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Abstract: User authentication and verification by gait data based on smartphones’ inertial sensors 

has gradually attracted increasing attention due to their compact size, portability and affordability. 

However, the existing approaches often require users to walk on a specific road at a normal walk-

ing speed to improve recognition accuracy. In order to recognize gaits under unconstrained condi-

tions on where and how users walk, we proposed a Hybrid Deep Learning Network (HDLN), 

which combined the advantages of a long short-term memory (LSTM) network and a convolu-

tional neural network (CNN) to reliably extract discriminative features from complex smartphone 

inertial data. The convergence layer of HDLN was optimized through a spatial pyramid pooling 

and attention mechanism. The former ensured that the gait features were extracted from more di-

mensions, and the latter ensured that only important gait information was processed while ignor-

ing unimportant data. Furthermore, we developed an APP that can achieve real-time gait recogni-

tion. The experimental results showed that HDLN achieved better performance improvements 

than CNN, LSTM, DeepConvLSTM and CNN+LSTM by 1.9%, 2.8%, 2.0% and 1.3%, respectively. 

Furthermore, the experimental results indicated our model’s high scalability and strong suitability 

in real application scenes. 
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1. Introduction 

Human gait, which is a manner of human walking or moving, consists of periodic 

signals with repetitive identical patterns [1,2]. Everyone has a unique gait, which makes 

it a suitable biometric trait for identify recognition. Unlike other biometric features, gait 

can be obtained from a long-distance without being noticed. Therefore, gait recognition 

has gradually drawn significant attention in the last decade [3–6]. 

According to different walking terrains and walking patterns, gait recognition 

methods can be divided into three main categories, computer vision-based gait recogni-

tion [7,8], floor sensor-based gait recognition [9] and inertial sensors-based gait recogni-

tion [10]. Computer vision-based gait recognition, in which subjects are recorded and 

analyzed through the use of video cameras, is well-advanced because of its large variety 

of different applications. However, there are still some limitations. Firstly, light and 

visual distance affects the accuracy of biometric gait recognition. Secondly, it is time- and 

money-consuming to deploy data acquisition equipment, which is indispensable in 

computer vision-based gait recognition. More importantly, the angle of vision formed 
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between the plane of the camera and the sagittal plane of the user is an extremely limit-

ing factor, limiting its widespread application [11]. Floor sensor-based gait recognition, 

in which sensors are usually integrated directly into the floor or installed in mats, per-

forms well in access control and smart homes. Yet, its performance is not very satisfac-

tory in a continuous authentic system, since it has high requirements for locations. With 

the advent of the micro-electro-mechanical system (MEMS) technology, the application 

of inertial sensors is becoming increasingly mature [12]. Moreover, smartphones, which 

integrate many advanced inertial sensors, including accelerometers and gyroscopes, are 

widely used today due to their small size, portability and low power consumption [13–

15]. Therefore, gait recognition based on smartphones’ inertial sensors, in which data are 

generated by the movement of a walking body, has gradually attracted increasing atten-

tion for human identification and verification [16–21]. One application is the recognition 

of a smartphone’s owner via the analysis of gait information collected by the 

smartphone’s sensors. Additionally, the extraction of discriminative features from com-

plex data collected from smartphones becomes an important issue. The latest advances in 

deep learning have prompted researchers to apply it to gait identification. In order to 

achieve accurate identity certification, existing methods often set a requirement that the 

subjects have to walk along a specified road and/or at a normal speed, which limits se-

verely the scope of its application. In order to conduct identity recognition with loose 

constraints on where and how the users walk, we presented a more robust hybrid deep 

learning model for gait recognition (The source code can be seen at 

https://github.com/xfyy/GaitRecognitionForAndroid.git (accessed on April 15, 2022)). 

The main contributions of this paper are as follows: 

1. Firstly, we proposed a hybrid deep learning model (HDLN), which combined a 

LSTM network and a CNN to recognize gait for identity authentication. The signals 

are fed into the hybrid network to generate feature vectors. To improve the im-

portant features’ proportion in multiple dimensions during decision-making, we 

optimized the convergence layer of the HDLN based on attention mechanism and 

spatial pyramid pooling. This algorithm optimizes the structure of the HDLN and 

thus improves the feature learning performance. 

2. Secondly, we developed an APP to collect data under the unrestricted conditions on 

where and how the users walk, which gets rid of the restrictions on road conditions 

and walking speed. 

3. Lastly, we proposed a novel data segmentation algorithm aiming at the problem of 

gait cycles produced in data segmentation. Data are segmented using the sliding 

window algorithm, and the similarity in the segmented gait data is estimated using 

the improved correlation algorithm to discard abnormal gait cycles. 

The rest of the paper is organized as follows. Section 2 introduces the related work. 

Data preprocessing is described in Section 3. Section 4 introduces the proposed method 

in detail. Section 5 presents the experimental results, and discusses several optimizations 

for the user identification system. The conclusion is drawn in Section 6. 

2. Related Work 

Gait analysis-based biometric identification has attracted the attention of many re-

searchers, prompting a great deal of research on the subject. In this section, we review 

the state-of-the-art work related to our study, which can be mainly categorized into two 

aspects, as follows. 

2.1. Pattern Recognition for Gait Recognition 

In early research of inertial-based gait recognition, Ailisto et al. [22] first proposed 

gait recognition using inertial sensors. A trivial accelerometer attached to the user’s waist 

was utilized to collect signals. They used a template matching-based solution by compu-

ting cross-correlation between extracted cycles and the stored template, obtaining an EER 
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of 6.4%. The research in [23] achieved the first scheme on smartphones-based gait recog-

nition. They used Google G1 worn on the hip to acquire acceleration data and obtained 

EERs of 5% and 9% for histogram similarity and cycle length methods respectively. These 

two studies play an important role in the early development of gait recognition. 

Aside from the above research, many other gait-recognition methods have been 

presented. Rong et al. [24] opted for a statistical-modeling solution rather than the pre-

vious template-matching options. They aimed to provide a solution that avoids 

knowledge of sensor location, which runs in real time on Android phones. In their paper, 

a sliding window of 512 samples with 50% overlap is used to segment gait cycles. Then a 

GMM–UBM (Gaussian Mixture Model—Universal Background Model) is trained to ver-

ify the users’ identity. Finally, they obtained an EER of 14%, which provided further 

promotion for the development of gait recognition. In addition, the summary of the 

above studies is shown in Table 1. 

Table 1. The summary of the pattern recognition studies for gait recognition. 

Method Methodology Performance Limitation 

Ailisto et al. [22] 

template matching 

and cross-correlation 

computation 

6.4% EER 
data collected 

under limited conditions 

Derawi et al. [23] 
histogram similarity and 

cycle length methods 
5% and 9% EER 

data collected 

under limited conditions 

Rong et al. [24] GMM-UBM 14% EER 
data collected 

under limited conditions 

2.2. Deep Learning for Gait Recognition 

With deep learning growing at a fast pace, CNNs and Recurrent Neural Networks 

(RNNs) are gradually replacing the previous methods for feature learning in gait recog-

nition. CNNs are used to process array signals, such as images, and have been verified as 

a successful feature extractor in image recognition. RNNs are employed to process input 

signals for time series. Accelerometer and gyroscope signals could generally be pro-

cessed into two-dimensional time series [25]. Therefore, CNNs can represent inertial data 

through convolutional feature maps, while RNNs can utilize their advantages by pro-

cessing the gait data as a time series. 

The first attempt to use deep learning for feature extraction was the approach pro-

posed by Gadaleta and Rossi [18]. They obtained motion signals, including accelerometer 

and gyroscope, from smartphones. In their research, by treating the gait matrix as an 

image, the employment of CNN as a feature extractor was first proposed to avoid the 

subjectivity of manually selecting statistical features. Finally, they obtained a misclassi-

fication rate less than 0.15% when a One-class Support Vector Machine (OSVM) is used 

as an authentication method. Additionally, their comprehensive experiments proved 

CNNs’ great features learning performance on gait recognition. However, CNNs tend to 

ignore the temporal information of human activities. Therefore, many variants of CNNs 

are used to solve these problems. In addition, RNNs as favorable tools for processing 

time series data are gradually introduced into inertial sensor-based gait recognition. 

In [26], a RNN was used to generate feature vectors in the Osaka University Data-

base (OUDB) for gait recognition. The researchers explored the effect of different LSTM’s 

parameters on gait recognition. Then, they chose the proper parameters for classification, 

and compared with other algorithms, which were previously tested on the same data-

base, and finally found RNN can effectively extract gait features. Bari et al. [27] proposed 

a CNN KinectGaitNet for Kinect-based gait recognition, in which the 3D coordinates of 

each of the body joints over the gait cycle are transformed to create a unique input rep-

resentation. It outperforms all state-of-the-art methods for Kinect-based gait recognition. 

Huang et al. [28] proposed a lightweight attention-based CNN model, which en-
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hanced the distinctness of the extracted gait features and reduced the network pa-

rameters. Additionally, they would further implement the gait recognition model on 

a smartphone. 
In recent papers, many researchers began to adopt hybrid methods for gait recogni-

tion studies. Zou et al. [19] proposed a combined LSTM and CNN method for feature 

learning, and reported higher accuracy in person identification and authentication. The 

research in [29] proposed a gait segmentation algorithm, which combined the load-

ing information captured by strain gauges with angular velocity data to reliably and 

accurately segment gait events. The experimental results verified the ability of this 

algorithm. Unlike this research, our approach is not so strict in respect of segmenta-

tion granularity since we focus on identification recognition according to different 

gait data from different persons. 
Existing research has demonstrated the effectiveness of deep learning in gait recog-

nition; however, there are still several insufficiencies. First, during data acquisition, 

many gait collection factors have been considered. Yet most researchers focused on data 

collected under limited road conditions with specified walking speed, or with the 

smartphones placed in a fixed position. The identification of gait in unconstrained envi-

ronments, freely timed or with unconstrained speed, remained challenging. Second, in 

feature representation, the previous research extracted features using the same weights 

in the decision-making phase. Understanding how to extract more efficient gait features 

for gait recognition was still unknown. Some of the studies that applied deep learning 

for gait recognition are listed in Table 2. 

Table 2. The summary of the deep learning studies for gait recognition. 

Method Methodology Performance Limitation 

Gadaleta and 

Rossi [18] 
CNN 

0.15% misclassification 

rate 

Only using CNN and data 

collected under limited con-

ditions 

Fernandez-Lopez 

et al. [26] 
LSTM 7.55% EER 

Only using LSTM and data 

collected 

under limited conditions 

Zou et al. [19] CNN + LSTM 
gait recognition accuracy 

with 93.75% 

Using original CNN + LSTM 

with no improvements 

Aiming to overcome the shortcomings of previous gait recognition research, we 

proposed a method with unrestricted conditions of where, when and walking speed for 

data collection. A hybrid network with an improved convergence layer used simulta-

neously for feature representation and classification is employed, making for a more 

practical and more accurate approach. 

3. Data Preprocessing 

Data preprocessing includes data resampling, denoising and gait cycle extraction. 

These preprocessing methods reduce the errors caused in data acquisition, as well as the 

amount of calculation required. 

3.1. Gait Data Collection and Preprocessing 

We developed an Android application using Android Studio, and then installed it 

to smartphones of different brands, Huawei Mate 9, Vivo Y17 and Samsung S6. 

Data acquisition includes two parts, and the first part is the development of an ap-

plication to collect data. During application development, we used three Android com-

ponents, Activity, Service and Broadcast Receiver [30]. Activity represents the user in-

terface, which is used to display the data from accelerometers and communicate with 
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Service component. Service ensures that data collection is continuously performed in the 

background. Broadcast Receiver, which is the communication bridge between system 

and users, is responsible for the timely transmission of the collected user gait data to the 

user interface. The background interaction of the acquisition software is shown in Figure 

1. 

 

Figure 1. The background interaction process of the acquisition software. 

The second part is to collect gait data in the conditions of unlimited roads, time or 

speeds, using the application we developed. Data were collected in daily life, such as 

during a walk after a meal. A hall with an area of 10 × 25 square meters, a playground, 

and so on, were all optional experimental sites. The sampling frequency was 50 Hz, and 

the sampling time of each volunteer was 10 min, with each volunteer sampled 10 times. 

Accelerometer and gyroscope gait data were collected from 40 subjects, including 27 

males and 13 females, aged 14 to 56 years old. None of the participants had any gait ab-

normalities. Android smartphones were put in the right front pocket of the participants’ 

trousers without direction restriction. The participants walked in their own manner 

without any special training or in a certain order, but all walked on the same path, since 

gait changed greatly when participants walked on different paths. We exported data in 

.txt format. The .txt folder contained a total of 8 columns, including time, acceleration in 

the x, y and z axes directions, gyroscope in the x, y and z axes and user name. The soft-

ware interface for data collection is shown in Figure 2. In addition, the accelerometer 

recorded the movements of the device along the three axes of the mobile phones’ coor-

dinate system, the orientation sensor was used to detect the mobile phones’ direction and 

the gyroscope measured the rotation along the three axes of the mobile phones’ coordi-

nate system. Before walking, the preparation time was set to 20 s, and the walking time 

was set to 10 minutes to obtain enough data. 

user Activity Service
Broadcast 

Receiver

Open the software, 

input the information, 

click "start"

start and send the initial

 message to Service

When the sensor data

 changes, cached and sent 

to Broadcast Receiver

Register the sensor

monitor in real time

Data presented to users
Check whether  

walking for 10 min
save data when 

reaching 10 min

close the service 

when reach 10 min

destory sensor

Send the "collecting complete"

 message to the broadcast

Send ''collecting complete'' to activity

Passing data to activity
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Figure 2. Software interface for data collection. 

3.2. Noise and Impact of Orientation Elimination 

Due to the limitations of the Android SDK [31], data cannot be recorded at a fixed 

sampling rate, which results in different time intervals between consecutive records. To 

solve this problem, we first resampled data with a frequency of 100 Hz. Then a low pass 

finite pulse response FIR (final impulse response) filter with 8 Hz was used to denoise the 

resampled data to reduce the motion artifacts which may have appeared at higher fre-

quencies. 

The problem of device orientation instability was addressed by an Orientation In-

dependent Transformation algorithm [32]. The basic principle of this algorithm is to ob-

tain a new reference system with three orthogonal coordinate axes 𝑓1, 𝑓2 and 𝑓3 . 𝑓1 

represents the upward direction (parallel with a subject’s body). 𝑓2  points forward 

(consistent with the direction of movement) and 𝑓3 is orthogonal to 𝑓1 and 𝑓2. 

Assuming that 𝑛𝑘 is the number of samples in the current walking cycle k (k = 1, 2, 

3, ……), [ , , ]T

x y zA a a a=  with size of 3 kn  describes the acceleration matrix while 

[ , , ]x y zG g g g=  with the same size as A represents the gyroscope matrix. 
xa , ya , and 

za  are used to represent acceleration samples along the x, y, and z axes where

x y z ka a a n= = = . Meanwhile,
xg , yg , and 

zg  indicate gyroscope samples in the same 

cycle k, where 
x y z kg g g n= = = . 

The specific steps are shown as follows. Firstly, we chose the center of gravity as the 

starting point [33]. Therefore, the mean gravity direction in the current walking cycle was 

the new reference system’s first axis. The mean direction of gravity   in period k is 

evaluated as Equation (1). 

( , , )x y za a a =  (1) 

The first coordinate axis 
1f  can be calculated by Equation (2). 
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1f



=  (2) 

The projection of matrices A and G on the axis 
1f  are obtained by Equation (3). 

1 11 1,f fa A f g G f=  =   (3) 

Secondly, as shown in Equation (4), we obtain [ , , ]f f f f T

x y zA a a a= , which is horizon-

tal acceleration. Then we determine the direction of 
2f , and the coordinate axis can be 

obtained by Equation (5), where v  is the direction of the maximum variance of fA  

and calculated by Principal Component Analysis (PCA). 

22

f T

fA A f a= −  (4) 

2

v
f

v
=  (5) 

Then data from accelerometer and gyroscope are projected on
2f  according to 

2 2fa A f=   and 
2 2fg G f=  . Lastly, 

3f  is obtained by an across product shown in Equa-

tion (6) as these three coordinate axes are orthogonal. 

3 1 2f f f=   (6) 

Along 
3f  axis, the new accelerometer and gyroscope data are 

3 3fa A f=   and 

3 3fg G f=  . 

By data preprocessing, the influence of the device’s orientation on the gait signals is 

eliminated, and all gait signals are represented in a fixed coordinate system. Figure 3 il-

lustrates the acceleration before and after orientation elimination. Obviously, the char-

acteristics of sensor signals in different positions are more similar by using orientation 

elimination. 

 

Figure 3. Comparison of accelerations before and after orientation elimination. All the data are 

collected from one person. For the three subgraphs in each column, the horizontal axis represents 

time, and the vertical axis represents the projection of acceleration in x, y and z directions. The data 

in the first and the second column are collected in two different positions respectively, while the 

data in the last two columns are collected after orientation elimination. 
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3.3. Gait Cycle Segmentation 

In the following step, we divide the continuous data into separate segments, which 

refers to touching the ground with the same foot twice in succession. In this paper, we 

use sliding window [34] with a fixed length without overlapping to segment gait cycles 

since this does not destroy the morphology of gait patterns. Additionally, the abnormal 

data segments are discarded by calculating the similarity between data segments. 

The window segmentation method can be denoted as follows: assuming the sample 

matrix is S, the window size is m, the step size of the window is step, and the window 

segmentation algorithm is shown in Equations (7) and (8). 

1 2

1 1 2 1 1

1

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

... ... ... ...

( ) ( ) ... ( )

i i m i

i i m i

i m i m m i m

a t a t a t

a t a t a t
s

a t a t a t

+ + +

+ + +

 
 
 =
 
 
 

 (7) 

1 2

1 1 2 1 1

2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

... ... ... ...

( ) ( ) ... ( )

i step i step m i step

i step i step m i step

i step m i step m m i step m

a t a t a t

a t a t a t
s

a t a t a t

+ + +

+ + + + + +

+ + + + + +

 
 
 =
 
 
  

 (8) 

where 
1s  and 

2s  represent two adjacent data windows with size m extracted from the 

original sequence using a window segmentation method. Generally speaking, the larger 

the value of m, the more the sequence period is involved, and the better the classification 

is in theory. 

Similarity calculation, as shown in Equation (9), is used to discard the abnormal gait 

cycles. During similarity calculation, we take the first segment of the data set of the same 

type as the standard for similarity calculation. 

( 1 ) ( 1 )
( )

T T

N N

N N

Z Z C C
V i

Z Z C C

−  −
=

− −
 (9) 

where vectors Z  and C  have the same size of N. C  is the comparison template and 

Z  is the gait segment needs to be compared. Z  and C  represent respectively the av-

erage value of Z  and C . Vector 1 (1,1,...,1)T

N =  with 1N N= .   is the L2-norm op-

erator. ( )V i  not less than 0.5 is saved as gait cycles. 

After the gait cycles are divided, they can be represented as 

1 2 3 1 2 3( , , , , , )f f f f f fX a a a g g g= . Then, the divided gait cycles can be used as the inputs of 

HDLN. 

4. Methodology 

The framework of the proposed HDLN gait recognition method is shown in Figure 

4. It consists of two LSTM layers, L1 and L2, and the number of LSTM units is 64. There 

are three one-dimension convolutional layers: C1, C2 and C3, two pooling layers: P1 and 

P2, a spatial pyramid pooling layer: SSP, an attention layer: A1 and a softmax layer. The 

output of layer L2 and SSP are combined as the features extracted by CNN and LSTM. 

Before entering the softmax layer, the attention layer is used for feature combination. 
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Figure 4. The framework of HDLN. 

The first part of HDLN is a LSTM network, a special RNN, which is designed to 

solve the long-term dependency problem. Compared with fundamental RNN, LSTM has 

more robust memory capacity and performs better in more extend sequence signal data. 

For a LSTM network with L hidden layers, a state 
l

t
h  will be generated as follows 

for each layer at time t with a gait sequence =
1 2

( , ,..., )
T

x x x x : 

 −

−
= + + +1

1
( )l l l tl l ll l

t xh t t hh t hh h
h w x h w h w b  (10) 

where 
l

t
h  represents the state of layer l at time t, and 

t
x  is input at time t. The weight 

matrix of the input 
t

x  to the l-th hidden layer is represented by 
l

xh
w , and 

tl

hh
w  is the 

weight matrix of the state at time t − 1 to the state at time t at the same layer l. 
ll

hh
w  is the 

weight matrix of the state at layer l − 1 to the state at layer l at the same time t, and 
l

h
b  is 

the bias of layer l, and σ (·) is the activation function. 

The core of LSTM is the cell, and three gates, forget gate, input gate and output gate, 

control the state of cell. Similar to RNN, the state of LSTM network can be represented by 
l

t
h . The input gait i refers to the information adding to cell state, and forget gate f is to 

decide what information cell state needs to be discarded. Output gate o controls what 

information can be output. Input gate i, forgetting gate f, state vector c, output gate o and 
l

t
h  can be updated respectively according to Equations (11)–(15): 

 −

− −
= + + + +1

1 1
( )t l l l

t i xi t hi t hi t ci t i
i w x w h w h w c b  (11) 

 −

− −
= + + + +1

1 1
( )t l l l

t f xf t hf t hf t cf t f
f w x w h w h w c b  (12) 

 −

− −
= + + + +1

1 1
( )t l l l

t t t i xc t hc t hc t c
c f c w x w h w h b  (13) 

 −

− −
= + + + +1

1 1
( )t l l l

t o xo t ho t ho t co t o
o w x w h w h w c b  (14) 

( )l

t t h t
h o c=  (15) 

C1 P1
C
N
N

L
S
T
M

ct-1

ht-1

xt-1

ct

ht

xt

c1

h1

x1

c2

h2

x2

8 1 64 81 128

C2 P2 C3 SSP

+ A
1

51 64

In
pu

t L1

ct-1

ht-1

xt-1

ct

ht

xt

c1

h1

x1

c2

h2

x2

L2

O
utpu

t
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where w, σ, 
t

i , 
t

f , 
t

c , and 
t

o  are the parameters of layer l. 
xi

w  is the weight matrix of 

the input 
t

x  to the input gate. 
i

  is the input gate’s activation function, and 
i

b  is the 

bias of the input gate. 
xi

w
, 

and W, b, and σ can be inferred accordingly. Provided the 

LSTM network is constructed with L hidden layers, with each containing N hidden 

nodes, for each input 
1 2

( , ,..., )
T

x x x x= , the output feature can be obtained by Equation 

(16). 

1 2
( , ,..., )L

lstm T N
fout h f f f= =  (16) 

The second part of the LSTM is a CNN, which consists of convolutional layers, non-

linear layers and pooling layers. The convolutional layer applies a sliding kernel to the 

inputs and extracts features. The pooling layer reduces the feature points and better re-

tains the basic properties of the feature points. The nonlinear layers apply an activation 

function on the features in order to enable the modeling of non-linear functions by the 

network. Compared with fully connected feed-forward neural networks, CNN has the 

advantages of weight shared and less computational complexity [35]. Meanwhile, CNN 

has been proved to be a successful feature extractor in the image field. 

4.1. Convergence Layer 

In actuality, not all the extracted gait features are useful for gait recognition, there-

fore we applied an attention mechanism to extract the important gait information and 

ignore the unimportant information. Moreover, in order to extract features from more 

dimensions, we added spatial pyramid pooling [36] before the attention layer. Finally, 

the vectors of these information were combined as the output to focus on the key feature 

points. Through the spatial pyramid pooling and attention layer, more complete feature 

points, which will be used in identification operations, are extracted. 

Assuming that 
1 2( , ,..., )Df f f f=  denotes the feature map extracted by CNN, and 

1f  

is one of the feature vectors, we first put the feature vectors into spatial pyramid pooling 

and the corresponding output of spatial pyramid pooling is calculated by Equation (18): 

1, 1 1, 2 1, 4 1,

1, 1

( ) [ , , ]
n

cnn k s s s s

k s

fout C C C C   

= =

= =  (17) 

where k is the kernel of the spatial pyramid pooling layer and s is the number of steps. U 

(*) is the aggregation of the features sampling. 
cnnfout  is the output value of spatial 

pyramid pooling. After 
cnnfout  is obtained, we combine 

cnnfout  and lstm
fout  as the fi-

nal feature vectors fout . Then we use attention mechanism to extract the important gait 

information. When using attention mechanism, the hidden variables of each feature 

needs to be calculated as Equation (18). 

tanh( ( ) )T

i i iV w fout i b = +  (18) 

where 
i  is the hidden variable, and 

iw  and 
ib  are the weight and bias of attention 

layer. TV  is the parameter matrix. After the hidden variables are obtained, Equation 

(19) is used to transform the hidden variables exponentially to calculate the attention 

value 
i  of each feature i

fout . The larger the value 
i  is, the more attention is allocat-

ed, and the more important role the feature vector plays in gait classification. 

1

exp( )

exp( )

i

i n

i

i





=

=


 (19) 
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Finally, the output vector of attention model is calculated as Equation (20): 

1

n

i i

i

f 
=

=  (20) 

4.2. Softmax Layer 

The calculated feature map is then passed to a fully connected layer followed by a 

softmax function, and the final output is the probability distribution over all categories. 

Softmax function is shown in Equation (21): 

1

( ) i

i

o

i m

oi

e
Q o

e
=

=


 (21) 

where 
io  is one of the features of A1, and ( )iQ o  is the softmax value of a certain user’s 

input. Furthermore, Cross entropy is used as the loss function to measure the deviation 

between the actual value and the predicted value, and the loss is reduced by iteration. 

5. Experimental Results and Discussion 

5.1. Experiment Configuration 

The experimental environment was set as follows: Intel Core i5-8250 U CPU @ 1.6 

GHZ, 8 GB memory, Windows 10 operating system. The example was calculated in Py-

Charm, and TensorFlow 2.0 was employed. The forty volunteers mentioned in Section 

3.1 participated in the experiments. The detailed gait data collection is given in the for-

mer gait data collection and preprocessing part. We repeated the experiments ten times 

and reported the average results to avoid accidental contributing factors. 

5.2. Experiment Results 

In order to evaluate the recognition accuracy of different algorithms, we define ac-

curacy in Equation (22). 

cyclesgaittestingtotalnumberthe

cyclesgaitclassifiedcorrectlynumberthe
accuracy

of

of
=  (22) 

5.2.1. Accuracy Comparison of Different Models with Our Dataset 

To show the user identification accuracy of different models, we compared the 

HDLN with several advanced networks using our dataset, and the results are listed in 

Table 3. 70% of the volunteers were for training and the remaining were for testing and 

validation. Meanwhile, several experiments were carried out by varying the samples for 

training and testing. It became obvious that the HDLN we proposed obtains the best 

performance. In particular, it has higher accuracy than CNN, LSTM, CNN+LSTM [20] 

and DeepConvLSTM [21] by 1.9%, 2.8%, 1.3% and 2.0%, respectively. 

In addition, we evaluated the runtime overhead for all these algorithms, as listed in 

Table 3. It can be easily seen that, for each algorithm, the average recognition time for 

these forty participants is 3.07 s, 3.12 s, 3.09 s, 2.98 s and 2.92 s, respectively, which indi-

cates that our method is computationally effective. 

Table 3. User identification accuracy with different advanced networks. 

Algorithm Accuracy Runtime Overhead (s) 

CNN 94.03% 3.07 

LSTM 93.17% 3.12 
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DeepConvLSTM 93.91% 3.09 

CNN+LSTM 94.52% 2.98 

Our model 95.79% 2.92 

5.2.2. Robustness Verification for Our Model on Different Datasets 

To verify the robustness of our model, we conducted experiments on datasets IDNet 

[18] and whuGAIT [19]. For whuGAIT, we used both dataset #1 and dataset #2, which 

were collected in real scenarios, to evaluate our model. 

The identification accuracy of HDLN on different datasets is shown in Table 4. We 

can see that the accuracy in the IDNet dataset can even reach 99.65%. This is because 

IDNet is collected from standard walking style, which makes the classification less chal-

lenging. For whuGAIT, whether dataset #1 or dataset #2, its accuracy is higher than that 

of the original method [19]. We can also conclude that HDLN is not only suitable for our 

own dataset, but also for datasets IDNet and whuGAIT. Furthermore, the experimental 

results indicate that our model is more practical in real applications. 

Table 4. The robustness of HDLN on different datasets. 

Dataset Accuracy 

IDNet 99.65% 

whuGAIT (dataset #1) 94.59% 

whuGAIT (dataset #2) 97.89% 

5.3. Discussion 

We conduct further experiments to explore the affecting factors on our method. 

Three main factors, multi-sensor fusion, orientation transformation and hybrid network 

optimization, are discussed, respectively, as follows. 

5.3.1. The Fusion of Accelerometer and Gyroscope 

Figure 5 shows the gyroscope signals extracted from three randomly selected vol-

unteers. The upper, middle and bottom signals are obtained, respectively, from volun-

teers No. 1, No. 2 and No. 3. The blue, yellow and green lines in each graph represent 

the components of the gyroscope data along x, y and z axes, respectively. Obviously, the 

curves of these three signals are each significantly different from the other. 

 

Figure 5. Comparison of gyroscope signals from three randomly selected volunteers. 
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First, in terms of amplitude, the max amplitude of volunteers No. 1, No. 2 and No. 3 

range respectively from −2.0 to 2.0, −5.0 to 5.0 and −1.0 to 1.0. Second, these three volun-

teers’ gyroscope curves are different, with the wave peaks and troughs in different posi-

tions. Meanwhile, the differences are also observed from other volunteers. It indicates 

that gyroscope data also can be used to differentiate between people. 

In order to test the accelerometer and gyroscope data fusion on gait recognition, we 

compared the accuracy of using accelerometer or gyroscope alone against the combina-

tion of both, and the results are illustrated in Figure 6. The accuracy of using accelerom-

eter data or gyroscope data alone are 94.78% and 93.10%, respectively, while the accuracy 

of their fusion is 95.79%. Apparently, the fusion of gyroscope and accelerometer data 

provides further improvements than using gyroscope or accelerometer alone. 

 

Figure 6. Accuracy comparison of using sensors fusion or not. Gyr represents using gyroscope 

alone, and Acc represents using accelerometer alone, and Acc + Gyr means the fusion of both. 

5.3.2. The Effect of Orientation Transformation 

To Table 5 shows the accuracy with or without the orientation transformation algo-

rithm as a function of Nc. Original represents without the algorithm, and Transformed is 

with orientation transformation algorithm. It can be seen that the accuracy with orienta-

tion transformation is always higher than without orientation transformation. At the be-

ginning, the accuracy increases dramatically as Nc increases. When Nc reaches 40, the 

accuracy gradually stabilizes. The accuracy using this algorithm can be improved by 

0.1% when Nc reaches 80. To sum up, the orientation transformation algorithm improves 

the accuracy of gait recognition to some extent. 

To compare the accuracy with or without the orientation transformation algorithm, 

we conducted experiments on the user identification system using our data. 

Table 5. User identification accuracy with and without transformation. 

Nc Original Transformed 

10 90.45% 91.86% 

20 92.76% 93.88% 

30 93.54% 94.23% 

40 93.81% 94.28% 

50 94.41% 94.62% 

60 94.41% 94.67% 

70 94.51% 94.67% 

80 94.62% 94.72% 
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5.3.3. Hybrid Network Optimizations 

In this section, we propose some hybrid network optimizations, quantifying the 

classification performance. 

First, we first discuss the influence of hyperparameters on a HDLN. Notably, a 

random grid hyperparameter selection is applied to find the hybrid parameters with the 

best performance. 

In a CNN, the size of the convolution kernel directly affects the performance of the 

model. In this study, we explored a HDLN’s accuracy against using different filter sizes 

in convolutional layer C1, C2 and C3. Figure 7 illustrates a HDLN’s accuracy under dif-

ferent kernel sizes with C1, C2 and C3. It can be concluded that a HDLN achieves the 

highest accuracy under the condition of C1 with kernel size of 8, C2 with kernel size of 8 

and C3 with kernel size of 5. 

 

Figure 7. HDLN’s Accuracy under different kernel number. 

For a LSTM, the parameters we choose are listed in Table 6. We adopt a random 

grid hyperparameter selection followed by a hand-tuning method to determine the final 

hyperparameter, and the result is shown in Figure 8. It is apparent that the accuracy is 

the lowest when the number of LSTM units is 16, however, as the number of a LSTM cell 

increases, the accuracy does not always increase. The optimal number of LSTM layers is 

two, therefore we chose two LSTM layers with 64 units each. 

Table 6. LSTM hyperparameter random grid. 

Variable Values 

Number of LSTM layers [1, 3] 

Number of Fully Connected Layers [0, 3] 

Number of filters [21, 28] 

Feature Vector size [21, 28] 
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Figure 8. Accuracy with different LSTM units and layers. LSTM_units represent the number of 

LSTM units and curves of different colors represent different layers. 

How to combine CNN and LSTM: Five hybrid networks which combine different 

models are compared to explore the best combination of CNN and LSTM. The different 

combinations are described as follows. 

1. CNN: It has been trained from scratch. 

2. LSTM: It is also trained from scratch. 

3. (CNN+LSTM)_hor: CNN and LSTM are respectively trained from scratch. Then 

the output of CNN and LSTM are concatenated in horizontal. 

4. (CNN+LSTM)_ver: CNN and LSTM are respectively trained from scratch. Then 

the output of CNN and LSTM are concatenated in vertical. 

5. fix_CNN+LSTM: CNN is reconstructed by pre-trained weight parameters, while 

LSTM is trained from scratch, and their combination is vertical. 

6. CNN+fix_LSTM: LSTM is reconstructed by pre-trained weight parameters. CNN 

is trained from scratch, and their combination is vertical. 

The performance of different combinations is demonstrated in Figure 9. It is shown 

that CNN outperforms LSTM approximately by 1.1% in terms of accuracy. CNN+LSTM 

doesn’t perform as well as CNN only, and one reason is that CNN+LSTM makes hybrid 

network too complex to be fully trained. In other words, during the training process, the 

hybrid network trained from scratch may suffer from over-fitting. Moreover, we can see 

that when a pre-trained network is combined with another one trained from scratch, the 

accuracy is higher than CNN or LSTM alone. Therefore, using the pre-trained network 

will be helpful for improving performance. The method, which sets the weight parame-

ters of one network to fixed values and trains the other, reduces the training complexity 

and takes advantage of CNN and LSTM as well. Furthermore, it can be seen that the 

CNN+fix_LSTM network achieves the best performance. Therefore, we choose 

CNN+fix_LSTM as the final structure to build our model. 
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Figure 9. Accuracy of different network combinations. 

The learning rate directly affects the ability of the model to find the optimal solu-

tion. If the learning rate is set to very low, the model parameters will update very slow-

ly, requiring a long training time. On the contrary, if the learning rate is too large, it will 

lead to the oscillation of the loss function, an inability to converge, and poor classifica-

tion capability. Table 7 shows that the accuracy is highest when the learning rate is 0.001 

in this experiment. 

Table 7. Accuracy of different learning rates. 

Learning Rate Accuracy 

0.001 93.47% 

0.005 93.01% 

0.01 92.67% 

0.1 89.27% 

6. Conclusions and Future Work 

This article presented a new approach to gait recognition system for smartphones by 

introducing the hybrid learning model (HDLN). We created an Android application to 

collect gait signals without scene and time limitations. Compared to the previous fea-

ture-learning methods, HDLN exploits the advantages of the CNN and LSTM, and im-

proves the coverage layer. From the experimental results, we can draw the following 

conclusions: (1) the method with both accelerometers and gyroscopes can obtain better 

performance than accelerometers or gyroscopes alone. (2) The orientation transformation 

improves the accuracy of user gait recognition through a reduction in the influence of 

sensor directions. Additionally, an appropriate cutoff frequency in the gait recognition 

obtains a better performance. (3) HDLN obtains performance improvements when 

compared to other competing networks in user identification, providing a promising 

method for gait recognition. 

Our work has more potential applications in practical applications: (1) Phone secu-

rity. While a user walks, the smartphone would record the movements. If a stranger picks 

up this phone, the phone will verify the identity of the person who is holding it. If the 

verification fails, the phone will produce warnings. Therefore, it provides an additional 

layer of identity verification on top of fingerprint recognition and face recognition. (2) 

Medical field. It could also work with health care systems, adding an additional value to 

the access system, helping to distinguish user spoofing. (3) Gender recognition is a new 
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application that uses gait characteristics. It has become more and more popular in foren-

sic and medical fields in recent years. For example, gender identification based on gait 

recognition can be used as a recommendation system for videos, products and applica-

tions. (4) Gait biometric attacks and countermeasures need further research. Under nor-

mal circumstances, it is difficult to deceive gait recognition system. Yet, in some special 

cases, for example, with the help of a specially designed treadmill, gait biometrics may be 

easily deceived. The false acceptance rate even reaches roughly 70%. Therefore, the ef-

fective avoidance of malicious attacks will be a challenging task for gait recognition. 

Of course, our work still has limitations. We applied gait cycle segment points to 

divide gyroscope signals under the assumption that the timestamps of the accelerometer 

and gyroscope are synchronous. However, this does not work in some relevant use cases 

due to the Android system’s time delay. We will address this problem in future studies 

on timestamp alignments. Specifically, the intersection of two kinds of data timestamps is 

first obtained, and then partial data with earlier timestamps are removed for the sensor 

whose timestamp starts earlier. Finally, the timestamps of two sensor signals are syn-

chronized for the following process. 
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