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Abstract: In light of the increasing level of correlation and dependence between the crude oil markets
and the external influencing factors in the related financial markets, we propose a new multivariate
empirical decomposition convolutional neural network model to incorporate the external influence of
financial markets such as stock market and exchange market in a multiscale setting into the modeling
of crude oil market risk movement. We propose a multivariate empirical model decomposition
to analyze the finer details of interdependence among risk movement of different markets across
different time horizons or scales. We also introduce the convolutional neural network to construct a
new nonlinear ensemble algorithm to reduce the estimation bias and improve the forecasting accuracy.
We used the major crude oil price data, stock market index, and the euro/United States dollar
exchange rate data to evaluate the performance of the multivariate empirical model decomposition
convolutional neural network model. The combination of both the multivariate empirical model
decomposition and the convolutional neural network model in this paper has produced the risk
forecasts with significantly improved risk forecasting accuracy.

Keywords: crude oil price; value-at-risk; multivariate empirical mode decomposition (MEMD)
model; multi-scale analysis; convolutional neural network model
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1. Introduction

With the deregulation wave spreading across the crude oil markets around the world
and the widespread usage of energy derivatives, we have witnessed closer interaction
and linkage between the crude oil markets and the global financial markets. Numerous
empirical studies have reported the intensifying financialization of the crude oil markets,
and the complicated relationship between crude oil markets, the stock market, and the
exchange market [1,2]. For example, Ji [3] has discovered that before the 2008 global
financial crisis, the crude oil markets were affected by the speculation factors in the short
term and the fundamental factors in the long term. However, after 2008, the dependence
between crude oil markets and influencing factors was embodied in the spillover effect
between the crude oil markets and other financial markets such as the stock market, foreign
exchange market, and commodities market. Du and He [4] found that there is a significant
spillover effect between the stock markets and crude oil markets. Chen and Lv [5] used
the extreme value theory to analyze the extreme correlation between the crude oil markets
and Chinese stock markets. They confirmed that the extreme correlation reached its peak
during the financial crisis. de Truchis and Keddad [6] used the fractal co-integration and
the copula method to identify the volatility dependence between the crude oil price and
the Japanese yen, subject to the influence of the financial crisis. Husain et al. [7] found that
there is significant correlation and spillover effect between the crude oil price, stock index,
and the metal price. However, the integration of these financial markets as the exogenous
variables (factors) into the crude oil risk analysis and forecasting has been a difficult research
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problem in the literature, which attracted significant attention [8–11]. From a data analysis
and forecasting perspective, the dependence between the crude oil markets and financial
factors such as stock index and exchange rate are highly complex to capture in the modeling
process. The investigations into the forecasting model incorporating the influences of these
financial factors such as stock index and exchange rate are critical to the improvement of
the risk forecasting accuracy.

There are a series of risk measures such as standard deviation, value at risk (VaR),
and conditional value at risk (CVaR) in the literature. Among them, VaR is the most
widely used one, which defines the tail loss at the pre-specified confidence level and in-
vestment time horizon [12]. It summarizes and reports the downside risk level as the
critical information of the asset distribution that investors are concerned about. In this
paper, VaR is used to measure the risk level that investors are most concerned about. The
estimation and modeling of risk measures employ parametric models such as econometric
and time series models, as well as nonparametric models. These models in the typical
VaR estimation would rely on the historical data itself to infer the distribution and the
estimation of the appropriate quantile. The difference between these two approaches is the
additional assumptions imposed on the historical data in the parametric approach [12]. The
autoregressive moving average-generalized autoregressive conditional heteroskedasticity
(ARMA-GARCH) model is a parametric approach that imposes strict assumptions on the
underlying distribution and model parameters. For example, Fiszeder et al. [13] proposed
the range-based dynamic conditional correlation (DCC) GARCH model to estimate VaR in
commodity and equity markets. Aloui and Mabrouk [14] found the fractionally integrated
GARCH (FIAPARCH) model with skewed Student t distribution provided better forecast-
ing accuracy compared to the benchmark model. Bedowska-Sojka [15] showed through
comprehensive model evaluation that the GARCH model still represents one of the most
robust models to estimate VaR with intraday data, better than the popular models such as
the realized volatility model. Nonparametric models such as Monte Carlo and historical
simulation models use the historical data changes to infer the future risk exposure and
have been used extensively in the industry due to their assumption-free approach [16–20].

In the meantime, the semi-parametric approaches have emerged as the alternatives to
combine the advantages of both parametric and nonparametric models in VaR research.
New models in this category have demonstrated promising positive performance improve-
ment and have attracted increasing attention. These models include extreme value theory,
regime switching models, multiscale analysis, etc. [21]. Among them, multiscale models
such as the empirical mode decomposition (EMD) are the latest development and have at-
tracted increasing levels of attention in the risk measurement field. For example, Biage [22]
used the wavelet analysis to model the stock volatility at different frequency scales and
construct more accurate VaR estimates. Cifter [23] proposed a wavelet-based extreme value
theory to estimate more accurate VaR. Zhu et al. [24] used the EMD model to construct the
multiscale data structure for the carbon price and identify the extreme events. That way
they improved the VaR estimation accuracy with better risk modeling. He et al. [25] identi-
fied the transient and extreme risk factors in the multiscale data domain extracted with the
variational mode decomposition (VMD) model. Empirical studies conducted in the crude
oil markets have demonstrated the evidence that the separate modeling of risk of different
characteristics has produced VaR with higher-level reliability and accuracy. Zou et al. [26]
have used the convolutional neural network (CNN) to consider risk forecasts at different
scales to improve the overall risk estimation accuracy. The performance of the proposed
model has been evaluated and verified using the trading data in the crude oil markets.
Given the success of new techniques such as EMD in the modeling of univariate risk mea-
sures, their recent extension to the multivariate case can be introduced into the multivariate
risk analysis and modeling. The widely popular deep learning model can also contribute
to accurate forecast risk forecasting. Limited attempts in the literature may include recent
research using the high dimensional multiscale analysis models such as bivariate EMD
to estimate VaR for a portfolio consisting of multiple assets in metal markets, crude oil
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markets, etc. For example, He et al. [27] proposed the portfolio value at risk model based
on bivariate EMD and the Copula technique and applied it to the precious metal market.
Experiment results showed improved risk forecasting accuracy.

The purpose of this study is to apply the multivariate empirical mode decomposition
(MEMD) model and the CNN model to investigate the multiscale nonlinear relationship
between crude oil markets and financial markets such as foreign exchange markets and
stock markets using crude oil price data. We also propose the MEMD-CNN VaR model to
forecast the downside risk in the crude oil markets. This model incorporates the interaction
and multiscale dependence between the crude oil markets and financial markets into
the multiscale risk estimation process. We further constructed the nonlinear ensemble
forecasting model based on the CNN. An empirical study has been conducted using the
major crude oil price, euro/United States dollar (EUR/USD) exchange rate, and Dow Jones
Industrial Average (DJIA) stock index data as the typical test case to evaluate the risk
forecasting performance of the proposed model.

The major contribution of this paper is the proposition of the MEMD-CNN VaR
model. It quantifies the impacts of external influences on financial sectors such as the
stock market and exchange market over different investment time horizons in the MEMD-
CNN VaR model. The MEMD-CNN VaR model is unique in that we have introduced
the MEMD model to capture and model the correlation and multiscale dependence in the
high dimensional multiscale risk structure and risk movement in the crude oil markets.
Deep learning models such as the CNN model have also been introduced to construct
a nonlinear ensemble algorithm to integrate individual forecasts across different scales
and estimate the nonlinearity in the risk measure changes. To the best of our knowledge,
very few approaches have been developed to address the modeling of risk measures in the
multivariate multiscale setting, taking into account the external influences from the other
financial markets. The work in this paper conducts an exploratory investigation into the
use of multivariate multiscale models such as MEMD and deep learning models such as
CNN to improve the VaR estimation accuracy.

We organize the rest of the paper as follows. In Section 2, we present details of
the methodology used in the paper. This includes a brief introduction to the theory and
algorithms for MEMD and CNN. Then we explain the theory and algorithm for the MEMD-
CNN model in detail. Results from the experiments conducted to empirically evaluate the
performance of the proposed model against the benchmark model have been reported in
Section 3. Section 4 concludes and makes some summarizing remarks.

2. Methodology
2.1. Multivariate Empirical Mode Decomposition and Convolutional Neural Network

MD model is an extension of the traditional univariate EMD model in multivariate
data analysis [28–31]. The problem with the traditional EMD model is that the decomposed
intrinsic mode functions (IMFs) differ in the maximum number, the fluctuation range, and
the center frequency of modes when the EMD model is applied to the analysis of high
dimensional data [29]. This results in the well-known mode mixing problem. This causes
trouble for the interpretation of the statistical and economic meaning of the decomposed
IMFs. The recently proposed MEMD model extended the volatility concept in the EMD
model into the rotation concept in the higher dimensional space. In MEMD analysis, the
multivariate data is viewed as the sphere in the geometric space. The decomposed IMFs
constitute different surfaces for the spheres, all of which rotate around the center of the
sphere [28,30,31]. The rotation speed can be used to distinguish the surfaces between
spheres. Therefore, during the analysis, the correlation and dependence between differ-
ent elements of the multivariate matrix data are incorporated into the rotation concept
during the analysis. The decomposition process for the IMFs would reflect the correlation
between them.

The MEMD algorithm is illustrated as follows.
1. Sample from n− 1 dimensional sphere.
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2. Using the directional vector xθk and the input v(t)T
t=1, calculate projection set vector

pθk (t)}K
k=1.

3. For projection vector pθk (t)}K
k=1, determine the time point tθk

i that corresponds to
the maximal projection point.

4. Use the interpolation method to calculate the multivariate surface eθk (t)}K
k=1 over

[tθk
i , v(tθk

i )].
5. Calculate the average of the curve surface m(t), m(t) = 1

K ∑K
k=1 eθk (t).

6. Check the termination criteria on d(t) = x(t)−m(t). If the termination criteria is
satisfied, repeat the above steps on x(t)− d(t). If the termination criteria is not satisfied,
repeat the above steps on d(t).

In the MEMD model, firstly, the higher dimensional data are projected into the di-
rection vectors in the lower dimensional space. The triple cubic spline method is used to
perform interpolation on the direction vectors at extreme points and construct the projection
surface in different directions. The accuracy of the constructed surface would increase with
more directions from which the projection has been performed. Mainstream projection
algorithms include the uniform sampling method for direction vectors, and pseudo-Monte
Carlo sampling series [28].

Depending on the number of layers, the neural network can be classified as a shallow
neural network or deep neural network [32]. The seminal universal approximation theory
originally shows that the shallow neural network with one hidden layer can approximate
any bounded continuous function with arbitrary lower errors [33]. Although this theoretical
result is often cited to support the belief that the shallow neural network is capable of
approximating the nonlinearity in data, in practice the number of parameters to estimate
would grow exponentially when the complexity in the nonlinear data grows. This would
result in a lower level of efficiency in training, and pose the upper bound on the depth of
the neural network in its early days of development. When the structure of the network
moves from the shallow one to the deeper one with continuously growing computational
power, the neural network structure and training algorithm has been designed to reduce
the number of parameters to estimate and improve the training efficiency. The universal
approximation theorem has also been extended to the deep neural network case to show
that the deep neural network is theoretically equivalent to the shallow neural network in
approximating nonlinear continuous functions. In addition, in practice, the deep neural
network would have a much higher level of efficiency in function approximation than
the shadow neural network [34,35]. For example, if the objective function consists of
functions with local characteristics and hierarchical characteristics, the deep neural network
can significantly lower the number of parameters to estimate and avoid the curse of
dimensionality problem [34]. Another interesting finding in recent research is that the deep
learning models would have better generalization when the model significantly overfits
the data during the deep learning training process. The generalization and the forecasting
accuracy of the models can be improved simply by increasing the depth of the neural
network and the number of neurons [36]. Mainstream deep learning algorithms refer to a
series of algorithms such as the CNN for image processing, the long short-term memory
(LSTM) network for natural language processing, and the deep belief network [37–39].

Inspired by the human visual processing system where neurons are responsive to local
information, a CNN is a specially designed deep neural network that focuses on the extrac-
tion of space invariant data characteristics during the data training and modeling [37,40,41].
The CNN network uses different layers to process information. For the higher dimensional
time series data, the neurons in the convolutional layer use the kernel function or the filters
to perform the linear convolutional process on the input data. Neurons at the same layer
share the filters, i.e., they use the same filters to produce a feature map of the represented
data characteristic [41]. Filters may differ across different layers so that the feature maps
generated by different layers correspond to different data characteristics. Therefore, the
CNN can represent different data characteristics with the combination of different features
and different convolutional layers. The typical layers in the CNN model include the in-
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put layer, the hidden layer, the pooling layer, and convolutional layer [32]. Each layer
contains the corresponding neurons. CNN model has used the weight sharing and local
responses during the network structure design and training. To process different data with
different dimensions, the convolutional layer could be classified into the one-dimensional
convolution layer, two-dimensional convolution layer, and higher-dimensional convolution.
The one-dimensional convolution layer is especially suitable for the processing of natural
language data and time series data. The two-dimensional convolution layer is the most
popular one. It targets two-dimensional data such as images. Currently, the theoretical and
mathematical theory for the convolutional layer is still in its early stage of development.
The network structure and parameter design are usually determined based on the research
of the empirical method.

Given input X, the feature map data at layer l is as in Equation (1) [42].

Xl+1 = f (W l+1
⊗

dXl + bl+1) (1)

where W is the weight matrix, b is the bias matrix, and f is the activation function.
Neurons in the pooling layers perform the pooling operation such as the maximum

pooling and minimum pooling on the input data. The pooling function is shown in
Equation (2).

d(X) = Tr∈R(Xi×T+r) (2)

where T is the pooling function, such as the max pooling or averaging pooling.
Fully connected layer use the transfer function to process the input X as in Equation (3).

f (X) = max(0, X) (3)

Typical activation functions include sigmoid, rectification linear unit (ReLU). ReLU is
defined as the maximum value between 0 and X [42].

2.2. MEMD-CNN VaR Model

Given the random variable Y = (y1, y2, . . . , yT) as the crude oil price, X = (x1, x2, . . . , xT)
and Z = (z1, z2, . . . , zT) as the financial variable data, construct the high dimensional matrix
W = [X′ Y′ Z′]. W is the T × 3 matrix.

MEMD model is used to decompose W into C up to scale S, as in Equation (4).

W =
S

∑
s=1

Cs + ε (4)

where C = [C′y C′x C′z], Cy = (cy,1, cy,2, . . . , cy,T), Cx = (cx,1, cx,2, . . . , cx,T), Cz = (cz,1, cz,2, . . . , cz,T).
For the decomposed modes C, the ARMA model is used to estimate the conditional

mean forecasts U = [U′y U′x U′z], Uy = (µy,1, µy,2, . . . , µy,T), Ux = (µx,1, µx,2, . . . , µx,T),
Uz = (µz,1, µz,2, . . . , µz,T), and the GARCH model is used to estimate the conditonal stan-
dard deviation forecasts G = [G′y G′x G′z], Gy = (σy,1, σy,2, . . . , σy,T), Gx = (σx,1, σx,2, . . . , σx,T),
Gz = (σz,1, σz,2, . . . , σz,T).

Suppose that there is a nonlinear relationship between the conditional mean forecasts
U and the returns Y, and the nonlinear relationship fµ is estimated as in Equation (5).

yt = fµ(Ut) (5)

fµ can be estimated using nonlinear estimation models. For example, fµ is estimated
in the CNN model as the network structure and parameters in CNN models.
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Suppose that there is nonlinear relationship between the conditional standard devia-
tion forecasts G and the historical standard devaition forecasts σt, the nonlinear function fσ

is estimated as in Equation (6).

σt = fσ(Gt) (6)

fσ can be estimated using nonlinear estimation models. For example, fσ is estimated
in the CNN model as the network structure and parameters in CNN models.

With the estimated functions fµ and fσ, we can calculate the forecasts µ̂ and σ̂ using
Equations (5) and (6). The VaR is calculated using parametric method as in Equation (7).

VaR(a, h, t) = −hµ̂t +
√

hσ̂tZα (7)

where a = 1− cl, Zα is the quantile value for the standard normal distribution, h is the
holding period, and VaRa,h,t is the VaR at the confidence level cl.

2.3. Data Collection

In this paper, we have used the West Taxes Intermediate (WTI) crude oil price in the
U.S., Brent crude oil price in the United Kingdom (UK), the EUR/USD exchange rate, and
the DJIA index to construct the empirical dataset to evaluate the risk forecasting accuracy
of the proposed MEMD-CNN model against the benchmark models such as the ARMA-
GARCH model and VMD-CNN model. Numerous research demonstrated the spillover
effect between the crude oil markets and other financial markets such as foreign exchange
market, stock market, etc. [4–7,43–45]. The EUR/USD exchange rate and DJIA index are
selected and included in this dataset. The EUR/USD exchange rate and the DJIA index
represent some of the most frequently quoted exchange rates and stock indices in the
world, respectively [46,47]. The data were obtained from Quandl which is a central data
warehouse that provides a comprehensive collection of financial and economic datasets. In
this paper, we constructed the dataset that covers the daily closing price from 2 January
2003 to 19 February 2019. This resulted in the collection of 4066 daily observations in
the WTI market, 4104 daily observations in the Brent market, 4048 daily observations in
EUR/USD exchange rate data, and 4051 daily observations in the DJIA index. To facilitate
the empirical model evaluations, the dataset is divided into three parts, such as the training
set, the validation set, and the test set based on the 70:30 ratio [48]. The first 70% of the
dataset is reserved as the training set to estimate the model parameters for the econometric
models, the middle 21% of the dataset is reserved as the validation set to estimate the
hyperparameter for the deep learning models, and the rest 9% of the dataset is used as the
test set to conduct the out-of-sample model evaluation. The risk forecasting performance
of the MEMD-CNN VaR models and benchmark models are evaluated using the Kupiec
backtesting procedure, i.e., the popular unconditional coverage test [49].

3. Empirical Results

In this section, we report the results from a series of experiments conducted to analyze
the data characteristics and evaluate the risk forecasting performance of the MEMD-CNN
model and benchmark models such as the ARMA-GARCH model and VMD-CNN model.

Firstly, we calculated the descriptive statistics and statistical tests for the crude oil
markets, foreign exchange markets, and stock markets in this paper. Results are reported in
Table 1.

From the results in Table 1, it can be seen that the risk exposure for the EUR/USD and
DJIA index is at a high level. There is generally significant volatility and fluctuations in all
crude oil markets except for the EUR/USD exchange rate, indicated by the positive standard
deviation of the market return. This observation suggests that there is a significant risk
exposure, with a high probability of extreme and transient event occurrence. Interestingly,
the risk exposure for the DJIA index is significantly larger than the EUR/USD exchange
rate. Since the kurtosis value for the DJIA is at 13.7536, which is much larger than the
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kurtosis value for the EUR/USD at 5.6425, there is also a high correlation between the
crude oil price and EUR/USD exchange rate. The correlation coefficients are larger than
0.65. The correlation between the crude oil markets and the DJIA index is at a low level,
less than 0.05.

Table 1. Descriptive statistics and statistical tests.

Markets Mean ×10−5 Standard Deviation Skewness Kurtosis pJB pBDS ρwti ρbrent

rWTI 13.8424 0.0238 −0.0229 7.4014 0.001 0 1 0.9742

rBrent 18.9063 0.0215 0.0882 7.4790 0.001 0 0.9742 1

rEUR/USD 2.0736 0.0061 0.1 5.6425 0.001 0 0.7391 0.6677

rDJIA 20.7152 0.0108 −0.1548 13.7536 0.001 0 −0.0212 0.0446
Notes: pJB is p value for the Jarque-Bera (JB) test of normality, pBDS is p value for BDS test of independence.

In our experiment, we also include the VMD-CNN model as one of the benchmark
models. The difference between the VMD model and the MEMD model is that the VMD
model is a one-dimensional multiscale analysis technique. It decomposes multiple crude
oil prices one by one, compared to the simultaneous decomposition process in the MEMD
model. The purpose of the inclusion of this model in the empirical study is to evaluate the
necessity of the introduction of the MEMD technique in the MEMD-CNN model.

Since the performance of the CNN is very sensitive to the hyperparameters, in our
paper, the optimal network structure for the CNN is calculated using the greedy search
method. The parameter to be optimized includes the number of kernels, i.e., the depth of
the network. We calculate the risk forecasting accuracy for the CNN with different network
parameters using the validation data set. The basic model parameters for the CNN model
are as follows: the rolling window is 250; the validation data set is 252 for the WTI market
and 252 for the Brent market; the decomposition scale is set to 8; the kernel shape is set to 2;
the number of kernels is up to 8.

We adopted the network structure of the classic Alex network and made some
minor changes to the original network structure, such as the last layer changed from
the classifier to the regression layer. The CNN model structure is as follows: input
data layer–convolutional layer–ReLU–normalization–pooling–convolutional layer–ReLU–
normalization-pooling–convolutional layer–ReLU–pooling–convolutional layer–ReLU–
pooling–fully link–regression layer.

We use the validation data to calculate the in-sample forecasting accuracy with the
MEMD-CNN model. Results for both markets are reported in Table 2.

Table 2. In-sample forecasting performance for the MEMD-CNN VaR model using the validation data.

Markets (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8)

MSEWTI,95%,×10−4 2.6890 6890 2.6893 2.6882 2.6892 2.7165 2.6906 2.6891

MSEWTI,97.5%,×10−4 3.1898 3.1898 3.1901 3.1891 3.1903 3.2194 3.1858 3.1817

MSEWTI,99%,×10−4 3.8816 3.8817 3.8820 3.8812 3.8824 3.9141 3.8712 3.8644

MSEBrent,95%,×10−4 2.0657 2.0664 2.0660 2.0751 2.0871 2.0706 2.1003 2.0818

MSEBrent,97.5%,×10−4 2.5292 2.5300 2.5295 2.5342 2.5481 2.5357 2.5637 2.5457

MSEBrent,99%,×10−4 3.1654 3.1663 3.1657 3.1651 3.1813 3.1740 3.1995 3.1828

It is clear that the forecasting accuracy of risk measures changes as the number of
features changes. The reliability of the risk measure changes as the number of filters
increases accordingly. We did not observe the strict monotonic increasing or decreasing
relationship between the risk forecasting accuracy and the number of filters. In this paper,
we use the mean squared error (MSE) as the selection criteria. Since MSE serves as the
indication of risk forecasting accuracy in the literature, we argue that the smaller MSE
would suggest more accurate risk measures. Based on MSE minimization, the optimal
network structure for the MEMD-CNN model is determined as follows: for the WTI market,



Mathematics 2022, 10, 2413 8 of 11

the filter size is 2× 2, the number of filters is 4, and the pool size is 1× 1. For the Brent
market, the filter size is 2× 2, the number of filters is 1, and the pool size is 1× 1.

In-sample forecasting accuracy results using VMD-CNN model for both markets are
reported in Table 3.

Table 3. In-sample forecasting performance for VMD-CNN VaR model using the validation data.

Markets (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8)

MSEWTI,95%,×10−4 2.6890 2.6889 2.6894 2.6923 2.6940 2.7587 2.6818 2.7465

MSEWTI,97.5%,×10−4 3.1898 3.1897 3.1904 3.1941 3.1943 3.2612 3.1715 3.2347

MSEWTI,99%,×10−4 3.8817 3.8816 3.8824 3.8874 3.8856 3.9551 3.8506 3.9121

MSEBrent,95%,×10−4 2.0702 2.0706 2.0712 2.0705 2.0995 2.1311 2.1261 2.1318

MSEBrent,97.5%,×10−4 2.5350 2.5355 2.5362 2.5354 2.5582 2.5975 2.5832 2.5965

MSEBrent,99%,×10−4 3.1728 3.1734 3.1743 3.1733 3.1888 3.2371 3.2120 3.2343

We observe similar patterns in the results using the VMD-CNN model as those using
the MEMD-CNN model. The accuracy and reliability of risk measures also change when
the number of filters increases. Based on MSE minimization, the optimal network structure
for the VMD-CNN model is determined as follows: for the WTI market, the filter size is
2× 2, the number of filters is 7, and the pool size is 1× 1. For the Brent market, the filter
size is 2× 2, the number of filters is 1, and the pool size is 1× 1.

With the optimal network structure determined above, we further evaluate the risk
forecasting accuracy using the out-of-sample test data with 360 daily observations in both
markets. Performance measures are reported in Table 4.

Table 4. Out-of-sample model performance using the test data.

Model N95% N97.5% N99% p95% p97.5% p99% MSE95%,×10−3 MSE97.5%,×10−3 MSE99%,×10−3

ARMA− GARCHWTI 22 10 6 0.3492 0.7401 0.0054 1.4780 1.8740 2.4289

VMD− CNNWTI 29 13 9 0.0142 0.2050 0.0163 1.4298 1.7568 2.2135

MEMD− CNNWTI 17 9 6 0.8072 1 0.2460 1.4295 1.7562 2.2128

ARMA− GARCHBrent 24 14 4 0.1665 0.1181 0.8351 1.1621 1.5143 2.0077

VMD− CNNBrent 17 7 2 0.8072 0.4826 0.3549 1.1050 1.4067 1.8299

MEMD− CNNBrent 17 7 2 0.8072 0.4826 0.3549 1.1049 1.4066 1.8297

From results in Table 4, it is clear that the risk forecasting reliability and accuracy of the
MEMD-CNN models have improved significantly in both WTI and Brent crude oil markets
compared to the benchmark models in terms of the Kupiec backtesting procedure and
MSE. The benchmark ARMA-GARCH model has failed to pass the statistical test at a 99%
confidence level with a p value of 0.0054, less than the cutoff value of 0.05 in the WTI market.
In terms of the number of exceedance, the proposed model achieves a much lower value
than the benchmark model. This suggests that the VaR estimates from the proposed model
are more conservative and provide better risk coverage, which corresponds to the lower
number of cases of default and financial distress. In the meantime, MSE for the MEMD-
CNN model decreases uniformly compared to the benchmark ARMA-GARCH model, as
well as the VMD-CNN model. For example, at a 95% confidence level, MSE decreases
from 1.1621 for the ARMA-GARCH model to 1.1049 for the MEMD-CNN model, and MSE
decreases marginally from 1.1050 for the VMD-CNN model to 1.1049 for MEMD-CNN
model. The forecasting accuracy improvement is more significant when the performance of
the MEMD-CNN model is compared to the benchmark ARMA-GARCH model.

It is interesting to observe from experiment results that the choice of different multi-
scale models would affect the forecasting accuracy of the ensemble models. In general, the
VaR from the proposed multivariate MEMD-CNN models is more accurate than VaR from
univariate VMD-CNN models. VMD-CNN VaR model fails to pass the statistical tests at
95% and 99% confidence levels in the WTI market. Meanwhile, their forecasts from the
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multivariate models pass all the confidence levels in both markets. Based on the ensemble
theory, the forecasting accuracy improvement suggest the reduction in the variance in
the individual ensemble member forecasts and improvement in the heterogeneity of the
ensemble members. The decomposed components from multivariate models serving as the
ensemble members have a higher degree of heterogeneity. Our experiment results suggest
that the introduction of the CNN-based nonlinear ensemble model can effectively reduce
the estimation bias from the multiscale decomposition and risk forecasts. It would lead to
improvement in forecasting accuracy and stability.

4. Conclusions

In this paper, we have applied the higher dimensional MEMD model to analyze
the multiscale data characteristics of risk changes in the crude oil markets, as well as the
interaction between the crude oil markets, the DJIA index, and the EUR/USD exchange rate.
We have further constructed a crude oil price VaR forecasting model based on MEMD and
CNN models. Risk movements at the individual scale are projected into the future using
the ARMA-GARCH model. The risk forecast matrix is used as input to the CNN-based
nonlinear ensemble forecasting model to predict the future risk movement. Empirical
studies have been conducted using the crude oil price data, the EUR/USD exchange rate
data, and stock index data as the typical test case. A comprehensive model performance
comparison has been conducted in terms of risk forecasting reliability. Results show that
the proposed multivariate multiscale ensemble model forecasts risk more accurately than
the benchmark models. The deep learning model is especially helpful in providing robust
risk forecasts.

Based on the analysis of the results, the work in this paper has two implications for the
risk estimation field, in terms of testing of existence of multiscale data features and model
construction. Firstly, the influence of the external risk factors for the crude oil markets
can be incorporated with consideration of its fine multiscale risk structure. The potential
performance improvement requires the introduction of new multivariate multiscale models,
in addition to the existing multiscale models. This is expected to result in more accurate
feature extraction. Secondly, there is clearly a nonlinear relationship between the movement
of external influencing factors across different scales and the crude oil price movement, as
indicated by the success of the deep learning based modeling approach to model it in an
assumption-free model-free approach. Although it is preferable to derive the exact analytic
form of these nonlinear data characteristics and functions, in practice the nonlinear function
is often too complex to be computationally feasible in the mainstream approaches. Future
research would be directed toward the continuous searches for the analytic form of the
nonlinear function, as well as the emergence of a new design of innovative deep neural
network structure for its better approximation.
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