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Abstract: Legal judgement prediction (LJP) is a crucial part of legal AI, and its goal is to predict the 

outcome of a case based on the information in the description of criminal facts. This paper proposes 

a decision prediction method based on causal inference and a multi-expert FTOPJUDGE 

mechanism. First, a causal inference algorithm was adopted to process unstructured text. This 

process did not require very much manual intervention to better mine the information in the text. 

Then, a neural network dedicated to each task was set up, and a neural network that simultaneously 

served multiple tasks was also set up. Finally, the pre-trained language model Lawformer was used 

to provide knowledge for downstream tasks. By using the public data set CAIL2018 and comparing 

it with current mainstream decision prediction models, it was shown that the model significantly 

improved the performance of downstream tasks and achieved great improvements in multiple 

indicators. Through ablation experiments, the effectiveness and rationality of each module of the 

proposed model were verified. The method proposed in this study achieved reasonably good 

performance in legal judgment prediction, which provides a promising solution for legal judgment 

prediction. 

Keywords: deep neural network; legal judgment prediction; causal inference; data pre-training; 

multi-task learning 
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1. Introduction 

Legal judgement prediction (LJP) is a crucial part of legal artificial intelligence (AI), 

and its goal is to predict the outcome of a case based on the information included in the 

description of criminal facts. Legal judgment prediction can not only provide judicial 

personnel with accurate judgment results to better assist them in making judgments and 

improve their work efficiency, but also help people who are unfamiliar with legal 

knowledge and require legal advice. It can also provide a general understanding of a 

crime that is committed by yourself or a loved one. 

In the past, legal decision prediction was often regarded as a text classification 

problem [1]. For example, Liu et al., refined cases by automatically generating and 

refining the description of the crime facts of real criminal cases, and then merging similar 

cases and removing relatively irrelevant information, which actually involved 

manipulating textual features to a lesser extent [2]. Although great achievements have 

been made, they still rely on intuitively processing data while ignoring the judgment 

process of judges in reality, deviating from the actual situation, and lacking a mature 

understanding of the law and the description of the facts in the case. When these models 

are applied to other scenarios, the outcomes are often less optimistic than expected. 
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Subsequently, Zhong et al., pointed out that, unlike countries such as Europe and the 

United States, China is a civil law country based on legal provisions, so the prediction of 

legal provisions should be the most basic work out of the three subtasks of judgment 

prediction. In fact, there is a strict order corresponding to how those judges decide cases 

in the real world [3]. Later, Yang et al., believed that, in addition to the strict order of tasks, 

there is also a mechanism for mutual feedback between results. They proposed a multi-

view network by combining the attention mechanism and a bidirectional feedback neural 

network, which could effectively complete the three subtasks. The decision prediction was 

carried out depending on the outcome [4]. In addition, researchers have also leveraged 

other techniques to improve the interpretability and generalization capabilities of these 

models. Jiang et al., used deep reinforcement learning to obtain simple document features 

from factual descriptions to predict crimes [5]. Chen et al., proposed a legal graph network 

(LGN) to achieve high-accuracy crime prediction [6].  

In recent years, causal inference has been widely used in the field of machine 

learning, and has also been effectively combined with deep learning. Liu et al., proposed 

a graph-based causal inference framework and applied it to the field of legal AI. They 

built a causal graph using a factual description of a case, and injected the causal 

knowledge contained in the framework into the neural network in the form of an auxiliary 

loss function, achieving better performance and interpretability [7]. The method of 

building a causal graph with data and then injecting causal knowledge into a neural 

network is the mainstream feature of causal theory in the field of artificial intelligence. 

Moreover, there are also ways to design encoders and decoders directly using the 

principles of causality. For example, in the field of legal AI, the generation of court 

opinions is also an important task, which is critical for subsequent judges to understand 

the case information and make judgments. When Wu et al., dealt with this problem, they 

found that, since most of the cases participating in the trial were beneficial to the plaintiff 

(plaintiff), the documents generated only by using this data tended to be in the plaintiff's 

favor. However, this outcome is obviously unreasonable. Therefore, they used the 

counterfactual principles in the causal relationship to design a natural language-

generation mechanism based on the attention and counterfactual principles (attentional 

and counterfactual-based natural language generation, AC-NLG). It consisted of an 

attention encoder and a counterfactual encoder, which took the plaintiff's claim and the 

factual description of the case as the input and enabled the encoder to calculate a weight 

for perceiving the factual description and the relevant information in the claim. By using 

a counterfactual decoder combined with a collaborative decision prediction model, factual 

biases in the data could be removed and decision-discriminative opinions (both 

supporting and non-supporting opinions) could be produced. Good results have been 

achieved in both quantitative and qualitative evaluation indicators [8]. 

Before the era of deep learning, researchers tried to model common information 

among multiple tasks, hoping to obtain a better generalization ability through joint task 

learning. This is the goal of multi-task learning (MTL) as summarized by Caruana in 1997. 

The outstanding experimental results can improve the main task by exploiting the 

domain-specific information contained in the training information of related tasks [9]. 

Multi-task learning has been successfully used in all the applications of machine learning, 

from natural language processing [10] and speech recognition [11] to computer vision [12] 

and drug discovery [13]. It is also known by many names: federated learning, meta- 

learning, and assisted task learning. In general, once a process requires the optimization 

of more than one function, it is actually multi-task learning. In these scenarios, it is helpful 

to think clearly about what the task is doing in terms of MTL in order to gain insights from 

it. Furthermore, due to the combination of multiple task networks, the network layers are 

bound to share parameters, which not only reduces the memory usage, but also avoids 

the repeated calculation of the parameters of shared layers and improves the speed of the 

model inference. More importantly, if multiple tasks can complement information or can 

adjust each other, it is possible to improve the model performance [9,14,15]. 
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In the current knowledge on judgment prediction, there is insufficient information 

for unstructured text mining (such as case fact descriptions), an insufficient 

understanding of the relationship between the three tasks, a lack of model structure 

adjustment according to the task relationship, and a lack of pre-trained language models 

as upstream tasks. This paper proposes a causal inference and a multi-expert FTOPJUDGE 

decision prediction model, including the pre-trained language model Lawformer, a causal 

inference mechanism, and structures such as a multi-task FTOPJUDGE classifier. The 

superiority of the model was verified using the public data set CAIL2018, by comparing 

its results with that of the current mainstream decision prediction models. Through 

ablation experiments, the effectiveness and rationality of each module of the proposed 

model were verified. 

The rest of the paper unfolds as follows: Section 2 presents causal inference and the 

multi-expert FTOPJUDGE. The third section contains the experimental results and 

discussion. The fourth section presents a summary of the full text. 

2. Materials and Methods 

2.1. Data Set Introduction  

The data set used in this experiment was China's first large-scale legal data set for 

judgment prediction, the China AI Legal Challenge data set (CAIL2018). It was released 

at the “2018 China Legal Research Cup Smart Challenge” jointly held by Tsinghua 

University, the China Judicial Big Data Research Institute, and other institutions. 

CAIL2018 collected 2.68 million criminal case judgment documents published by the 

China Judgment Document Network (http://wenshu.court.gov.cn/, accessed on 10 

October 2020), involving a total of 202 crimes and 183 articles of law, where the sentences 

included 0–25 years, life, and the death penalty. These documents provide references and 

standards for researchers in the field of legal AI and save a lot of time for researchers. 

They greatly promote the development of judgment prediction in China and play a 

positive role for research in the field of legal intelligence. 

Compared with other LJP data sets, CAIL2018 is larger in scale and is divided into 

three parts, namely practice data, race data, and data not used in the match. For the current 

LJP research, the practice data was often called CAIL-small, and the competition data was 

called CAIL-big. Researchers generally conduct experiments on these two data sets to 

verify the effectiveness of a model. Each document in CAIL2018 is stored in JSON format 

and contains two parts: a description of the case facts and the results of the judgment. 

2.2. The Overall Framework of the Model 

The causal inference and multi-expert FTOPJUDGE judgment prediction model was 

mainly composed of two parts: the causal inference model and the text-processing model. 

These two parts were carried out at the same time and fused at the final loss calculation. 

The text-processing model consisted of the pre-trained language model Lawformer, the 

text-encoding model BiLSTM-Att, and the multi-expert FTOPJUDGE classifier, which 

were partially composed. The overall model framework is shown in Figure 1. 

The causal inference and multi-expert FTOPJUDGE decision prediction model is also 

called the Causal-Lawformer-BiLSTM-Att-Multi-Experts-FTOPJUDGE (CBMF). The 

causal inference part mainly used the same description as in the judgment documents, 

and obtained the causal strength by extracting keywords and establishing a causal graph. 

In the text-processing stage, the pre-trained language model Lawformer was used to 

process the case fact description to obtain rich prior knowledge of the input word vector. 

Then, the text encoder Bi-LSTM was used to process the word vector, and the attention 

mechanism was used to obtain the text vector. The text vector provided exclusive 

information for each sub-task through the multi-expert mechanism to achieve a mutual 

balance between tasks and the performance gain in the common part. In addition, 

information other than the case fact description in the judgment documents was 
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introduced as additional information and input into the FTOPJUDGE classifier to 

complete the prediction of the laws, charges, and sentences. 

 

Figure 1. Overall structure of the model. 

2.3. Causal Inference  

Causal inference is the process of obtaining the causal relationship between variables. 

Most existing studies have focused on the processing of structured data, while there are 

few studies on mining the causal relationship between factors from unstructured data 

such as character information. However, this is a critical component of legal AI. In this 

paper, a novel graph-based causal inference (GCI) [7] framework is proposed, which 

constructs causal graphs from fact descriptions without much human intervention and 

helps legal AI make correct decisions. GCI consists of three parts, including the 

construction of a causal graph to assess the causal strength and make decisions. This 

specific process is elaborated in detail in Figure 2. 

 

Figure 2. The overall process of GCI. 

2.3.1. Constructing Cause and Effect Diagrams  

In the first step, the modified YAKE algorithm was used to extract 𝑝 most important 

keywords of the law from the description of the facts of the case without supervision 𝑙𝑖, 

where 𝑙𝑖 ∈ 𝐿 , 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑀}  and 𝑀 is the status type. The reasoning behind this 

algorithm was that, from the perspective of judgment prediction, the prediction of the 
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laws and regulations of a case is the most basic task; therefore, this is the most important 

task to a certain extent, especially in circumstances where the law is able to predict 

whether the following tasks will achieve excellent performance. For Chinese text, the 

improved YAKE algorithm considered the importance of words from four perspectives: 

• The position of the sentence in which the word was located; the earlier the sentence 

appeared in the text, the more important it was. Its score calculation formula was as 

follows: 

𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑔2( 𝑙𝑜𝑔2( 2 + 𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝑒𝑛𝑡))) (1) 

where 𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝑒𝑛𝑡) is the median position in the text of all sentences containing the 

word. 

• The word frequency–inverse text frequency; a high-frequency word was not 

necessarily the most important. The inverse document frequency was used to 

measure the true importance of a word, which consisted of the word frequency 𝑇𝐹 

and the inverse text frequency 𝐼𝐷𝐹. The specific formula was as follows: 

𝑇𝐹𝑛𝑜𝑟𝑚(𝑥) =
𝑇𝐹(𝑥)

𝑀𝑒𝑎𝑛𝑇𝐹 + 1 ∗ 𝜎
 (2) 

 𝐼𝐷𝐹(𝑥) = 𝑙𝑜𝑔
𝑁 + 1

𝑁(𝑥) + 1
+ 1 (3) 

 𝑇𝐹 − 𝐼𝐷𝐹(𝑥) = 𝑇𝐹𝑛𝑜𝑟𝑚(𝑥) ∗ 𝐼𝐷𝐹(𝑥)  (4) 

where 𝑇𝐹(𝑥) is the word frequency of the word 𝑥 in the text, 𝑀𝑒𝑎𝑛𝑇𝐹 is the average of 

all word frequencies, and 𝜎 is the standard deviation of the word frequency, which was 

normalized to avoid the problem of excessive word frequency in long texts. 𝑁 is the total 

number of texts in the corpus, and 𝑁(𝑥) is the number of texts containing 𝑥. Here, the 

original YAKE only used word frequency, and we enabled the algorithm to find more key 

words by introducing inverse text frequency. 

• Context relation; when a word co-occurred with more irrelevant words, the 

importance of the word was lower. 

𝐷𝐿[𝐷𝑅] =
|𝐴𝑡,𝑤|

∑ 𝐶𝑜𝑂𝑐𝑐𝑢𝑟 𝑥,𝑘𝑘∈𝐴𝑡,𝑤

  (5) 

𝑇𝑅𝑒 𝑙 = 1 + (𝐷𝐿 + 𝐷𝑅) ∗
𝑇𝐹(𝑥)

𝑀𝑎𝑥𝑇𝐹
 (6) 

where 𝐷𝐿 means that the window slid from left to right, and 𝐷𝑅 means the opposite. 

|𝐴𝑡,𝑤| represents the number of different words that appeared in the window, 𝑀𝑎𝑥𝑇𝐹 

represents the maximum frequency of all words, and 𝐶𝑜𝑂𝑐𝑐𝑢𝑟 𝑥, 𝑘 represents the number 

𝑥 of 𝑘 co-occurrences. 

• The frequency of words appearing in sentences; the more sentences a word appeared 

in, the more important it was. 

𝑇𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 =
𝑆𝐹(𝑥)

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑎𝑙𝑙

  (7) 

where 𝑆𝐹(𝑥) is the number of sentences containing the word 𝑥, and 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑎𝑙𝑙  is the 

number of all the sentences. 

Based on these four considerations, each word 𝑥 was scored as follows: 

 𝑆(𝑥) =
𝑇𝑅𝑒 𝑙 ∗ 𝑇𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑇𝐹𝑛𝑜𝑟𝑚

𝑇𝑅𝑒 𝑙
+

𝑇𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝑇𝑅𝑒 𝑙

 (8) 
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where 𝑆(𝑥) is the score of the word 𝑥. The smaller 𝑆(𝑥) was, the more important the 

word 𝑥 was. The original YAKE also considered whether a word was capitalized. Since 

we were dealing with Chinese text, this part was discarded. 

The second step was to select 𝑝 key words that are most important to the law, and 

use the 𝐾-means algorithm to cluster them into 𝑞 class keywords. 

The data 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑝}  were randomly divided into 𝑞  groups, namely  𝐶 =

{𝐶1, 𝐶2, … , 𝐶𝑞}, where 𝑥1, 𝑥2, … , 𝑥𝑝 were the 𝑝 key words were those most important to the 

law. A number of objects, 𝑞, was randomly selected from 𝐶 as the initial cluster center 

{𝑢1, 𝑢2, … , 𝑢𝑞} , and the distance between keyword 𝑥𝑖  and each cluster center 𝑢𝑗  was 

calculated as: 

𝑑𝑖𝑗 = (‖𝑥𝑖 − 𝑢𝑗‖)2
2 (9) 

Each keyword was assigned to its nearest cluster center 𝑢𝑗. The cluster centers and 

the keywords assigned to them represented a cluster. Every time a keyword was allocated, 

the cluster center was recalculated according to the existing keywords in the cluster. The 

calculation formula was as follows: 

𝑢𝑗 =
1

|𝐶𝑗|
∑ 𝑥

𝑥∈𝐶𝑗

 (10) 

This process was repeated until no keywords were reassigned to other clusters, no 

cluster centers changed, or the sum of the squared errors was locally minimized. The 

clustered 𝑞 class key and all the statutes were called the element of the causal graph 

𝑓𝑎𝑐𝑡𝑜𝑟. 

The third step was to use the greedy fast causal inference algorithm (greedy fast 

causal inference, GFCI) for the causal discovery to establish edges in the causal graph, to 

treat all elements, 𝑓𝑎𝑐𝑡𝑜𝑟, as nodes of the causal graph, and to determine whether there 

was a causal relationship between the nodes. If there was a causal relationship, then an 

edge was established. 

GFCI is a combination of a score-based and constraint-based algorithm that combines 

the best of both worlds and performs as well as the score-based approach. Specifically, 

GFCI does not rely on the assumption that there are no potential confounders, and was 

therefore suitable for our task. GFCI establishes edges for nodes with causal relationships 

in a causal graph, and establishes different types of edges for different causal 

relationships. There are four types of edges, as shown in Table 1 [7]. 

Table 1. Types of edges in causal graphs and their meanings. 

Edge Meaning (Type) 

A  B A makes B 

A  B There is an unobserved confounding factor between A and B 

A  B Either A makes B or there is a confounding factor 

A  B Either A makes B, or B makes A, or there is a confounding factor 

In addition, we also needed to consider some special cases to prune the edges. First 

of all, the identification of the statute was based on the description of the facts, and the 

statute was the result of the final determination, so it was impossible to have an edge from 

the statute to other nodes. Meanwhile, the time was also considered. Due to the causality 

constraint, a cause must occur before the result. The factual descriptions in a judgment 

document are usually written in chronological order, so the chronological order could be 

used to constrain the edge. 

The fourth step was to sample the causal graph to obtain the causal subgraph. Due 

to the uncertainty of the causal relationship, the causal graph also had uncertainty, so it 

was necessary to sample the causal graph and determine whether the causal subgraph 
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conformed to the real causal relationship. There are different sampling methods for 

different edges. The specific methods are as follows: among the four types of edges,  

means the edge will be retained;  means the edge will be deleted, because  

does not reveal whether there is a causal relationship between nodes; for , there are 

two possibilities,  or , each with a probability of 1/2, so when sampling it, half 

of the edge is likely to be retained and half is likely to be discarded; similarly, for 

, there is a 1/3 chance of each case. 

2.3.2. Assessing Causal Strength  

Since all the resulting causal subgraphs were still inherently noisy, we refined them 

by estimating the strength of the causal relationships. We assigned high values to edges 

with strong causality, and values of close to 0 to edges with no or weak causality. The 

specific method was: for the edge in the causal subgraph G, the average treatment effect 

(ATE) 𝜓𝑇,𝑌
𝐺  was used as the strength of the node–𝑇 to the node-𝑌 edge in the graph G, 

and then propensity score matching (PSM) was used to evaluate it. The specific principles 

of ATE and PSM are introduced below. 

ATE is used to evaluate the average intervention effect of an individual in the 

intervention state—that is, the difference between the observation result of individual 𝑖 

in the intervention state and its counterfactual. The principle is that, for edge 𝑇 → 𝑌, if 

the intervention 𝑇  is changed from 0 to 1, the expected change of the result 𝑌  is as 

follows: 

𝜓𝑇,𝑌 = 𝐸[𝑌|𝑑𝑜(𝑇 = 1)] − 𝐸[𝑌|𝑑𝑜(𝑇 = 0)]  (11) 

Here, 𝐸 is the expectation and 𝑑𝑜(𝑇 = 1) means setting the intervention 𝑇 to 1. 

Propensity score matching, PSM, is a statistical method that is used to reduce the 

influence of data bias and confounding variables so that comparative experiments are on 

the same starting line. Combining the two methods can achieve an assessment of the 

causal strength; the formula is as follows: 

𝜓𝑇,𝑌
𝐺 =

[∑ (𝑦𝑖 − 𝑦𝑗) +𝑖:𝑡𝑖=1 ∑ (𝑦𝑖 − 𝑦𝑗)𝑖:𝑡𝑖=0 ]

𝑁
 (12) 

where 𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘:𝑡𝑘≠𝑡𝑖

|𝐿(𝑧𝑖) − 𝐿(𝑧𝑘)| is the most similar instance of the opposite group of 𝑖, 

𝐿 is the likelihood function, and 𝑡𝑖 , 𝑦𝑖 , and 𝑧𝑖 are the values of the intervention, outcome, 

and confounding factor for 𝑖, respectively. 

2.3.3. Making Decisions 

For each factor graph 𝐺𝑞 , we obtained its causal strength and then calculated the 

quality 𝐵𝐼𝐶(𝐺𝑞 , 𝑋) of the subgraph 𝐺𝑞  by evaluating its degree of fitting with the data 

𝑋. Here, we used the Bayesian information criterion (BIC) for the calculation. This was 

mainly used to measure the excellence of the subgraph in fitting the data. Then, for edge 

𝑇𝑗 → 𝑌𝑖  in each subgraph 𝐺𝑞 , the weight sum of the mass 𝐵𝐼𝐶(𝐺𝑞 , 𝑋)  and the causal 

strength of each graph was used to obtain the causal strength 𝛹𝑇𝑗,𝑌𝑖

𝐺𝑞  of the edge 𝑇𝑗 → 𝑌𝑖 

in the general graph. The specific formula for the calculation was as follows: 

𝐵𝐼𝐶(𝐺𝑞 , 𝑋) = 𝐾𝐺𝑞
𝑙𝑛(𝑁𝑋) − 2 𝑙𝑛( 𝐿) (13) 

 𝛹𝑇𝑗,𝑌𝑖
= ∑𝐵𝐼𝐶

𝑄

𝑞=1

(𝐺𝑞 , 𝑋) × 𝛹𝑇𝑗,𝑌𝑖

𝐺𝑞  (14) 

where 𝐾𝐺𝑞
 is the parameter in the graph 𝐺𝑞 , 𝑁𝑋 is the number of 𝑥, 𝐿 is the likelihood 

function, and 𝑌𝑖 represents the legal clause 𝑙𝑖. If the edge 𝑇𝑗 → 𝑌𝑖  does not exist in the 

graph 𝐺𝑞 , then 𝛹𝑇𝑗,𝑌𝑖

𝐺𝑞  is 0.  
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Finally, for each case, we treated the factual description as 𝑑𝑜𝑐, combined it with a 

causal diagram, and calculated a score for each statute. The formula was as follows: 

𝑆(𝑌𝑖) = ∑ 𝛹𝑇𝑗,𝑌𝑖

𝑇𝑗∈𝑇𝑟(𝑌𝑖)

× 𝜏(𝑇𝑗), 𝑖 ∈ {1, … ,𝑀} (15) 

     𝜏(𝑇𝑗) = {
1           if 𝑇𝑗  in 𝑑𝑜𝑐

 0     if 𝑇𝑗  not in 𝑑𝑜𝑐
  (16) 

where 𝜏(𝑇𝑗) represents 1 if 𝑇𝑗 is in the fact description, and 0 if 𝑇𝑗 is not. The obtained 

scores were input into the random forest classifier [16], and the corresponding law was 

obtained. 

2.4. Text Pre-Training  

Over the past few years, a variety of pre-trained language models have flourished 

and demonstrated their ability to effectively extract rich language knowledge and 

unlabeled corpora, and to achieve significant performance improvements in a variety of 

downstream tasks. Compared with the traditional Bert, which utilizes a wide range of 

texts covering all walks of life, some researchers have incorporated a pre-training stage 

for text extraction in specific domains, and have proved that continuous pre-training on 

the target domain corpus can continuously achieve performance improvements [17]. At 

the same time, the referee text is usually composed of thousands of words, but the 

mainstream PLMs are Transformer-based; therefore, the length of the input text is often 

limited to 512, which does not meet our requirements for processing referee documents. 

In response to these problems, Xiao et al., proposed a Longformer-based pre-trained 

language model, Lawformer, in 2021 [18]. 

As the basic encoder of Lawformer, Longformer does not use a complete self-

attention mechanism, but integrates the sliding window attention mechanism (sliding 

window attention), the extended sliding window attention mechanism (dilated sliding 

window attention), and the global attention mechanism (global attention) to encode text 

sequences. The reason for this is that, when the length of the input sequence is 𝑛, the time 

complexity and memory complexity of the complete self-attention mechanism are both 

𝑛𝑂(𝑛2), and an excessively long text length 𝑛 would inevitably lead to an excessively 

long training time and consume a huge amount of computing resources. In this way, the 

full self-attention matrix was made sparse by specifying an “attention model” of pairs of 

input positions that are of mutual concern, resulting in a linear relationship between the 

complexity and 𝑛. An example of the combination of the three attention mechanisms is 

shown in Figure 3. 

 

Figure 3. The combination of the three attention mechanisms in Lawformer. Note: The meaning of 

Chinese characters in the figure is “seriously injured by the hospital”. 
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For the text, we recognized each word as a token, and a piece of text was represented 

as 𝑇 = (𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛), where 𝑡𝑖represents a word and 𝑛 is the text-length. 

Sliding Window Attention: For this attention, we only calculated the attention score 

between the surrounding tokens. Specifically, given the size of a sliding window 𝑤, each 

token only paid attention to 1/2 𝑤 on each side, although in each layer a token only 

gathered information near it. However, as the number of layers increased, global 

information could also be integrated into the hidden representation of each token. 

Dilated Sliding Window Attention: In order to further increase the field of view 

without increasing the amount of computation, the sliding window could be “expanded”, 

which was similar to the dilated convolution of CNN [19]. In this attention mechanism, 

each window was not continuous, but there was a gap between each participating token 

with length 𝑙. Since we used a multi-head attention mechanism in each window, the gap 

lengths of different heads 𝑙 could be different at the same time, which would also enable 

the attention to obtain information at different levels of text and improve the performance 

of the model. 

Global Attention: In some specific tasks, some tokens needed to focus on the whole 

sequence to obtain enough information. For example, in text classification, the special 

token “CLS” should be used to focus on the entire text. Therefore, we applied global 

attention to some pre-selected tokens for specific tasks. The chosen tokens would focus on 

the entire sequence to generate a hidden representation, instead of just focusing on the 

surrounding tokens. It is worth noting that the parameters of the global attention and the 

sliding window attention were different. 

2.5. Text Encoder BiLSTM-Att  

The pre-trained word embedding, obtained by Lawformer above, was at the sentence 

level, so the obtained text sequence representation was 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑚), 𝑠𝑖 ∈ 𝑘, where 

𝑘 is the dimension of the word vector and 𝑚 is the number of sentences in the text. 

We processed the text using Bi-LSTM, where 𝑆  used a forward LSTM and a 

backward LSTM on the text sequence to obtain two separate hidden states. At time 𝑡, its 

hidden state h𝑡 is given by the following: 

h⃗ 𝑡 = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑠𝑡) (17) 

h⃖⃗𝑡 = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑠𝑡) (18) 

h𝑡 = [ℎ⃗ 𝑡; ℎ⃖⃗𝑡] (19) 

where ℎ𝑡 is the output of the forward-LSTM-hidden layer at time 𝑡, ℎ⃖⃗𝑡 is the output of 

the backward-LSTM-hidden layer at time 𝑡, and the two are cascaded together to form 

ℎ𝑡. Finally, its output is 𝐻 = (ℎ1, ℎ2, . . . , ℎ𝑚), which contains the contextual and locational 

information of the text. 

After that, the attention mechanism was used for H to obtain the output of 𝑂𝑢𝑡𝐴𝑡𝑡, 

which enabled the machine to remember more useful information, and meanwhile solved 

the long-distance dependency problem in Bi-LSTM to a certain extent. The specific 

formula was as follows: 

𝑢𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝑤ℎ𝑖 + 𝑏𝑤) (20) 

𝛼𝑖 =
𝑒𝑥𝑝(𝑢𝑖

𝑇𝑢𝑤)

∑ 𝑒𝑥𝑝(𝑢𝑖
𝑇𝑢𝑤)𝑖

  (21) 

   𝑂𝑢𝑡𝐴𝑡𝑡 = 𝐻𝛼𝑇 (22) 

where 𝑊𝑤 is the parameter matrix to be trained and 𝑏𝑤 is the bias term. 
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2.6. Multi-Expert FTOPJUDGE Classifier  

Zhong et al., believed that the three tasks in judgment prediction were sequential. He 

pointed out that, different from the case law system of Britain and the United States, China 

belongs to the civil law system; that is, legal judgments in China are based on the law. 

Therefore, the judge should first make a judgment on the law involved in a case, and then 

make a judgment on the charge through the relevant law, and the sentence of the 

defendant should be decided on this basis. In actual legal judgment, the article of law, the 

charge, and term of the sentence are closely related and gradually supplement each other. 

Tang et al., found through experiments on large-scale public data sets that, in MTL models 

with a complex task association, the performance of some tasks was improved at the 

expense of the performance of other tasks. This is inevitable, as with the long-distance 

dependency problem in NLP, and it is called the seesaw phenomenon [20]. To solve this 

problem, we used the expert mechanism of the MMoE. Unlike the MMoE, where multiple 

experts function similarly, this paper designed two expert mechanisms with different 

functions to balance the three tasks. 

2.6.1. Information Stripping Using the Multi-Expert Mechanism  

In the MMoE mechanism, although a separate gating mechanism is configured for 

each task, there is still a phenomenon where some tasks preemptively serve experts for 

other tasks, mainly because all experts in the mechanism are shared on all tasks; this is 

also the root cause of the seesaw phenomenon. In view of this issue, this article introduces 

experts that work individually on tasks to ensure that each task is sufficiently developed. 

In addition, it is the function of the multi-expert mechanism to extract the most 

appropriate information for the three tasks from text embedding, 𝑂𝑢𝑡𝐴𝑡𝑡. 

As shown in Figure 4, we set up an exclusive expert group for each task and a shared 

expert group to realize the information exchange between multiple tasks. Each expert 

group was composed of multiple expert networks. Dedicated expert groups were 

responsible for providing information for dedicated tasks, and shared expert groups were 

responsible for learning and sharing information to facilitate multi-tasking. In other 

words, the shared expert groups were affected by all tasks, while the exclusive expert 

groups were affected only by the tasks to which they belonged, and the two groups were 

selectively fused through a gating mechanism. Taking task k as an example, the input of 

the multi-expert mechanism is 𝑂𝑢𝑡𝐴𝑡𝑡 = {𝑜1, 𝑜2, . . , 𝑜𝑚}. The specific calculation process is 

as follows: 

𝑆𝑘(𝑜𝑖) = [𝐸(𝑘,1)
𝑇 , 𝐸(𝑘,2)

𝑇 , . . . , 𝐸(𝑘,𝑚𝑘)
𝑇 , 𝐸(𝑠,1)

𝑇 , 𝐸(𝑠,2)
𝑇 , . . . , 𝐸(𝑠,𝑚𝑠)

𝑇 ]𝑇 (23) 

 𝑤𝑘(𝑜𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑔
𝑘𝑜𝑖) (24) 

𝑔𝑘(𝑜𝑖) = 𝑤𝑘(𝑜𝑖)𝑆
𝑘(𝑜𝑖) (25) 

where 𝑜𝑖  is the input, 𝐸 is the expert network, 𝑚𝑘 is the number of expert networks in 

the exclusive expert group, 𝑚𝑠 is the number of expert networks in the shared expert 

group, 𝑊𝑔
𝑘 ∈ 𝑅(𝑚𝑘+𝑚𝑠)×𝑑 is the matrix with training parameters, 𝑑 is the dimension of 

𝑜𝑖 , and the weighted summation of the results of different expert networks constitutes the 

output, 𝑔𝑘, of our multitasking mechanism. 
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Figure 4. Structure diagram of the multi-expert mechanism. 

2.6.2. Introducing Additional Knowledge  

A lot of knowledge is included in a written judgment in addition to the description 

of the facts of the crime. This includes basic information about the defendant, the court 

opinion, etc. All of this information can have an impact on the verdict [21]. For additional 

information 𝑋𝑒 = [𝑥1, 𝑥2, . . . , 𝑥𝑒𝑘
] , 𝑒𝑘  is the type of additional information. We first 

normalized it using the following formula: 

𝑥′ =
𝑥 − 𝜇

𝜎
 (26) 

where 𝜇 is the mean of 𝑥 and 𝜎 is the standard deviation of 𝑥. The purpose was to 

speed up the solution of the model during gradient descent because it changes linearly, 

which allowed the data to be true while improving its representation in the model. The 

result was 𝑋𝑒
′ = [𝑥1

′ , 𝑥2
′ , . . . , 𝑥𝑒𝑘

′ ] . To make these data work better, we designed an 

additional knowledge encoder, which consisted of two fully connected layers. The specific 

formula was as follows: 

 𝑇𝑒 = 𝑅𝑒𝑙𝑢(𝑇𝑒
1𝑊𝑒

2 + 𝑏𝑒
2) (27) 

 𝑇𝑒
1 = 𝑅𝑒𝑙𝑢(𝑋𝑒

′𝑊𝑒
1 + 𝑏𝑒

1) (28) 

where 𝑊𝑒
𝑖 and 𝑏𝑒

𝑖  are the parameters of the full connection and training at layer 𝑖. Then, 

the obtained result 𝑇𝑒 was concatenated with the output of the multi-expert mechanism. 

The task 𝑘 was taken as an example in the following equation: 

𝑇𝑘 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑔𝑘 , 𝑇𝑒) (29) 

where 𝑇𝑘  is the input of the task 𝑘  in the FTOPJUDGE classifier. The reason why 

additional information was introduced here, rather than before the input of the multi-

expert mechanism, is because the information would have been lost to a certain extent 

during the propagation of the neural network, especially after the complex structure of 

the multi-expert network was applied [22].Therefore, we chose to introduce additional 

information in the closest part of the classifier. 
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2.6.3. FTOPJUDGE Classifier 

In this section, we introduce the FTOPJUDGE classifier, which was improved in the 

structure of each module and its operating principle based on its tasks. This classifier was 

called the fully connected TOPJUDGE classifier. 

Different from Zhong et al.’s work of using an LSTM to build a topological classifier, 

we used a fully connected network to build the topological structure. We used 

FTOPJUDGE because we stripped the information through a multi-expert mechanism 

rather than the LSTM that Zhong et al., used in their paper. Since our information was a 

single information vector rather than a sequence, the use of recurrent neural networks 

such as LSTM did not result in much performance improvement for the model. 

FTOPJUDGE proved to be far superior to LSTM. 

We used a fully connected network as the basic component of classification. The 

specific structure is shown in Figure 5. The second task of predicting the charge was taken 

as an example in the following equations: 

�̂�2 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑒𝑙𝑢( 𝑇2
2𝑊2

2 + 𝑏2
2)) (30) 

𝑇2
2 = 𝑅𝑒𝑙𝑢( 𝑇2

1𝑊2
1 + 𝑏2

1) (31) 

𝑇2
1 = 𝑅𝑒𝑙𝑢( 𝑇2

𝑖𝑛𝑊2
𝑖𝑛 + 𝑏2

𝑖𝑛) (32) 

 𝑇2
𝑖𝑛 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑇2, 𝑇1

2) (33) 

where 𝑇𝑖
𝑗  is the output of layer 𝑗  in the three-layer fully connected network 

corresponding to task 𝑖, 𝑇𝑖
𝑖𝑛 is the input of task 𝑖, and �̂�𝑖 is the output of task 𝑖. Taking 

the second task as an example, the input was concatenated by the vector 𝑇1
2and the input 

provided by the FTOPJUDGE classifier for the second task, 𝑇2. The calculation process of 

law prediction and sentence prediction is similar to that of crime prediction, with the 

difference being that only 𝑇1 is required for the input of law prediction, while 𝑇2
1,  𝑇2

2, and 

𝑇3 are required for the input of crime prediction. The different inputs of each task also 

realize the same topological order structure as TOPJUDGE. Finally, we obtained 𝑇1 ∈ 𝑅𝑙 , 

𝑇2 ∈ 𝑅𝑐ℎ , and 𝑇3 ∈ 𝑅𝑖𝑚 , where 𝑙, 𝑐ℎ, and 𝑖𝑚  are the number of label categories for the 

articles, charges, and imprisonments, respectively. 

 

Figure 5. The specific structure of FTOPJUDGE. 
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2.7. Integration of Causal Inference and Neural Networks 

At this stage, compared with causal inference, neural networks still have a huge 

advantage in processing large amounts of text data, and we also observed that the causal 

knowledge contained in the GCI could be effectively injected into powerful neural 

networks to give the model better performance and interpretability. This motivated us to 

combine causal inference with neural networks, so that the neural networks could obtain 

real causal information and benefit from them. Therefore, we used a fusion method, as 

shown in Figure 6. 

 

Figure 6. The use of causal strength to impose constraints. 

We injected the evaluated causal intensities into the text encoder BiLSTM-Att. The 

case fact description obtained sentence embedding 𝐻 = (ℎ1, ℎ2, . . . , ℎ𝑚) with contextual 

information through BiLSTM. After that, the attention mechanism assigned different 

weights {𝑎1, 𝑎2, . . . , 𝑎𝑚} to each sentence and summed these sentences using the weights 

to construct the text embedding 𝑂𝑢𝑡𝐴𝑡𝑡: 

𝑎𝑖 =
𝑒𝑥𝑝( 𝑞𝑇 ⋅ h𝑖)

∑ 𝑒𝑥𝑝( 𝑞𝑇 ⋅ h𝑘)
𝑛
𝑘=1

  (34) 

𝑜𝑖 = ∑ 𝑎𝑖 × h𝑖
𝑚
𝑖=1   (35) 

where 𝑞 is the learnable query vector. For the three tasks, we used the cross-entropy loss 

function to calculate each task's own loss separately, applied a weight to each loss, and 

performed a weighted summation. For the task 𝑘, its loss function was: 

𝐿𝑐𝑟𝑜𝑠𝑠
𝑘 = −[𝑦𝑘 𝑙𝑜𝑔 �̂�𝑘 + (1 − 𝑦𝑘)𝑙𝑜𝑔(1 − �̂�𝑘)] (36) 

where �̂�𝑘 is the result we predicted and 𝑦𝑘  is the real result. The three task losses were 

weighted and summed: 

𝐿𝑐𝑟𝑜𝑠𝑠 = 𝛼1 × 𝐿𝑐𝑟𝑜𝑠𝑠
1 + 𝛼2 × 𝐿𝑐𝑟𝑜𝑠𝑠

2 + 𝛼3 × 𝐿𝑐𝑟𝑜𝑠𝑠
3  (37) 

 ∑ 𝛼𝑖

3

𝑛=1

= 1 (38) 

Here, the weights were manually set. Afterwards, an auxiliary loss was introduced, 

𝐿𝑐𝑜𝑛𝑠 , which utilized the causal strength learned through the GCI to guide the attention 

mechanism so that it learned causal knowledge about the statutes, as the decision statutes 

are the basis for decision prediction. Embedding the legal causal knowledge and text 

information into the text embedding greatly assisted the next judgment prediction. The 

specific process was as follows: 

Labeled 
Cases

BiLSTM
Sentence

Embeddings
Attention

Constrain

Strength on Y

Text
Embeddings

Predictions
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First, 𝑤𝑖  is each element that belongs to 𝑓𝑎𝑐𝑡𝑜𝑟  𝑓 , �̃�𝑇𝑓,𝑌𝑗
 is the corresponding 

causal strength, and 𝑔𝑖  is the normalized strength for the entire sequence of causal 

strengths. 

Afterwards, 𝐿𝑐𝑜𝑛𝑠  was set to make the weights in the attention close to the 

normalized causal strength: 

𝐿𝑐𝑜𝑛𝑠 = ∑(𝑎𝑖 − 𝑔𝑖)
2

𝑛

𝑖=1

  (39) 

The task loss and auxiliary loss were added to obtain the total loss: 

𝐿 = 𝐿𝑐𝑟𝑜𝑠𝑠 + 𝐿𝑐𝑜𝑛𝑠 (40) 

Finally, we used the Adam [23] optimization algorithm to optimize the task. 

3. Results  

3.1. Data Preprocessing 

By analyzing the crimes in CAIL2018, it was found that the distribution of different 

crimes was quite uneven. Judging from the number of various crimes, the top ten crimes 

accounted for 79% of the cases. In contrast, the 10 types of crimes with the smallest total 

number accounted for only 0.12% of the cases, and this kind of situation also existed in 

the statutes of CAIL2018. Therefore, there was an extremely serious data imbalance 

problem in CAIL2018, which created challenges for the subsequent crime prediction and 

law prediction. In addition, for the lengths of the case fact description texts of the cases, 

the phenomenon of data imbalance was still serious. Taking CAIL-small as an example, 

the longest text was 56,226 words, the shortest was 6, and the average length was 350.6, 

as shown in Figure 7. 

 

Figure 7. Fact description text length analysis in CAIL2018. 

Only 1.9% of the texts had a length between 0 and 100 words, 2.4% of the texts were 

longer than 1000 words, and 95.8% of the texts were between 100 and 1000 words in 

length. 

In response to these situations, we first sorted the crimes and laws so that the selected 

cases involved the more common types of laws and crimes, so as to reduce the occurrence 

of small sample problems. At the same time, in order to carry out the comparative 

experiment better, we drew on Zhong et al.'s work on judgment prediction in 2018. A 

piece of data in CAIL-small was selected only if it simultaneously satisfied the conditions 
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of a description text length between 100 and 1000 words, a crime category belonging to 

the top 119 crimes, and a law category belonging to the top 103 categories. A similar purge 

was applied to CAIL-big, but the number of crimes and statutes to which our cases 

belonged were expanded to the top 130 and the top 118, respectively. We collected all the 

filtered data and used random sampling to divide the data into a training set, a validation 

set, and a test set in a ratio of 8:1:1. The details are shown in Table 2. 

Table 2. Statistical analysis of the data set. 

Data Set CAIL-Small CAIL-Big 

Training set 101,251 1,370,481 

Validation set 12,656 171,309 

Test set 12,656 171,309 

Law 103 118 

Charge 119 130 

Sentence 11 11 

In addition, since the sentence was a continuous variable and there was also the 

problem of data imbalance, the sentence data was taken as discrete (refer to Zhong et al.'s 

previous work) and the labels were converted according to Table 3. 

Table 3. Sentence conversion table. 

Sentence (Month) After Conversion Sentence (Month) After Conversion 

no sentence 0 (36,60] 6 

(0,6] 1 (60,84] 7 

(6,9] 2 (84,120] 8 

(9,12] 3 (120,300] 9 

(12,24] 4 life or death penalty 10 

(24,36] 5   

The purpose of this was to make the distribution of the number of cases in each 

interval relatively uniform while ensuring rationality, and to prevent the occurrence of 

problems such as a poor model generalization ability. 

3.2. Evaluation Indicators 

To facilitate the comparison of benchmarks and the performance of the ablation 

model and our model, we adopted four evaluation metrics that are widely used in multi-

classification tasks: accuracy (accuracy, Acc.), macro-average precision (macro-precision, 

MP), macro-precision average recall (macro-recall, MR) and macro-average F1 value 

(macro-F1, F1). The specific calculation formulas were as follows: 

Acc=
∑𝑆𝑟𝑖𝑔ℎ𝑡

∑𝑆𝑎𝑙𝑙

 (41) 

𝑀𝑃 =
1

𝑛
∑𝑃𝑖

𝑛

𝑖=1

  (42) 

 𝑀𝑅 =
1

𝑛
∑𝑅𝑖

𝑛

𝑖=1

 (43) 

 F1 =
1

𝑛
∑𝐹𝑖

𝑛

𝑖=1

  (44) 
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where 𝑆𝑟𝑖𝑔ℎ𝑡  represents all correctly classified samples, 𝑆𝑎𝑙𝑙  represents all samples, 𝑛 

represents all categories in the data, 𝑃𝑖  represents the precision of class 𝑖 samples, 𝑅𝑖 

represents the recall rate of the class 𝑖 sample, and 𝐹𝑖 represents the F1 value of the class 

𝑖 sample. The formulas for 𝑃𝑖 ,  𝑅𝑖, and 𝐹𝑖 were as follows: 

 𝑃𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

 (45) 

𝑅𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

  (46) 

 𝐹𝑖 =
2 × 𝑃𝑖 × 𝑅𝑖

𝑃𝑖 + 𝑅𝑖

  (47) 

where 𝑇𝑃𝑖  represents the number of samples in category 𝑖 that were correctly predicted, 

𝐹𝑃𝑖  represents the number of samples that were incorrectly predicted to be in class 𝑖, and 

𝐹𝑁𝑖 represents the number of samples in category 𝑖 that were predicted incorrectly. 

3.3. Experimental Design  

We set the length of each fact description text to 600, truncated the excess, completed 

the missing part, and then determined that the text contained 30 sentences, each with a 

length of 20. For each sentence, the embedding dimension of the sentence vector after pre-

training was 768, which was the fixed dimension output by the pre-training model, and 

the number of expert networks in each expert group was 16. The Adam optimizer was 

used for model optimization; the initial learning rate was 0.001, the batch size was set to 

256, and a total of 40 rounds of training were performed. If the loss did not drop over 

10,000 batches, the model was considered to be overfitting, and we terminated the training 

early. In addition, in order to prevent the occurrence of overfitting, we used the dropout 

mechanism [24]; the neural network was thrown out, and the retention rate was set to 0.5. 

We used the Pytorch deep learning framework for the experiments, and the experimental 

environment used is shown in Table 4. 

Table 4. Experimental environment configuration table. 

Environment Configuration 

Development platform Linux 

Operating system Ubuntu 18.04 

CPU Intel Xeon Gold5218R 

RAM 128 G 

GPU NVIDIA RTX 3090 24 G 

Programming language Python 3.6 

Development tools PyCharm 2019.3 

Deep learning framework Pytorch 1.10.2 

During the training process, the model training effect was displayed in real time by 

using the validation set for every 10 batches. After the model training was completed, the 

test data set was used to obtain the experimental results. 

3.4. Experimental Results  

We compared the proposed model with eight existing models with better 

performance. In order to ensure the accuracy of the experiment and prevent contingencies, 

we conducted three experiments on each model and averaged each index. The 

performances of all models on CAIL-small and CAIL-big are shown in Tables 5 and 6, 

respectively. 
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Table 5. Results of judgment prediction on CAIL-small in comparative experiments (%) (a) and 

(b). 

 (a) 

Model 

Metrics 

FLA + 

MTF 
CNN + MTF 

HARNN + 

MTF 

Few-Shot + MTF 

[25] 

TOPJUDGE 

[3] 

Law 

Acc. 77.74 78.71 79.79 79.30 79.88 

MP 75.32 76.02 75.26 77.80 79.77 

MR 74.36 74.87 76.79 77.59 73.67 

F1 72.93 73.79 74.90 76.09 73.60 

Charge 

Acc. 80.90 82.41 83.80 83.65 82.10 

MP 79.25 81.51 82.44 80.84 83.60 

MR 77.61 79.34 82.78 82.01 78.42 

F1 76.94 79.61 82.12 81.55 79.05 

Sentence 

Acc. 36.48 35.40 36.17 36.52 36.29 

MP 30.94 33.07 34.66 35.07 34.73 

MR 28.40 29.26 31.26 26.88 32.73 

F1 28.00 29.86 31.40 27.14 29.43 

(b) 

Model 

Metrics 
MPBFN − WCA LADAN + MTF 

LADAN + 

TOPJUDGE 
Ours 

Law 

Acc. 79.12 81.20 81.53 90.70 

MP 76.30 78.24 78.69 83.37 

MR 76.02 77.38 78.29 79.83 

F1 74.78 76.47 77.10 80.81 

Charge 

Acc. 82.14 85.07 85.12 89.94 

MP 82.28 83.42 83.63 88.61 

MR 80.72 82.52 83.57 85.24 

F1 80.72 82.74 83.57 86.01 

Sentence 

Acc. 36.02 38.29 38.34 39.84 

MP 31.94 36.16 36.39 38.23 

MR 28.60 32.49 32.75 34.34 

F1 29.85 32.65 33.53 33.73 

Note: Some numbers in bold in the table represent the optimal results in the experiment. 

As shown in Table 5, our model outperformed the other models in the four indicators 

of the three tasks for CAIL-small. This was attributed to the fact that we used Lawformer 

for pre-training, so that the model had “prior knowledge”, which enhanced the robustness 

of the model. Compared with the best-performing LADAN+TOPJUDGE, our model had 

an improved Acc. by 9.17%, 4.82%, and 1.50% in law prediction, crime prediction, and 

sentence prediction, respectively, and improved F1 values by 3.71%, 2.44%, and 0.2%, 

respectively. This shows that our model had a higher discriminative ability than LADAN 

in terms of confusing laws and charges, indicating that the real causal relationship was 

more conducive to helping the model distinguish the easily confused laws and charges. 

Compared with TOPJUDGE, our model had an improved Acc. by 10.82%, 7.84%, and 

3.55% in law prediction, crime prediction, and sentence prediction, respectively, and 

improved F1 values by 7.21%, 6.96%, and 4.32%, respectively. This was an all-round 

improvement in the three tasks, and it also proved that the multi-expert mechanism 

achieved an excellent balance in the three tasks, which not only ensured that each task 

was fully developed, but also promoted the three tasks, thus achieving mutual exchange 

and mutual promotion. 

  



Mathematics 2022, 10, 2281 18 of 23 
 

 

Table 6. Results of judgment prediction on CAIL-big in comparative experiments (%) (a) and (b). 

 (a) 

Model 

Metrics 

FLA + 

MTF 
CNN + MTF HARNN + MTF 

Few-Shot + 

MTF 

TOPJUD

GE 

Law 

Acc. 93.23 95.84 95.63 96.12 95.85 

MP 72.78 83.20 81.48 85.43 84.84 

MR 64.30 75.31 74.57 80.07 74.53 

F1 66.56 77.47 77.13 81.49 77.50 

Charge 

Acc. 92.76 95.74 95.58 96.04 95.78 

MP 76.35 86.49 85.59 88.30 86.46 

MR 68.48 79.00 79.55 80.46 78.51 

F1 70.74 81.37 81.88 83.88 81.33 

Sentence 

Acc. 57.63 55.43 57.38 57.84 57.34 

MP 45.62 41.82 40.19 43.96 47.32 

MR 41.60 35.45 37.39 39.15 42.77 

F1 42.67 36.02 38.13 39.75 44.05 

(b) 

Model 

Metrics 
MPBFN − WCA LADAN + MTF 

LADAN + 

TOPJUDGE 
Ours 

Law 

Acc. 96.06 96.57 96.62 97.37 

MP 85.25 86.22 86.53 87.69 

MR 74.82 80.78 79.08 82.28 

F1 78.36 82.36 81.54 82.90 

Charge 

Acc. 95.98 96.45 96.39 97.27 

MP 89.16 88.51 88.49 88.95 

MR 79.73 83.73 82.28 84.48 

F1 83.20 85.35 82.28 84.58 

Sentence 

Acc. 58.14 59.66 59.70 58.00 

MP 42.55 48.47 47.75 49.51 

MR 35.67 41.94 42.06 42.30 

F1 37.52 43.06 43.09 43.53 

Note: Some numbers in bold in the table represent the optimal results in the experiment. 

As shown in Table 6, all models performed better on CAIL-big than on CAIL-small, 

with the reason being that CAIL-big provided more sufficient training data. From the 

experimental results, our model still gained comprehensive improvement in terms of laws 

and charges. Compared with the current best-performing LADAN+TOPJUDGE, our 

model had an improvement of 0.75% and 0.88% in Acc., respectively, and an improvement 

of 1.36% and 2.3% in F1 values, respectively. However, the performance of the model on 

the sentence task was somewhat different from what was expected. Although the F1 value 

was slightly improved, the value of Acc. had a certain gap with LADAN. Compared with 

LADAN, our model learned legal knowledge through causal inference so that the model 

could better handle the small sample problem of legal prediction and easily confused 

laws. The great performance gain observed in our experiment will be beneficial to the task 

of crime prediction, but LADAN pays more attention to the case fact description itself. It 

learns 10 related features through an attention-based graph distillation operator to 

distinguish easily confused cases. Experiments have shown that it is of great help for 

sentence prediction, which also makes us better understand which content is more helpful 

for the three tasks. 

  



Mathematics 2022, 10, 2281 19 of 23 
 

 

3.5. Ablation Experiments 

In order to verify the importance of each part of our model, we designed ablation 

experiments to delete or replace modules to verify the effectiveness of the modules, 

including: 

• No Lawformer (NL): removing the PLM module to verify the effectiveness of the pre-

trained model in improving the overall performance of the model. 

• No causal inference (NCI): deleting the causal inference module to verify that the 

causal inference found the causal relationship of related laws and regulations in 

order to improve the three tasks of LJP. 

• No multi-experts (NME): removing the multi-expert module to verify the superiority 

of the multi-expert mechanism for balancing the relationship between multi-tasks. 

• No extra knowledge (CEK): omitting the introduced extra knowledge to verify that 

the introduction of extra knowledge is helpful for the LJP task. 

• Change the location of extra knowledge (CLEK): changing the introduction location 

of extra information to verify that there is a certain loss in the transmission of 

information in the neural network. 

• Change FTOPJUDGE to TOPJUDGE(CFTT): changing FTOPJUDGE to TOPJUDGE 

to verify that FTOPJUDGE is more suitable than TOPJUDGE for processing the 

information that is output by the multi-expert mechanism. 

This ablation experiment was only performed on CAIL-small, and only focused on 

the two evaluation indicators of Acc. and the F1 value. Because the F1 value was the 

harmonic average of precision and recall, it also reflected the quality of the MP and MR 

to a certain extent. The higher the value, the better the classification effect. 

The experimental results are shown in Table 7. In order to verify the effectiveness of 

the pre-trained model Lawformer, we removed it for experiments. The results showed 

that there was a significant decrease in the accuracy of predicting laws and charges, but 

only slightly in terms of sentences. However, these two tasks were more dependent on 

understanding the description of the facts of the case than the prediction of the prison 

term, thus proving that the pre-training model does help to promote the model's 

understanding of the description of the facts of the case. In order to verify the validity of 

causal inference, we removed it and carried out experiments, and the results showed that 

there was indeed a significant decline in the predictive ability. At the same time, since the 

law task is the basis of all tasks, it also led to a decline in the prediction performance of 

prison terms and charges. Therefore, it was verified that causal inference does play an 

important role in predicting the law task. In order to verify the effectiveness of the multi-

expert mechanism, we removed it for experiments. As a result, the model’s performance 

dropped significantly for each task, which also showed that there is indeed a competitive 

relationship between multi-tasks, and our multi-expert mechanism solves this problem. 

In order to explore the role of additional knowledge, we removed it and carried out 

experiments, and found that the performance of the three tasks decreased, but the 

performance was not significantly decreased compared with the multi-expert mechanism, 

which proved that the key information it contained was indeed conducive to the 

determination of various tasks. In the above, we have summarized that the extra 

information experiences a certain degree of information loss after passing through the 

multi-expert mechanism. We also changed the introduction position of the extra 

information to the place where the multi-expert mechanism was input. The experimental 

results showed that the effect was worse than the situation without any additional 

information, indicating that this was no longer a loss of information but a disturbance 

noise. Finally, in order to verify that our proposed FTOPJUDGE module was more 

suitable for our model than TOPJUDGE, we replaced FTOPJUDGE with TOPJUDGE and 

conducted another experiment. The experimental results showed that the F1 values of all 

tasks except the sentence prediction task showed a significant decrease, while the Acc. 
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was not affected very much. This also proved that TOPJUDGE's prediction of some small 

sample data is not ideal. The reason for this is that it uses LSTM as the basic classifier, 

which destroys the balance between tasks and also causes information loss. 

Table 7. Results of decision prediction on CAIL-small in ablation experiments. 

Tasks Law Charge Sentence 

Metrics Acc. F1 Acc. F1 Acc. F1 

NL 84.22 70.76 85.81 81.57 39.33 32.96 

NCI 85.23 72.46 83.45 70.89 38.67 31.34 

NME 82.79 67.68 80.82 69.38 35.19 27.58 

NEK 87.71 77.24 86.57 81.45 37.52 30.85 

CLEK 83.26 67.02 81.98 69.31 35.68 28.70 

CFTT 87.78 74.66 87.07 78.51 41.69 33.55 

Ours 90.70 80.81 89.94 86.01 39.84 33.73 

Note: Some numbers in bold in the table represent the optimal results in the experiment. 

4. Discussion 

This paper focuses on the research of legal judgment prediction technology in the 

field of legal AI. By using the multi-dimensional information in judgment documents, the 

relevant laws, charges, and the sentence of the defendant involved in the case can be 

predicted. This paper proposes a decision prediction model based on causal inference and 

multi-expert FTOPJUDGE, including the pre-trained language model Lawformer, a causal 

inference mechanism, and a multi-task FTOPJUDGE classifier. The superiority of the 

model was verified by using the public data set CAIL2018 and comparing it with the 

current mainstream decision prediction models. Through ablation experiments, the 

effectiveness and rationality of each module of the model were verified. Although the 

model proposed in this paper has made great progress, there is still a gap between our 

obtained and ideal results, and the reasons can be traced back to the following points: 

(1) Data imbalance. Data imbalance is a natural and unavoidable phenomenon, 

especially in the legal field, where some crimes are scarce and some crimes are numerous. 

This was obvious when we analyzed the data set. Therefore, in order to alleviate the 

impact of data imbalances on the model, we also performed a series of processing steps 

on the data, such as omitting cases with laws and crimes that appear less frequently and 

converting the sentences to discrete data. However, the phenomenon of data imbalance 

still existed in our model. The experimental results on CAIL-big provide an example, as 

shown in Figure 8. 
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Figure 8. A confusion matrix of the sentence prediction results of CAIL-big. Note: The rows 

represent predicted classifications and the columns describe true classifications. 

Some sentence labels had close to 8000 pieces of data, while others had fewer than 

100 pieces. In order to solve this problem, the best solution at present was to introduce 

richer additional information and to mine the information in the case description more 

fully. 

(2) Sentence issues. It can be seen from the results that, although our model 

significantly outperformed other models in terms of sentence prediction relative to other 

tasks, its improvement rate was not very consistent with our expectations, and its abilities 

still have not reached an applicable level. The reason for this is that, in addition to 

insufficient information mining for the description of the facts of the case, in real life the 

judge often judges the sentence of the defendant from multiple perspectives, and in many 

situations, other factors have an impact on the sentence, such as whether the defendant 

has a criminal record, whether his guilty attitude is good, whether he is a minor, etc. 

However, this information does not appear in the factual description of the case, and for 

CAIL2018, the only additional information available in CAIL2018 was the penalty. 

Therefore, this also presented difficulties for our judgment prediction. As can be seen in 

Figure 8, the highest error rates arose from cases with shorter sentences, and our model 

did not do a good job of distinguishing between cases with no sentence and those with 

sentences of 0–6 months. 

5. Conclusions 

This paper investigates legal judgment prediction technology in the field of legal AI. 

The charges and the sentence of the defendant were predicted by using multidimensional 

information in judgment documents, and the relevant laws involved in the case. In 

existing judgment prediction studies, unstructured text information such as the case fact 

description is not sufficient, the understanding of the relationship between the three tasks 

is not sufficient, the model structures are not adjusted according to the relationship 

between the three tasks, and pre-training language models are not used as the upstream 

task. In this paper, a causal inference and multi-expert FTOPJUDGE decision prediction 

model is proposed, including the pre-trained language model Lawformer, a causal 

inference mechanism, and a multi-task FTOPJUDGE classifier. By using the public data 

set CAIL2018 and comparing our model with the current mainstream decision prediction 

models, the superiority of the model was verified. The validity and rationality of each 

module of the model were verified by ablation experiments. The main contributions of 

this paper are as follows: 
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Firstly, this paper proposes a mechanism for processing unstructured text based on 

a causal algorithm. In this mechanism, the keywords and laws in the text are extracted as 

causal graph elements, and then the causal inference algorithm is used to discover the 

causal relationship between each element so as to build a causal graph. Then, the causal 

graph is obtained by sampling, and the quality of each subgraph is evaluated to 

approximate the real causal relationship. Finally, the causal information is integrated into 

the neural network, which gives the neural network a stronger reasoning ability and 

improves the performance of the model. The experimental results show that this 

mechanism plays a role in solving the problem of small samples. 

Secondly, this paper proposes the multi-expert FTOPJUDGE mechanism. This 

mechanism sets up an exclusive expert group for each task, and each expert group is 

composed of multiple expert networks, which alleviates the competition between tasks. 

At the same time, a shared expert network serving all tasks is set up to ensure information 

sharing and promotion among multi-tasks. On this basis, TOPJUDGE was reformed, and 

the FTOPJUDGE classifier was constructed based on a fully connected neural network. 

The experiments proved that it was helpful for improving the performance of the model. 

Finally, the pretrained language model is applied to the decision prediction task. 

Because this model learned tens of millions of Chinese legal documents as the upstream 

task of judgment prediction, it could provide abundant prior knowledge for judgment 

prediction. The experiments showed that it could significantly improve the performance 

of downstream tasks on several indexes. 
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