses is stored in clausesCount. The array
clauseLength stores the number of literals in each clause.

We represent propositional variables as bounded integers with values between 0 and
variablesCount− 1, positive literals by bounded integers between 1 and variablesCount,
and negative literals by bounded integers between −1 and −variablesCount.

The trait DataStructures has a number of predicates for checking the syntactical
validity of propositional variables, literals, clauses, and others. Here is an example predicate
that checks whether an integer represents a literal:

predicate validLiteral(literal : Int32.t)
requires validVariablesCount ();
reads ‘variablesCount;

{
if literal = 0 then false
else if -variablesCount ≤ literal ∧ literal ≤ variablesCount then true
else false

}

4.1.2. Representing the Current Assignment

The field decisionLevel stores the current decision level, which starts at −1 and
is incremented with each decision variable. The current assignment has three different
representations, each of which has its own use:

1. The field truthAssignment is an array storing for each propositional variable its
current value: unknown is encoded by −1, false by 0 and true by 1. This field is useful
for quickly (in time O(1)) retrieving the value of a given propositional variable. At the
beginning of the search, it is initialized by −1 in all positions (no variable is set).

2. The fields traceVariable and traceValue are arrays having the same size that store
the current trace. The variable traceVariable[i] is the ith variable to be set and it
has a value of traceValue[i]. As explained in the previous section, the trace is split
into layers. We store each layer j as two indices, traceDLStart[j] and traceDLEnd[j],
into the trace. The layer j consists of the variables traceVariable[traceDLStart[j]]
(inclusive) up to traceVariable[traceDLEnd[j]] (exclusive). This representation of
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the truth assignment, as a trace split into layers, is useful for backtracking. As all of
these fields are arrays, lookups and updates into them are very efficient.

3. The field assignmentsTrace stores the entire trace of assignments. As it is marked
ghost, this field is not used at runtime, but only at verification time, in order to
enable the specification and verification of certain properties; therefore, it entails no
runtime overhead.

A trait-level computer-checked invariant ensures that the three different representa-
tions of the current assignment all agree with each other:

// [ . . .] some parts elided for~brevity

truthAssignment.Length = variablesCount ∧

(∀ i • 0 ≤ i < variablesCount =⇒ -1 ≤ truthAssignment[i] ≤ 1) ∧

(∀ i • 0 ≤ i < variablesCount ∧ truthAssignment[i] 6= -1 =⇒
(i, convertIntToBool(truthAssignment[i])) in assignmentsTrace) ∧

(∀ i • 0 ≤ i < variablesCount ∧ truthAssignment[i] = -1 =⇒
(i, false) 6∈ assignmentsTrace ∧ (i, true) 6∈ assignmentsTrace)

4.1.3. Quickly Identifying Unit Clauses

The fields trueLiteralsCount and falseLiteralsCount are arrays indexed from 0

to |clauses| − 1 that store, for each clause, the number of literals in the clause that are
currently true and false, respectively. An invariant stating that the two arrays truly contain
the required number is computer-checked:

|trueLiteralsCount| = |clauses| ∧
∀ i • 0 ≤ i < |clauses| =⇒

0 ≤ trueLiteralsCount[i] = countTrueLiterals(truthAssignment , clauses[i])

(a similar invariant is used for falseLiteralsCount). The function countTrueLiterals
serves as a mathematical specification of the number of literals currently true in a given
clause, which works by actually counting one by one the literals that are true in the
given clause.

We can use these arrays to efficiently check whether:

• the ith clause is true in the current assignment:
trueLiteralsCount[i] > 0;

• the ith clause is false in the current assignment:
falseLiteralsCount[i] == clauseLength[i];

• the ith clause is unit in the current assignment:
trueLiteralsCount[i] == 0 ∧ clauseLength[i] - falseLiteralsCount[i] == 1.

It would be marginally more efficient to store these counters as part of the arrays
representing the clauses (for example, on positions 0 and 1, with the literals starting on
position 2); however, we prefer to leave out such lower-level optimizations, as they would
impede readability of the code and of the specifications for a marginal gain in performance.

The final two fields of the trait DataStructures, the arrays positiveLiteralsToClauses
and negativeLiteralsToClauses are used for updating as efficiently as possible the coun-
ters in trueLiteralsCount and falseLiteralsCount after a variable has been set (either
due to a new decision, or due to unit propagation). These two arrays are indexed
from 0 to variablesCount - 1. The sequence positiveLiteralsToClauses[i] contains
the indices of the clauses in which the variable i occurs as a literal. The sequence
negativeLiteralsToClauses[i] contains the indices of the clauses in which the negation
of the variable i occurs as a literal.

Therefore, when a variable i is set (or unset), it is sufficient to update the counters of the
clauses in positiveLiteralsToClauses[i] and negativeLiteralsToClauses[i], instead of
updating all counters. The two arrays satisfy the following computer-checked invariant:

|positiveLiteralsToClauses| = variablesCount ∧ (
∀ variable • 0 ≤ variable < |positiveLiteralsToClauses| =⇒
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ghost var s := positiveLiteralsToClauses[variable ];
. . .
(∀ clauseIndex • clauseIndex in s =⇒ variable +1 in clauses[clauseIndex ]) ∧
(∀ clauseIndex • 0 ≤ clauseIndex < |clauses| ∧ clauseIndex 6∈ s =⇒

variable +1 6∈ clauses[clauseIndex ]))

(a similar invariant holds for negativeLiteralsToClauses).
Class/trait invariants are represented in Dafny by using a predicate, typically called

valid, which is added as a precondition and postcondition to all methods of the class/trait.
In our case, the trait DataStructures has a predicate valid that consists of the conjunction
of the snippets of code shown above, and some more lower-level conditions that we omit
for brevity.

4.2. Verified Operations over the Data Structures

In our Dafny development, the class Formula extends the trait DataStructures by a
constructor that sets up the data structures used to represent the formula and the current
search state and also by a set of methods that implement several actions that can be taken
by the DPLL algorithm:

1. Creating a new layer (by increasing the current decision level);
2. Setting the value of a propositional variable (either because it is a decision variable,

or because of unit propagation);
3. Build the current layer by setting a decision variable and performing all unit propaga-

tions necessary;
4. Undo the assignments performed in the last layer.

Each of the four operations above is implemented as a method in the Formula class
(file solver/formula.dfy). As part of the implementation of each method, we show that it
preserves the data structure invariants described earlier.

4.2.1. The Method increaseDecisionLevel

This method creates a new layer in the assignments trace. It ensures that the new
search state is valid, with the truth assignment remaining the same. It is used to set up the
assignments trace for a new decision variable and subsequent unit propagations.

We present its signature and specification:
method increaseDecisionLevel ()

requires validVariablesCount ();
requires validAssignmentTrace ();
requires decisionLevel < variablesCount - 1;
requires decisionLevel ≥ 0 =⇒

traceDLStart[decisionLevel] < traceDLEnd[decisionLevel ];

modifies ‘decisionLevel , traceDLStart , traceDLEnd;

ensures decisionLevel = old(decisionLevel) + 1;
ensures validAssignmentTrace ();
ensures traceDLStart[decisionLevel] = traceDLEnd[decisionLevel ];
ensures getDecisionLevel(decisionLevel) = {};
ensures ∀ i • 0 ≤ i < decisionLevel =⇒

old(getDecisionLevel(i)) = getDecisionLevel(i);

The function getDecisionLevel returns all assignments performed at a given
decision level:

function getDecisionLevel(dL : Int32.t) : set <(Int32.t, bool)>
reads ‘variablesCount , ‘decisionLevel , ‘traceDLStart ,

‘traceDLEnd , ‘traceVariable , ‘traceValue ,
traceDLStart , traceDLEnd , traceVariable ,
traceValue , ‘assignmentsTrace;

requires validVariablesCount ();
requires validAssignmentTrace ()
requires -1 ≤ dL ≤ decisionLevel;
requires traceVariable.Length = variablesCount as int;
ensures getDecisionLevel(dL) ≤ assignmentsTrace;

{
if dL = -1 then {}
else (set j | j in assignmentsTrace ∧ j.0 in
traceVariable[traceDLStart[dL].. traceDLEnd[dL]])

}
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Therefore, the last postcondition of increaseDecisionLevel ensures that the current
assignment remains unchanged.

4.2.2. The Method setVariable

This method changes the current truth assignment by setting the value of a variable
that is currently unknown. We present its signature and its specification:

method setVariable(variable : Int32.t, value : bool)
requires valid ();
requires validVariable(variable );
requires truthAssignment[variable] = -1;
requires 0 ≤ decisionLevel; // not empty
modifies truthAssignment , traceVariable , traceValue ,

traceDLEnd , ‘assignmentsTrace , trueLiteralsCount ,
falseLiteralsCount;

ensures valid ();
ensures value = false =⇒ old(truthAssignment [..])[ variable as int := 0]
= truthAssignment [..];

ensures value = true =⇒ old(truthAssignment [..])[ variable as int := 1]
= truthAssignment [..];

ensures traceDLStart[decisionLevel] < traceDLEnd[decisionLevel ];
ensures traceVariable[traceDLEnd[decisionLevel ]-1] = variable;
ensures traceValue[traceDLEnd[decisionLevel ]-1] = value;
ensures ∀ i • 0 ≤ i < variablesCount ∧ i 6= decisionLevel =⇒

traceDLEnd[i] = old(traceDLEnd[i]);
ensures ∀ i • 0 ≤ i < variablesCount ∧ i 6= old(traceDLEnd[decisionLevel ]) =⇒

traceVariable[i] = old(traceVariable[i]) ∧ traceValue[i] = old(traceValue[i]);
ensures ∀ x • 0 ≤ x < old(traceDLEnd[decisionLevel ]) =⇒

traceVariable[x] = old(traceVariable[x]);

ensures ∀ i • 0 ≤ i < decisionLevel =⇒
old(getDecisionLevel(i)) = getDecisionLevel(i);

ensures assignmentsTrace = old(assignmentsTrace) + { (variable , value) };
ensures countUnsetVariables(truthAssignment [..]) + 1 =

old(countUnsetVariables(truthAssignment [..]));

In addition to updating the three representations of the current truth assignment
in a consistent manner, the main difficulty in the method setVariable is to efficiently
update the counters in the arrays trueLiteralsCount and falseLiteralsCount in a prov-
ably correct manner. To this end, the method steps over all affected clauses (stored
in negativeLiteralsToClauses[variable] and in positiveLiteralsToClauses[variable])
and updates the counters only for these clauses. The technical difficulty in the proof is to
reason about the clauses that are not affected and show that their counters do not need
to change.

4.2.3. The Method setLiteral

This method uses setVariable to set the value of the variable correspondingly, and then
performs unit propagation repeatedly, until no more unit clauses are found. We show its
signature and its specification:

method setLiteral(literal : Int32.t, value : bool)
requires valid ();
requires validLiteral(literal );
requires getLiteralValue(truthAssignment [..], literal) = -1;
requires 0 ≤ decisionLevel;

modifies truthAssignment , trueLiteralsCount ,
falseLiteralsCount , traceDLEnd , traceValue ,
traceVariable , ‘assignmentsTrace;

ensures valid ();
ensures traceDLStart[decisionLevel] < traceDLEnd[decisionLevel ];
ensures ∀ x • 0 ≤ x < old(traceDLEnd[decisionLevel ]) =⇒

traceVariable[x] = old(traceVariable[x]);
ensures assignmentsTrace = old(assignmentsTrace) +

getDecisionLevel(decisionLevel );
ensures ∀ i • 0 ≤ i < decisionLevel =⇒

old(getDecisionLevel(i)) = getDecisionLevel(i);
ensures countUnsetVariables(truthAssignment [..]) <

old(countUnsetVariables(truthAssignment [..]));
ensures (
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ghost var (variable , val) := convertLVtoVI(literal , value);
isSatisfiableExtend(old(truthAssignment [..])[ variable as int := val]) ⇐⇒

isSatisfiableExtend(truthAssignment [..])
);

decreases countUnsetVariables(truthAssignment [..]), 0;

Unlike in setVariable, where a single variable is affected, several variables might be
set in setLiteral as a result of unit propagation; therefore, the current truth assignment
might change in several positions, hence the more complicated postconditions.

The last postcondition is the most important one, because it is directly used to prove
the functional correctness of the DPLL algorithm: it states that all variables set during
unit propagation are logical consequences of the assignment at the entry into setLiteral,
updated with the value of the decision variable.

The method setLiteral is part of a chain of mutually recursive functions shown in
Figure 4.

setLiteral

unitPropagation

propagate

calls

calls

calls

Figure 4. Flowchart of the method setLiteral.

The method unitPropagation takes a variable and the value that is has just
been assigned:

method unitPropagation(variable : Int32.t, value : bool)

and checks all clauses that might have become unit after this assignment. It uses the ar-
rays negativeLiteralsToClauses[variable] and positiveLiteralsToClauses[variable]
to only inspect the relevant clauses, which ensures that, in general, just a small fraction of
the clauses are accessed at this step. When it identifies a unit clause, it calls propagate:

method propagate(clauseIndex : Int32.t)

which takes as input the index of a unit clause and it uses setLiteral recursively to
make the unknown literal in the unit clause true. We only show the signature of the
methods unitPropagation and propagate, because the specification is similar to the one
for setLiteral.

We show termination of this chain of recursive functions by using a variant that is
defined in the decreases annotation in the specification of the method setLiteral shown
above. The variant counts the number of variables that have not yet been set, and it is
guaranteed to decrease strictly at every recursion step, without ever becoming negative,
thereby ensuring a machine-checked proof of termination.

4.2.4. The Method revertLastDecisionLevel

This method is used when a conflict is found and therefore we need to backtrack.
It undoes all of the assignments in the last decision layer, one by one, by setting the
value of the respective propositional variables to −1 in the current truth assignment. As
it needs to update the counters for the affected clauses, it makes use again of the two
arrays positiveLiteralsToClauses and negativeLiteralsToClauses. Its signature and
specification are:

method revertLastDecisionLevel ()
requires valid ();
requires 0 ≤ decisionLevel;

modifies ‘assignmentsTrace , ‘decisionLevel , truthAssignment , trueLiteralsCount ,
falseLiteralsCount , traceDLEnd;
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ensures decisionLevel = old(decisionLevel) - 1;
ensures assignmentsTrace = old(assignmentsTrace) -

old(getDecisionLevel(decisionLevel ));
ensures valid ();
ensures ∀ i • 0 ≤ i ≤ decisionLevel =⇒

old(getDecisionLevel(i)) = getDecisionLevel(i);
ensures decisionLevel > -1 =⇒

traceDLStart[decisionLevel] < traceDLEnd[decisionLevel ];

As part of the postcondition, the method is guaranteed to preserve the values of all
variables on the previous decision levels.

4.3. Proof of the Main Algorithm

The entry point into our verified DPLL procedure is the solve method in the file
solver/solver.dfy, which is specified as follows:

method solve() returns (result : SAT_UNSAT)
requires formula.valid ();
requires formula.decisionLevel > -1 =⇒

formula.traceDLStart[formula.decisionLevel] <
formula.traceDLEnd[formula.decisionLevel ];

modifies formula.truthAssignment , formula.traceVariable , formula.traceValue ,
formula.traceDLStart , formula.traceDLEnd , formula ‘decisionLevel ,
formula ‘assignmentsTrace , formula.trueLiteralsCount ,
formula.falseLiteralsCount;

ensures formula.valid ();
ensures old(formula.decisionLevel) = formula.decisionLevel;
ensures old(formula.assignmentsTrace) = formula.assignmentsTrace;
ensures ∀ i • 0 ≤ i ≤ formula.decisionLevel =⇒

old(formula.getDecisionLevel(i)) = formula.getDecisionLevel(i);
ensures formula.decisionLevel > -1 =⇒

formula.traceDLStart[formula.decisionLevel] <
formula.traceDLEnd[formula.decisionLevel ];

ensures result.SAT? =⇒ formula.validValuesTruthAssignment(result.tau);
ensures formula.countUnsetVariables(formula.truthAssignment [..]) =

formula.countUnsetVariables(old(formula.truthAssignment [..]));

ensures result.SAT? =⇒
formula.isSatisfiableExtend(formula.truthAssignment [..]);

ensures result.UNSAT? =⇒
¬formula.isSatisfiableExtend(formula.truthAssignment [..]);

decreases formula.countUnsetVariables(formula.truthAssignment [..]), 1;

This method implements the DPLL procedure as a chain of mutually recursive func-
tions consisting of two methods, called solve and step. The implementation of the method
solve closely follows Algorithm 1:

method solve() returns (result : SAT_UNSAT)
// [ . . .] specification elided
{

var hasEmptyClause : bool := formula.getHasEmptyClause ();
if (hasEmptyClause) {

return UNSAT;
}
var isEmpty : bool := formula.getIsEmpty ();
if (isEmpty) {

result := SAT(formula.truthAssignment [..]);
return result;

}
var literal := formula.chooseLiteral ();
result := step(literal , true);
if (result.SAT?) {

return result;
}
result := step(literal , false );
return result;

}

(some helper assertions are elided for brevity).
One difference between our implementation and the pseudo-code in Algorithm 1 is

that the data structures are stored as part of the class instead of being passed around as
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arguments, which helps keep the code efficient. A more important difference is that the
first step in Algorithm 1, unit propagation, is delegated to the step method, for efficiency
reasons: only the clauses that have a chance of becoming unit after setting the value of the
chosen literal are inspected. An initial unit propagation that takes into account all clauses
is also performed just before the method solve is called.

The role of the step method is to set the value of the literal, perform unit propagation,
and then call the method solve recursively. The reason that we need a separate method,
called step, is to have a uniform specification for both the case where the literal is set to
true and the case where it is set to false. The implementation of the step method can be seen
in Section 5.

A graphical depiction of the control flow of the methods solve and step is shown in
Figure 5.

solve()

does the formula have
an empty clause?

No

Yes

UNSAT

is formula empty?

No

Yes

SAT

`← chooseLiteral()

r ← step(`, true)

is r SAT?

No

Yes

SAT

return step(`, f alse)

no extension of the current truth assignment makes the for-
mula true

not all clauses are false

all clauses have at least on true literal

some clause that is not yet satisfied has at least one unset
literal

the value of the propositional variable of ` is not currently set

the truth assignment at exit is the same as the truth assign-
ment at entry

calls the method solve recursively

a truth assignment extending the current assignment updated
with ` set to true makes the formula true

no truth assignment extending the current assignment up-
dated with ` set to true makes the formula true

calls the method solve recursively

Figure 5. Flowchart of method solve. A level-0 propagation of unit clauses is performed just before
the call to the solve method and is not shown in the figure.

The method solve first checks whether the current truth assignment trivially makes
the formula true or false and it simply returns SAT or UNSAT in these cases.

If the formula is not trivially true or false, a decision variable is selected by calling the
chooseLiteral method. This method implements the variable ordering heuristic that we
have discussed earlier. It chooses the literal that occurs most frequently in the clauses of the
formula with the fewest unset literals among the clauses that are not yet satisfied. It returns
the negation of this literal. The idea behind this heuristic is to speed up the algorithm by
making clauses unit as quickly as possible.

Once a literal is chosen, the solve method starts the search process by first setting
the literal to true and then, if needed, to false. It achieves this in a modular fashion by
calling the method step, which sets the literal to the given boolean value and performs unit
propagation using the previously described method setLiteral. The method step calls
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the method solve recursively. At the end, it reverts the assignments. The specification of
the step methods closely follows the specification of the solve method:

method step(literal : Int32.t, value : bool) returns (result : SAT_UNSAT)
requires formula.valid ();
requires formula.decisionLevel < formula.variablesCount - 1;
requires formula.decisionLevel > -1 =⇒

formula.traceDLStart[formula.decisionLevel] <
formula.traceDLEnd[formula.decisionLevel ];

requires ¬formula.hasEmptyClause ();
requires ¬formula.isEmpty ();
requires formula.validLiteral(literal );
requires formula.getLiteralValue(formula.truthAssignment [..], literal) = -1;

modifies formula.truthAssignment , formula.traceVariable , formula.traceValue ,
formula.traceDLStart , formula.traceDLEnd , formula ‘decisionLevel ,
formula ‘assignmentsTrace , formula.trueLiteralsCount ,
formula.falseLiteralsCount;

ensures formula.valid ();
ensures old(formula.decisionLevel) = formula.decisionLevel;
ensures old(formula.assignmentsTrace) = formula.assignmentsTrace;
ensures ∀ i • 0 ≤ i ≤ formula.decisionLevel =⇒

old(formula.getDecisionLevel(i)) = formula.getDecisionLevel(i);
ensures formula.decisionLevel > -1 =⇒

formula.traceDLStart[formula.decisionLevel] <
formula.traceDLEnd[formula.decisionLevel ];

ensures result.SAT? =⇒ formula.validValuesTruthAssignment(result.tau);
ensures result.SAT? =⇒ (

var (variable , val) := formula.convertLVtoVI(literal , value);
formula.isSatisfiableExtend(formula.truthAssignment [..][ variable := val ]));

ensures result.UNSAT? =⇒ (
var (variable , val) := formula.convertLVtoVI(literal , value);
¬formula.isSatisfiableExtend(formula.truthAssignment [..][ variable := val ]));

ensures formula.countUnsetVariables(formula.truthAssignment [..]) =
formula.countUnsetVariables(old(formula.truthAssignment [..]));

decreases formula.countUnsetVariables(formula.truthAssignment [..]), 0;

The most important part of the specification of the method solve are the postconditions
encoding the functional correctness of the algorithm:

1. If the solve method returns SAT, then the current assignment can be extended to a
satisfying assignment;

2. If the solve method returns UNSAT, then no assignment extending the current assign-
ment satisfies the formula.

We also show as a postcondition that the solve method ends with the same truth
assignment as the one it starts with. This means that it reverts the changes to the truth
assignment, even if it finds a satisfying assignment. Otherwise, the preconditions and
postconditions for the method solve would become more verbose and less elegant. This
undo process does not affect our ability to implement the two watched literals data structure
in the future, because we only check that the truth assignment remains the same, not the
helper data structures that help quickly identify unit clauses.

5. Benchmarks

In this section, we present the results of benchmarking our solver, in order to under-
stand its performance. The Dafny system can either directly execute (interpret) the Dafny
code, or transpile it to C# code, to obtain better performance. Figure 6 shows an example of
how translation from Dafny to C# is performed.
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method step(literal : Int32.t,
value : bool)
returns (result : SAT_UNSAT)
// [ . . .] ellided for brevity

{

formula.increaseDecisionLevel ();
formula.setLiteral(literal , value);

result := solve ();

formula.revertLastDecisionLevel ();
if (formula.truthAssignment [..] 6=

old(formula.truthAssignment [..])) {
// [ . . .] proof ellided for brevity
assert false;

}
return result;

}

public void step(int literal ,
bool @value ,
out SAT__UNSAT result)

{
result = SAT__UNSAT.Default;
(this.formula ). increaseDecisionLevel ();
(this.formula ). setLiteral(literal , @value );
SAT__UNSAT _out6;
(this).solve(out _out6);
result = _out6;
(this.formula ). revertLastDecisionLevel ();
{ }

result = result;
return;

}

Figure 6. Example of how Dafny compiles the code to C#. Aside from the minor and mostly cosmetic
changes, note that proofs are not copied over. We add the spacing ourselves to improve readability.

We have benchmarked the C# code generated automatically by Dafny from our solver.
We call this solver TrueSAT.

5.1. Benchmarking Methodology
5.1.1. Machine

We have run all experiments on a machine with an i5-8400 CPU (2.80GHz) running
Ubuntu Linux (version 22.04) with the 5.15.0-33-generic kernel. The machine features 8GiB
of DDR4 RAM (2400 MHz), an L1 cache of 384KiB, an L2 cache of 1536KiB, an L3 cache of
9MiB, and a 256GB solid state drive.

5.1.2. Software

We have executed the benchmark using the BenchExec framework [25], which helps
ensure reproducibility, accurate measurement of performance, and limits resource usage of
the benchmarked tool. For all solvers, we have used BenchExec (https://github.com/sosy-
lab/benchexec, accessed on 1 June 2022) to limit resource usage by using the following
settings for each run: time limit set to 120 s, memory limit set to 1024 MB, CPU core limit
set to 1.

5.1.3. Tasks

We have benchmarked the solvers using tests in SATLIB - Benchmark Problems
(https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html, accessed on 1 June 2022). We
have chosen the sets of instances having 100, 150, 175, and 200 variables. These SAT
problems are all in 3-CNF. The number of clauses in each set is chosen such that all
instances sit at the satisfiability threshold [5]. There are 2000 tasks with 100 variables, 200
tasks with 150 variables, 200 tasks with 175 variables, and 199 tasks with 200 variables.
The tasks are distributed evenly between satisfiable and unsatisfiable instances across
the four classes (for the tasks with 200 variables, there are 100 satisfiable instances and
99 unsatisfiable instances). We have chosen these SAT instances because they are small
enough for DPLL to solve in reasonable time, but big enough so that the search dominates
the execution time (and not, e.g., reading the input). We have made sure that our solver
parses these inputs correctly, even if they are not strictly valid DIMACS files (they end
with two lines containing % and 0, respectively, which could be mistaken for the empty
clause by a naive parser). All code necessary to reproduce the benchmark can be found at
https://github.com/andricicezar/truesat (accessed on 1 June 2022).

https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/benchexec
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://github.com/andricicezar/truesat
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5.2. Machine Integers

We have first tested what is the performance gain we obtain in TrueSAT by using
machine integers for representing variables and literals instead of mathematical inte-
gers. To understand this, we have created a modified version of TrueSAT where the type
representing variables and literals is changed back to Dafny type int, which represents
mathematical integers. We denote this version by TrueSAT (BigInteger) in the graphs, be-
cause mathematical integers are compiled into instances of the class BigInteger (which
represents integers as arrays of digits).

Figure 7 shows that there is roughly a 10× performance improvement between True-
SAT (BigInteger) and TrueSAT. We conclude that this improvement of using machine integers
is therefore highly relevant for performance and the proof effort is worth it.
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(a) Tasks with 100 variables.

 0.01

 0.1

 1

 10

 100

 0  50  100  150  200

C
P
U

 t
im

e
 (

s)
n-th fastest result

TrueSAT
TrueSAT (BigInteger)

(b) Tasks with 150 variables.
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(c) Tasks with 175 variables.
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(d) Tasks with 200 variables.
Figure 7. Comparison of TrueSAT and a version of TrueSAT using mathematical integers instead of
machine integers. There are 2000 tasks with 100 variables, 200 tasks with 150 and 175 variables each,
and 199 tasks with 200 variables. We plot the running time taken by the n-th fastest result for each
solver. The y axis uses a logarithmic scale.

5.3. DPLL Solvers

In this subsection, we present the results of benchmarking TrueSAT against other
solvers implementing the DPLL algorithm. The TrueSAT solver has been compiled using
version 3.6.0.40511 of the Dafny system and version 6.12.0.179 of the Mono just-in-time
compiler. The source code can be found in the truesat_src folder of our repository.

We have first checked whether TrueSAT has any added overhead compared to a
implementation written directly in C#. For this purpose, we have written by hand in C#
a solver implementing the same algorithm and data structures as our Dafny solver. We
denote this solver by C# solver in the graphs. The source code can be found in the cs_solver
folder of our repository.

As typical high-performance SAT solvers are written in C++, not C#, we have also
implemented the same DPLL algorithm directly in C++. This solver is denoted by C++ solver
in the graphs. The source code can be found in the cpp_solver folder of our repository.

In this comparison, we have included the verified solver of Berger et al. [26], which
is written in Minlog and compiled to Haskell. This solver also implements the DPLL
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algorithm. We denote it by Minlog solver; in order to run it on our benchmark we have
extended it slightly by adding an unverified parser for DIMACS files.

We summarize the results of running the four solvers above in Figure 8.
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Figure 8. Comparison of the four DPLL solvers in our benchmark (lower is better). There are
2000 tasks with 100 variables, 200 tasks with 150 and 175 variables each, and 199 tasks with 200
variables. We plot the running time taken by the n-th fastest result for each solver. The y axis uses a
logarithmic scale. The Minlog solver and TrueSAT are verified, while the C++ and the C# solvers are
not. The running time of any solver on any given task is capped at 120s. The Minlog solver hits the
memory limit on most tasks starting with 150 variables, and is therefore not shown in tasks with 175
and 200 variables.

Comparing TrueSAT to the C# solver, we have found that there is a small overhead
coming from the method we use to read files in Dafny, and not from the extraction process
itself. In our results, the reading and parsing of the input file in Dafny takes at least twice as
long as in C#. The overhead diminishes as longer SAT instances are used: on small inputs,
the C# solver outperforms TrueSAT; on larger inputs, the performance is roughly the same.

Our results show that the (unverified) C++ solver is approximately twice as fast on
large tests as our verified Dafny solver. This means that our verified solver is competitive
against a handwritten C++ solver. The small performance gap between TrueSAT and the
C++ solver is likely due to TrueSAT relying on the C# backend of Dafny (a 2× performance
gain is typical when going from C# to C++). Our verified Dafny solver is competitive with
an equivalent implementation in C++ (it is only two times slower), but the correctness
guarantee offered by our verified solver makes it significantly more trustworthy. Dafny also
features an extraction mechanism to C++, but this backend is unfortunately not completely
implemented at the moment. Once the C++ extraction mechanism in Dafny is finished, it
might improve the performance of TrueSAT to levels similar to the C++ solver.

The Minlog solver, which also implements the DPLL algorithm and is verified in the
Minlog proof assistant, is slower than the three solvers above. This is expected, since
emphasis is not placed on speed in its implementation: the solver is implemented as a set
of recursive Haskell functions, with immutable data structures.
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5.4. CDCL Solvers

To place the performance of our verified Dafny solver into context, we have also
benchmarked against three CDCL solvers: the unverified solver MiniSAT (http://minisat.
se/, accessed on 1 June 2022) (with the default settings), the partially verified solver versat,
and the verified solver IsaSAT. As these solvers implement the full CDCL algorithm, which
can be exponentially faster than DPLL, they are expected to outperform our solver. Figure 9
summarizes the performance of these four solvers.
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Figure 9. Comparison of CDCL solvers against our verified DPLL solver (lower is better). There
are 2000 tasks with 100 variables, 200 tasks with 150 and 175 variables each, and 199 tasks with
200 variables. We plot the running time taken by the n-th fastest result for each solver. The running
time of any solver on any given task is capped at 120 s. The y axis uses a logarithmic scale. The
IsaSAT solver and TrueSAT are verified, while MiniSAT is not.

We have chosen MiniSAT as the canonical unverified implementation of the CDCL
algorithm in C++, including clause learning, the two watched literals data structures,
variable heuristics, restarts, and so on. It is very efficient, and modern SAT solvers typically
have the same structure, but differ in parameter choices or engineering improvements.
Achieving performance similar to MiniSAT would be the ultimate goal of a verified solver.
We have compiled MiniSAT at -O2 level using g++ version 11.2.0. We have run MiniSAT
using its default options.

The solver versat is one of the earliest to be verified. It is written in the Guru de-
pendently typed language and its code is extracted to C. It is verified formally only for
soundness (not completeness, nor termination) and some checks are deferred to run-
time. We have compiled the extracted C code obtained from the homepage of the au-
thor (https://homepage.divms.uiowa.edu/~astump/software.html, accessed on 1 June
2022) using the gcc compiler version 11.2.0 at -O2 optimization level. We have altered the
solver slightly to read its input from a file instead of the standard input in order to be
compatible with the BenchExec framework.

IsaSAT is the most compelling verified solver to date. It is part of the Isabelle For-
malisation of Logic (IsaFOL) project. It is written in Isabelle/HOL (the Isabelle proof as-
sistant, instantiated with the theory of higher-order logic) and it is verified using the

http://minisat.se/
http://minisat.se/
https://homepage.divms.uiowa.edu/~astump/software.html
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Isabelle refinement framework. At the top there is the CDCL calculus, which is refined
down to an executable version. We have used the IsaSAT code extracted to the program-
ming language ML in the corresponding folder (Weidenbach_Book/IsaSAT/code/ML) of the
//bitbucket.org/isafol/isafol.git repository (accessed 27 May 2022). We have com-
piled it using a recent version of the mlton compiler (20210117-1.amd64-linux-glibc2.31),
which is known to be the ML compiler that produces the fastest executables.

The IsaSAT and versat solvers are an order of magnitude slower than MiniSAT,
and the TrueSAT solver is an order of magnitude slower than IsaSAT and versat. The solver
versat outperforms IsaSAT on the smaller inputs, but it seems to lose this advantage as the
input becomes larger. The verified solvers are therefore still quite far of the performance of
MiniSAT. The potential advantage of TrueSAT is that it is roughly as fast as a native (C++)
implementation of the same algorithm, as we have discussed earlier. While not as high
performance as a CDCL solver, extending it to CDCL offer a path towards a verified solver
roughly as efficient as a native CDCL solver such as MiniSAT.

6. Related Work

One of the earliest verified SAT solvers is versat [27]. It has been implemented in
the Guru language, which uses dependent types for verification. The solver is extracted
to efficient C code, where the imperative data structures rely on reference counting and
on a statically enforced read/write discipline. The solver is only verified to be sound
(not verified to be complete, nor terminating). Some checks are delayed until runtime;
these checks (if they fail) could be a source of incompleteness. It implements several
optimizations, such as conflict analysis and clause learning, which enable it to be quite
efficient. The soundness criterion in versat is slightly different from the one in TrueSAT:
versat is verified to output UNSAT if the input formula allows for a resolution proof
of the empty clause, while TrueSAT is verified to output UNSAT if the input formula is
semantically unsatisfiable. Of course, the two criteria (existence of a resolution proof
of the empty clause and the formula being semantically unsatisfiable) are equivalent in
propositional logic, but functional correctness proofs that are based on one or another can
be very different.

Another series of SAT solvers has been verified in Isabelle/HOL by Marić [28]. The
Hoare triples associated to the solver pseudo-code are shown to be valid in the Isabelle/HOL
proof assistant. In subsequent work [29], Marić and Janičić have proven in Isabelle the
functional correctness of a SAT solver that is represented as an abstract transition system
and also of a shallow embedding of CDCL as a set of recursive functions [30].

Berger et al. have verified a DPLL SAT solver [26] using the Minlog system. The solver
is extracted to Haskell code. Berger et al. benchmark the solver against versat and they
show it is roughly as efficient on small instances, but on industrial problems it can be
slower, because versat implements additional optimizations, such as clause learning.

The state-of-the-art verified SAT solver today is IsaSAT [31]. IsaSAT is verified in
the Isabelle/HOL proof assistant and it is part of the Isabelle Formalization of Logic project.
The solver is verified using a refinement technique. At the top of the refinement chain there
are logical calculi, such as CDCL, which are verified formally to be sound, complete, and ter-
minating. These calculi are shown to be refined by lower level programs. At the bottom
of the refinement chain there is an implementation in Standard ML. The framework also
contains meta-theoretical results. Fleury [32] benchmarks the solver as still being two orders
of magnitude slower than a state-of-the-art C solver and proposes additional optimizations.
In our own solver, we do not prove any meta-theoretical properties of DPLL/CDCL; we
concentrate on obtaining a verified imperative SAT solver in an auto-active manner. A key
challenge is that the verification of Dafny code may take a lot of time in certain cases and
we have to optimize our code for verification time as well.

Table 1 summarizes the algorithms, efficiency, and levels of trust of the certified
approaches above. The unique selling point of TrueSAT is that it is written and proved
directly in imperative style because it only implements DPLL, not the full CDCL, and is not
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currently as efficient as possible; however, it offers a path forward (namely, extending it
with clause learning and the two watched literals data structure) to obtaining a verified
solver that is about as efficient as state-of-the-art unverified solvers. The other approaches,
even if they implement the full CDCL-based algorithm, are orders of magnitude slower
than unverified solvers due to the fact they are written in essentially a functional style.

Table 1. Summary of existing verified SAT solvers.

Solver Algorithm Proof Assistant Downside

versat [27] CDCL Guru not fully verified
Marić [30] DPLL Isabelle/HOL not imperative

Berger et al. [26] DPLL Minlog DPLL-only, not imperative
IsaSAT [31] CDCL Isabelle/HOL not imperative

TrueSAT (this work) DPLL Dafny DPLL-only

In other related work, Lescuyer [33] has also verified a satisfiability solver in the Coq
system, extended with linear arithmetic, and exposed as a reflexive tactic. Shankar and
Vaucher [34] have verified in the PVS system, a decision procedure based on DPLL using
sub-typing and dependent types. Efficiency seem to be secondary concern in these last
two approaches.

An alternative method to increase the trust in the output of SAT solvers is to verify
the certificate checker. For this purpose, Lammich [35] proposes an efficient certificate
checker for well-known DRAT format [36] that is formally verified and is also faster than
unverified checkers.

7. Discussion

We have presented TrueSAT, a machine-checked implementation of the DPLL algo-
rithm verified using the Dafny system. It is roughly as efficient as an equivalent DPLL
solver written in C++, but it is still less efficient than state-of-the-art solvers, because it only
implements DPLL, not the full CDCL algorithm; however, it has the advantage that it is
very trustworthy, because it is fully verified: soundness, completeness, and termination are
all machine-checked using the Dafny system. Our implementation shows that it is possible
to build a SAT solver fully verified in assertional style that is still competitive in terms of
efficiency with an equivalent solver written in a traditional imperative language such as
C++ or C#. This offers a path forward to obtaining a verified solver that is about as efficient
as state-of-the-art unverified solvers, by extending our solver to a CDCL solver.

The solver TrueSAT has approximately 3.9K lines of Dafny code, including the parser.
Most of the code has been written by the first author in approximately one year and a half
of part time work. The author also learned Dafny during that time. Table 2 contains a
summary of our verified solver in numbers.
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Table 2. Various statistics for our verified DPLL solver.

Code
Line count (w/whitespace): 3893
Line count (w/out whitespace): 3303
Lines of executable code 657
Lines of logic 2646
Classes: 4 classes, 1 trait
Methods: 37

Specification
Predicates: 37
Functions: 22
Preconditions: 423
Postconditions: 193

Proofs
Lemmas: 42
Invariants: 195
Variants: 49
Assertions: 197
Reads annotations: 41
Modifies annotations: 29
Ghost variables: 24
Executable code/annotations ratio: approx. 1/4

Verification time
Entire project: approx. 5 minutes
Slowest method to verify: SATSolver.solve()

(approx. 1 minute)

The number of lines containing executable code in the entire Dafny development is
657. We obtain this number by concatenating all source files and removing by hand all anno-
tations: invariants, variants, modifies and reads annotations, conditions, post-conditions,
lemmas, functions, predicates, helper assertions, ghost variables. We keep function methods
and predicate methods, which serve as both executable code and as specification. The pro-
portion of lines containing executable code in the entire development is approximately 1
to 5 (657 to 3303). For every line of executable code we have about 4 lines of logic (proofs,
specifications).

The main challenge in verifying the solver is designing the right invariants and helper
assertions. This is made more difficult by some verification conditions that take a large
amount of time to discharge. Furthermore, the verification time is sometimes difficult to
predict. In order to minimize verification time and make it more predictable, we have
developed and used a set of verification patterns:

1. Patterns that improve the modularity of the code.

• Avoid nested loops, because they typically require sharing some invariants between
the inner and the outer loop. This increases duplication of code, decreases
elegance, and increases verification time.
We have made use of this pattern in the revertLastDecisionLevel method (in
the file solver/formula.dfy), whose purpose is to revert the assignments made
in the last decision level. The code of the method is very simple: it calls the
removeLastVariable method repeatedly in a loop, and the removeLastVariable
method also has a simple loop to update the counters.
It would be simple to inline it and obtain two nested loops, but this would lead to a
significant increase in verification time for the revertLastDecisionLevel method.

• Use methods with few lines of code. We have found that it is better to extract basic
blocks as a separate method, even if they consist of only a few lines of code.
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This forces to programmer to better understand the role of such basic blocks and
improves modularity.
In a typical imperative programming language, the programmer would simply
inline these basic blocks. In our Dafny development, it is not unusual to have
methods with few lines of code that have a larger specification, which might
require a significant number of helper assertions to prove.

2. Patterns that improve the modularity of specifications.

• Avoid nested quantifiers. We use this pattern when a formula such as ∀x.∃y.P(x, y)
occurs in the specification. For such cases, we define a new predicate, Q(x),
that is equivalent to the subformula ∃y.P(x, y). We then use ∀x.Q(x) instead of
∀x.∃y.P(x, y).
This helps improve the development in two distinct ways: firstly, it forces the
developer to give a proper name, Q(x), to the ∃y.P(x, y) subformula, thereby
clarifying their intention, and (2) it helps the underlying Z3 prover, which uses
pattern-based quantifier instantiation, to perform better [37].

• Use as few modifies and reads clauses as necessary. This is known to improve
the verification time, sometimes significantly, because the prover knows that
any object not under a modifies clause of a method remains the same after the
method call. In particular, we have made extensive use of the less well-known
backtick operator in modifies clauses, which allows to specify that a method is
allowed to modify a particular field of an object, instead of the entire object.

It is not feasible to develop a SAT solver by running the Dafny verifier on the entire
project with every change in the code or in the specification, because it can take several
minutes to finish the verification of the entire project. Because of this issue, we have adopted
a development methodology where we used Dafny to verify only the lemma/method being
worked on, by using the /proc command line switch. Once the current lemma or method
is verified, Dafny is run again on the entire project to check for other issues. We have also
discovered that the Z3 axiom profiler [38], which allows to understand what verification
conditions take a long time and why, does not scale well to projects the size of our solver.

Our experience in implementing and verifying TrueSAT in auto-active style is that it
requires a significant amount of effort and expertise, and that it pushes the Dafny system
to its limit. Based on our Dafny development, we identify three research directions for the
further improvement to Dafny and other similar systems:

1. Shorten the verification time for individual methods and lemmas and make verifica-
tion time more predictable,

2. Improve error messages for verification conditions that fail to verify, and
3. Construct a method better than using helper assertions for manually guiding the verifier.

As future work, we would like to upgrade our Dafny development to the full CDCL
algorithm. This is a promising way of building a verified solver that is roughly as efficient
as current state-of-the-art SAT solvers. In order to upgrade our solver to CDCL, there are
basically three algorithmic improvements that are necessary: (1) implement backjumping
and a clause learning/forgetting strategy, (2) implement the two watched literals data
structure, and (3) implement a restart strategy. Additionally, as a prerequisite for back-
jumping, the DPLL procedure should be implemented iteratively instead of recursively.
In the iterative version, the call stack will be represented explicitly. Most of the call stack is
already represented explicitly in the trace of assignments anyway. From the point of view
of the implementation, we would only need to add one bit for each variable assignment,
describing whether the other truth value of the propositional variable has already been
checked or not. The recursive procedure will then become a loop. From the point of view
of the specification, the postconditions of the recursive calls should become part of the
loop invariant. A termination proof for the loop will also be necessary, and it could be
based on the number of assignments that have been discarded as not satisfying the formula.
The two watched literals data structure is particularly important for performance as the
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number of clauses increases due to the learnt clauses. Additionally, the two watched literals
data structure makes reverting the assignments leading to a conflict very efficient, as it
is no longer necessary to process each individual variable assigned to update counters.
The structure of our solver enables the implementation of each of the three improvements
in an orthogonal manner, although each of them requires significant verification effort.
In addition to the algorithmic improvements above, better heuristics and engineering
choices will be required to match the efficiency of state-of-the-art unverified solvers.
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