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Abstract: In this paper, we consider the problem of obtaining the asymptotics of solutions of dif-
ferential operators in a neighborhood of an irregular singular point. More precisely, we construct
uniform asymptotics for solutions of linear differential equations with second-order meromorphic
coefficients in a neighborhood of a singular point and apply the results obtained to the equations of
mathematical physics. The main results related to the construction of uniform asymptotics are ob-
tained using resurgent analysis methods applied to differential equations with irregular singularities.
These results allow us to construct asymptotics for any second-order equations with meromorphic
coefficients—that is, with an arbitrary order of degeneracy. This also allows one to determine the
type of a singular point and highlight the cases where the point is non-singular or regular.
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1. Introduction

One of the fundamental sections of the theory of differential equations is the problem
of constructing asymptotics for solutions of second-order equations in neighborhoods of
regular and irregular singular points. The problem of constructing asymptotics for solu-
tions of general boundary value problems for elliptic and parabolic equations in domains
whose boundary contains a finite number of conic points is considered in Kondratiev’s
papers [1,2], where solutions are considered in special spaces of functions that have deriva-
tives summable with some weight. These spaces capture well the main feature of the
solutions of such problems, in the sense that the solution is smooth everywhere except at
conical points, and when approaching a conical point, the derivatives have power singu-
larities. Moreover, these papers also show that for any linear differential equation with
a regular singular point, the asymptotics of the solutions are conormal. The results obtained
there make it possible to construct asymptotics for solutions of partial differential equations
in a neighborhood of a regular singularity, as well as to obtain asymptotics for solutions of
the Laplace equation defined on a manifold with a conical singularity.

One of the first papers that laid the foundation for a systematic study of problems
on the construction of asymptotics of solutions in a neighborhood of infinity was Tomé’s
paper [3], where for a particular case it was shown that the asymptotics of the solution of
the problem under consideration can be represented as a formally divergent power series.

In a general setting, the problem of constructing asymptotics of solutions in a neighbor-
hood of an irregular singular point for differential equations was formulated by Poincaré
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in [4,5], and also, a particular case of this problem was considered when the irregular
singular point is infinity. In these papers, it was proved that the obtained formal divergent
series are asymptotic series, and the idea was formulated that an integral transformation
can be used to sum the obtained asymptotic series; in a particular case, it could be the
Laplace transform. Using this integral transformation, an attempt was made to construct
uniform asymptotics of this problem. However, the Laplace integral transform is applicable
only in some particular cases. Therefore, the problem of constructing uniform asymptotics
for differential equations with holomorphic coefficients in a neighborhood of infinity, which
was formulated by Poincaré, has not yet been solved in the general case.

In [6], for second-order equations, the problem of constructing asymptotics of solu-
tions in a neighborhood of infinity was considered—more precisely, the construction of
asymptotics of solutions in the case of an irregular singular point, when the order of degen-
eracy is 2. In this case, the plane is divided into sectors, in each of which the asymptotics is
constructed.

In [7], uniform asymptotics of solutions for the Helmholtz equation with constant
coefficients were constructed in the two-dimensional case, which is a special case of the
example considered in this paper.

In [8], uniform asymptotics are constructed for a wide class of differential equations,
but there are sixth and higher order equations for which the asymptotics of solutions in the
neighborhood of infinity have not yet been constructed.

In this article, we consider the problem of obtaining the asymptotics of solutions
of second-order differential equations in a neighborhood of an irregular singular point.
Namely, we first construct the asymptotics of solutions for arbitrary second-order ordinary
differential equations with meromorphic coefficients, that is, with an arbitrary irregular
singularity, and then we generalize this result to different types of second-order partial
differential equations. Next, we show that our results can be used to construct asymptotics
for the solution of the Laplace equation on a manifold with a beak-like singularity (see,
for example, [9]).

The figures depict a cone and a beak (Figures 1 and 2).

Figure 1. Cone.
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Figure 2. Beak.

In [10], it is proved that any linear ordinary differential equation with holomorphic
coefficients of order n can be represented as((

−rk d
dr

)n
+

n−1

∑
i=0

a0
i (r)

(
−rk d

dr

)i
)

u = 0, (1)

in which the formula for calculating the minimum non-negative k ∈ Z is also obtained, and
a0

i (r) = ∑∞
j=0 aj

ir
j are holomorphic functions.

The operator symbol in (1) is the function

H(r, p) = pn +
n−1

∑
i=0

a0
i (r)pi,

and the main symbol of the differential operator is the function

H0(p) = H(0, p) = pn +
n−1

∑
i=0

a0
i (0)pi.

A special case, when the roots of the main symbol are simple, was considered in [11]
and then in the classical literature (see, for example, [6,12,13]), in which asymptotic expan-
sions of solutions of some differential equations are constructed, and they are presented as
products of the corresponding exponents by divergent power series:

u = eα1/rrσ1
∞

∑
k=0

ak
1rk + eα2/rrσ2

∞

∑
k=0

ak
2rk . . . + eαn/rrσn

∞

∑
k=0

ak
nrk, (2)

where αi, i = 1, . . . , n are the roots of the polynomial H0(p), and sj and ak
i are some

complex numbers.
The question of interpreting the obtained divergent series included in the expression

defining the semi-classical asymptotics was left open; that is, there is no method for
summing these divergent series. This question was solved in [14,15], where uniform
asymptotics were constructed for this case.

If the asymptotic expansion (2) has at least two terms corresponding to the values α1
and α2 with different real parts (for definiteness, we assume that Re α1 > Re α2), there is
a significant difficulty in interpreting the obtained expansion. The point is that all terms of
the second element of the semiclassical asymptotics (2) for r → 0, r > 0 are infinitesimal
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with respect to any term of the first element; that is, the first element is dominant and the
second recessive. However, when the point r moves along the complex plane, the roles
of the dominant and recessive components of the expansion can change places. In other
words, the plane is conditionally divided into sectors in which one of the components is
dominant and the other is recessive, and when moving from one sector to another, there is a
change in leadership (the recessive becomes the main one and vice versa). However, in the
neighborhood of the boundaries of these sectors, several components are of equal order,
and none of them can be neglected. This phenomenon (the Stokes phenomenon) arises,
for example, when considering Euler’s example (see [7]). This leads to the fact that the
study of asymptotic expansions of solutions to the Equation (1) requires the introduction of
a regular method of summation of divergent series to construct uniform asymptotics of
solutions with respect to the variable r.

The summation method of similar asymptotic series based on the Laplace–Borel
transform and the concept of a resurgent function was first introduced by J. Ecal [16]. This
method was then used in the papers of B.-V. Schulze, B.Yu. Sternin, and V.E. Shatalov to
study degenerate equations obtained by considering elliptic equations on manifolds with
isolated singularities of the beak type, as well as to construct asymptotics for equations
with a small parameter. In some cases, in weighted Sobolev spaces, for equations with
a parameter and equations with degeneracy of the beak type, they managed to construct
asymptotics for solutions (see [17–19]).

The main idea of resurgent analysis is that the Laplace–Borel transformations of the
asymptotic series included in the quasi-classical asymptotics are power series in the dual
variable p, converging in a neighborhood of the points αj. The inverse Borel transform then
gives a regular way of summing these series. However, in this case, it is necessary to prove
the infinite extension of the Laplace–Borel images of the solutions. For equations with
irregular singular points, the proof of infinite extension was obtained in the papers of V.
Shatalov and M. Korovina [9,14,15]. The results obtained in these articles make it possible
to apply the methods of resurgent analysis to the construction of asymptotics for solutions
of linear differential equations with holomorphic coefficients.

Second-order differential equations with singular points are used in various areas
of mechanics. For example, the Laplace operator written in spherical coordinates has
a singular point at zero [9]. In addition, a second-order equation of this type is used to
solve the plane problem of finding the stress–strain state of a body of rectangular cross
section with a cylindrical cavity in the motion of an ideal incompressible fluid [20]. In this
case, equations with an irregular singular point arise. Another example of a second-order
equation with a singular point, the DPE (Density Profile Equation), was studied by F.
dell’Isola et al. [21,22].

Note also the papers [23–27], in which conormal asymptotics for solutions of elliptic
operators are obtained. The resulting asymptotic representations in weighted Sobolev
spaces were used in the study of basic boundary value problems for elliptic equations
and systems.

In order to proceed to the construction of asymptotics for solutions of equations of
mathematical physics, we first solve the problem of constructing uniform asymptotics in
the neighborhood of an irregular singularity for ordinary differential equations; that is, we
solve the Poincaré problem for second-order differential equations.

In Section 2, definitions and auxiliary statements are given.
In Section 3, the main result (Theorem 3) is formulated and proved, in which the

asymptotics of solutions of ODEs with meromorphic coefficients are constructed in a neigh-
borhood of some singular point, finite or infinite.

In Section 4, partial differential equations are considered and, in various examples,
asymptotics of solutions for hyperbolic, parabolic, and elliptic equations are constructed.
At the end of this section, examples are considered for the Helmholtz equation, as well as
for the Laplace equation on a manifold with isolated singular points.
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2. Definitions and Auxiliary Statements

Denote by SR,ε the sector SR,ε = {r| − ε < arg r < ε, |r| < R}.

Definition 1. A function f is analytical on SR,ε and is of an exponential growth no more than k
if there are non-negative constants C and α such that in the sector SR,ε the following inequality
is valid:

| f | < Ce
a 1
|r|k .

Let us denote by Ek(SR,ε) the space of functions of k-exponential growth. If ε can be
chosen by any of 0 < ε ≤ 2π, then we denote this space as Ek(SR); Ek(SR, L2(S1)) is the
space of functions of exponential growth as r → 0 with values from L2(S1).

Definition 2. The k Laplace–Borel transform of the function f (r) ∈ Ek(SR,ε) is the mapping
Bk : Ek(SR,ε) −→ E(Ω̃R,ε)/E(C) :

Bk f =

r0∫
0

e−p/rk
f (r)

dr
rk+1 ,

where r0 denotes an arbitrary point of the sector.

The inverse k Laplace–Borel transform is defined by the formula:

B−1
k f̃ =

k
2πi

∫
γ̃

ep/rk
f̃ (p)dp.

The contour γ̃ is shown in Figure 3.

Figure 3. Contour γ̃ and domain Ω̃R,ε.

Note that for the k Laplace–Borel transform, the following formulas are true:

Bk ◦
(
−1

k
rk+1 ∂

∂r

)
f (r) = pBk f ,

∂

∂p
◦ Bk f = −Bk

(
1
rk f (r)

)
.
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Definition 3. The function f̃ is called infinitely extendable if for any number R there is a discrete
set of points ZR in C such that the function f̃ is analytically extended from the initial domain of
definition along any path with a length smaller than R, which does not pass through ZR.

Definition 4. The element f of the space Ek(SR,ε) is called the k-resurgent function if its k Laplace–
Borel transform f̃ = Bk f is infinitely extendable.

Theorem 1. Let f be a resurgent function. Then, the solution of the equation

H
(

r,−rk d
dr

)
u = f

is a resurgent function in the space Ek(SR).

Theorem 2. If the polynomial H0(p) has simple roots at the points p1, . . . , pm, then in the space
E(SR), the asymptotic expansion of the solution of the homogeneous equation

H
(

r,−r2 d
dr

)
u = 0

has the form

u(r) ≈
m

∑
j=1

exp
( pj

r

)
rσj

∞

∑
i=0

bj
ir

i, (3)

where the sum is taken over the union of all the roots of the polynomial H0(p); bj
i , σj, j = 1, . . . , m

are some numbers.
For equations with degeneracy of (k + 1)-order, where k ∈ N, i.e., for an equation of the form

H
(

r,−1
k

rk+1 d
dr

)
u = 0 :

(i) In the case when the roots of the main symbol are simple, the asymptotics have the form

u(r) ≈
m

∑
j=1

exp

(
pj

rk +
k−1

∑
i=1

α1
k−i

rk−i

)
rσj

∞

∑
i=0

bj
ir

i; (4)

(ii) In the case when k + 1 = m
n , m ∈ N, k ∈ N, m > k, the asymptotics of the solution have

the form

u ≈∑
j

exp

(
pj

r
m
k −1

+
m−k−1

∑
i=1

α1
m−k−i

r
m−i

k −1

)
rσj

∞

∑
i=0

bj
ir

i. (5)

The proof of these theorems can be found in [14,15].

3. Main Results

Consider the equation(
d
dr

)2
u + a1(r)

(
d
dr

)
u + a0(r)u = 0, (6)

where the functions a1(r), a0(r) expand into Laurent series

a1(r) = r−m
∞

∑
j=0

bjrj, a0(r) = r−k
∞

∑
j=0

cjrj;
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we choose the numbers m, k ∈ Z so that the condition b0 6= 0, c0 6= 0 is satisfied. The point
r = 0 is, in general, a singular point of the Equation (6).

Let us construct asymptotics for the solution of the Equation (6) in a neighborhood of
zero. Let us rewrite Equation (6) as(

d
dr

)2
u + r−m

∞

∑
j=0

bjrj
(

d
dr

)
u + r−k

∞

∑
j=0

cjrju = 0. (7)

Since the following equality holds

rk
(

d
dr

)2
=
(

r
k
2 d

dr

)2
− k

2 r
k
2−1
(

r
k
2 d

dr

)
,

Equation (7) can be rewritten in the form(
r

k
2

d
dr

)2
u− k

2
r

k
2−1
(

r
k
2

d
dr

)
u + r

k
2−m

∞

∑
j=0

bjrj
(

r
k
2

d
dr

)
u +

∞

∑
j=0

cjrju = 0. (8)

Theorem 3. All asymptotics of the solution of the Equation (7) in spaces of exponential growth
functions can be represented as

1. Let k > 2m. If k > 2, then

(i) For k = 2n + 1, n = 1, 2, . . . the asymptotics of the solution of the Equation (7) has
the form

u(r) ≈ exp
(

p1

rn− 1
2
+

2n−2
∑

i=1

α1
i

rn− i
2−

1
2

)
rσ1

∞
∑

i=0
b1

i r
i
2 + exp

(
p2

rn− 1
2
+

2n−2
∑

i=1

α2
i

rn− i
2−1

)
rσ2

∞
∑

i=0
b2

i r
i
2 ,

u(r) ∈ En− 1
2
(SR);

(9)

(ii) For k = 2n, n = 2, 3, . . .

u(r) ≈ exp
(

p1
rn−1 +

n−2
∑

i=1

α1
i

rn−1−i

)
rσ1

∞
∑

i=0
b1

i ri + exp
(

p2
rn−1 +

n−2
∑

i=1

α2
i

rn−i−1

)
rσ2

∞
∑

i=0
b2

i ri,

u(r) ∈ En−1(SR),
(10)

where p1, p2 are the roots of the polynomial

H0(p) = p2 +

(
1

k
2 − 1

)2

c0.

(iii) For k = 2 or k = 1, m = 0,−1, . . . , the asymptotics of the solution are conormal.
(iv) For k ≤ 0, the solution is holomorphic.

2. Let k < 2m. If m > 1, then the asymptotics of the solution have the form

u ≈ exp
(

m−1
∑

i=2

α1
i

rm−i

)
∞
∑

i=0
b1

i ri + rσ exp
(
− p2

rm−1 +
m−1
∑

i=2

α2
i

rm−i

)
∞
∑

i=0
A2

i ri,

u(r) ∈ Em−1(SR);

here p2 = b0/(m− 1).

(i) If m = 1, then the asymptotics is conormal.
(ii) If m < 1, then the solution is holomorphic.

3. Let k = 2m.

(i) If m = 1, then the asymptotics of the solution are conormal.
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(ii) If m > 1, and if the roots are p1, p2 of the polynomial

H0(p) = p2 − b0

m− 1
p + c0

(
1

m− 1

)2

do not coincide, then the asymptotics have the form

u(r) ≈ rσ1 exp

(
− p1

rm−1 +
m−1

∑
i=2

α1
i

rm−i

)
∞

∑
i=0

b1
i ri + rσ2 exp

(
− p2

rm−1 +
m−1

∑
i=‘2

α2
i

rm−i

)
∞

∑
i=0

b2
i ri.

(iii) If p1 = p2 = α, then the problem reduces to the previous cases.

Here, by ∑∞
i=0 bj

ir
i, j = 1, 2 denotes the corresponding asymptotic series, while α

j
i , σj, j =

1, 2, . . . , i = 1, . . . , n− 2 are some constants.

Proof. To prove the theorem, we consider three cases: (i) k > 2m; (ii) k < 2m; (iii) k = 2m.
Case (i): k > 2m. Under the condition k > 2m, k > 2, the Equation (8) has an irregular

singularity. Let us rewrite the equation as(
− 1

k
2−1

r
k
2 d

dr

)2
u− 1

k
2−1

r
k
2−m

∞
∑

j=0
bjrj
(
− 1

k
2−1

r
k
2 d

dr

)
u+

+

(
1

k
2−1

)2 ∞
∑

j=0
cjrju + k

2( k
2−1)

r
k
2−1
(
− 1

k
2−1

r
k
2 d

dr

)
u = 0.

(11)

The main symbol of the Equation (11) has the form

H0(p) = p2 +

(
1

k
2 − 1

)2

c0

Denote by p1, p2 the roots of this polynomial. Theorem 1 implies that the asymptotics
of the solution (11) have the form

u ≈ exp

(
p1

r
k
2−1

+
k−3

∑
i=1

α1
k−2−i

r
k−i

2 −1

)
rσ1

∞

∑
i=0

b1
i r

i
2 + exp

(
p2

r
k
2−1

+
k−3

∑
i=1

α2
k−2−i

r
k−i

2 −1

)
rσ2

∞

∑
i=0

b2
i r

i
2

Let us separately consider the cases k = 2 and k = 1 with m = 0,−1, . . . . In the case of
k = 2, Equation (8) becomes(

r
d
dr

)2
u−

(
r

d
dr

)
u + r1−m

∞

∑
j=0

bjrj
(

r
d
dr

)
u +

∞

∑
j=0

cjrju = 0.

Let k = 1 and m = 0,−1, . . . . Then, Equation (8) takes the form(
r

d
dr

)2
u−

(
r

d
dr

)
u + r1−m

∞

∑
j=0

bjrj
(

r
d
dr

)
u + r

∞

∑
j=0

cjrju = 0.

In these two cases, the asymptotics of the solution are conormal.
Thus, in the case for k > 2, the asymptotics of the solution of the Equation (8) are

asymptotics of the non-Fuchsian type; for 0 < k ≤ 2, the asymptotics are conormal.
Obviously, for k ≤ 0, the solution is a holomorphic function.
Case (ii): k < 2m. Multiplying Equation (6) by r2m and making elementary transfor-

mations, we get(
rm d

dr

)2
u−mrm−1

(
rm d

dr

)
u +

∞

∑
j=0

bjrj
(

rm d
dr

)
u + r2m−k

∞

∑
j=0

cjrju = 0. (12)
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Let m > 1. Let us rewrite Equation (12) as(
− 1

m−1 rm d
dr

)2
u + m

m−1 rm−1
(
− 1

m−1 rm d
dr

)
u− b0

m−1

(
− 1

m−1 rm d
dr

)
u−

−
(

1
m−1

) ∞
∑

j=1
bjrj
(
− 1

m−1 rm d
dr

)
u + r2m−k

(
− 1

m−1

)2 ∞
∑

j=0
cjrju = 0.

(13)

The main symbol of the operator from (13) is

H0(p) = p2 − b0

m− 1
p = p

(
p− b0

m− 1

)
with two simple roots p1 = 0, p2 = b0

m−1 .
From Theorem 2, it follows that the asymptotics of the solution to Equation (13) have

the form

exp

(
m−1

∑
i=2

α0
i

rm−i

)
∞

∑
i=0

A1
i ri + rσ exp

(
− b

rm−1 +
m−1

∑
i=2

α1
i

rm−i

)
∞

∑
i=0

A2
i ri

If m = 1, then Equation (12) takes the form(
r

d
dr

)2
u−

(
r

d
dr

)
u +

∞

∑
j=0

bjrj
(

r
d
dr

)
u + r2−k

∞

∑
j=0

cjrju = 0,

that is, the asymptotics of the solution are conormal.
Thus, for k < 2m, we have obtained that for 1 < m the asymptotics will be non-

Fuchsian; for m = 1, the asymptotics will be conormal.
As above, it is easy to see that for m ≤ 0, the solution is a holomorphic function.
Case (iii): k = 2m. Let m = 1. Then, Equation (8) takes the form(

r
d
dr

)2
u−

(
r

d
dr

)
u +

∞

∑
j=0

bjrj
(

r
d
dr

)
u + r2−k

∞

∑
j=0

cjrju = 0.

Therefore, the asymptotics of the solution of this equation are conormal.
Let m > 1. Then, Equation (8) is transformed to the form(
− 1

m−1 rm d
dr

)2
u− b0

m−1

(
− 1

m−1 rm d
dr

)
u + c0

(
1

m−1

)2
u−

−
(

1
m−1

) ∞
∑

j=1
bjrj
(
− 1

m−1 rm d
dr

)
u +

(
1

m−1

)2 ∞
∑

j=1
cjrju− m

m−1 rm−1
(
− 1

m−1 rm d
dr

)
u = 0.

The main symbol of the operator from the last equation has the form

H0(p) = p2 − b0

m− 1
p + c0

(
1

m− 1

)2
.

Denote by p1, p2 two roots of this polynomial.
If p1 6= p2, then the roots are simple, and it follows from Theorem 2 that the asymp-

totics of the solution have the form

rσ1 exp

(
− p1

rm−1 +
m−1

∑
i=2

α0
i

rm−i

)
∞

∑
i=0

A1
i ri + rσ2 exp

(
− p2

rm−1 +
m−1

∑
i=2

α1
i

rm−i

)
∞

∑
i=0

A2
i ri.

If p1 = p2 = α, then by changing the variable u = e−
α

rm−1 u1, from (7), we obtain
an equation of the form
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(
d
dr

)2
u1 + r−m+1

∞

∑
j=0

b′jr
j
(

d
dr

)
u1 + r2m+1

∞

∑
j=0

c′jr
ju1 = 0,

where b′j, c′j are the corresponding constants.
To construct the asymptotics of this equation, it is necessary to apply the method

described above.
If m < 1, then the solution is holomophic.

4. Examples

In this section, we illustrate the application of Theorems 2 and 3 both to second-order
differential equations and to the basic operators of mathematical physics.

Let Ω ⊂ Rn be a domain with smooth boundary ∂Ω. Denote by Q∞ = Ω× (0 < t < ∞)
the cylinder containing the points (x, t) ∈ Rn+1; ∂Q∞ = ∂Ω× (0 ≤ t < ∞) is the lateral
surface of the cylinder.

4.1. Construction of Asymptotics for Solutions of Second-Order Equations with Meromorphic
Coefficients in a Neighborhood of Infinity

Consider the equation(
d
dt

)2
u + a0(t)

(
d
dt

)
u + c0(t)u = 0; (14)

where the functions a0(t), c0(t) have poles at infinity; that is, in the exterior of the circle
|t| > R, the functions a0(t), c0(t) can be expanded in Laurent series

a0(t) = tm
∞

∑
j=0

aj

tj , c0(t) = tk
∞

∑
j=0

cj

tj .

We choose m ∈ Z, k ∈ Z so that a0 6= 0, c0 6= 0.
Let us construct the asymptotics of the solution of Equation (14) as t → ∞. Let us

make the change t = 1/r.
Since

d
dt

v(t) =
dv
dr

dr
dt

= − 1
t2

dv
dr

= −r2 dv
dr

,

then from Equation (14), we get(
−r2 d

dr

)2
v(r) + a(r)

(
−r2 d

dt

)
v(r) + c(r)v(r) = 0, (15)

where

a(r) = r−m
∞

∑
j=0

ajr
j, c(r) = r−k

∞

∑
j=0

cjrj.

Taking into account the obvious identity

r4
(

d
dr

)2
=

(
−r2 d

dr

)2
− 2r

(
r2 d

dr

)
,

Equation (15) is converted to the form

r4
(

d
dr

)2
v(r) + 2r

(
r2 d

dr

)
v(r) + r−m

∞

∑
j=0

ajrj
(
−r2 d

dt

)
v(r) + r−k

∞

∑
j=0

cjrjv(r) = 0, (16)
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and making elementary transformations, we get(
d
dr

)2
v(r) + 2r−1

(
d
dr

)
v(r) + r−m−2

∞

∑
j=0

ajrj
(

d
dt

)
v(r) + r−k−4

∞

∑
j=0

cjrjv(r) = 0. (17)

Thus, the asymptotics of the solution of the Equation (17) are constructed according to
Theorem 3.

4.2. Wave Equation

Consider the wave equation(
d
dt

)2
u(x, t)− a0(t)∆u(x, t) = 0, (x, t) ∈ Q∞ (18)

with the boundary condition (
αu + β

∂u
∂ν

)∣∣∣∣
∂Q∞

= 0; (19)

here α(x) ≥ 0, β(x) ≥ 0, α(x) 6≡ 0, α(x) + β(x) > 0, ν = (ν1, . . . , νn) is the outer unit
normal vector to ∂Ω, the function a0(t) ≥ 0 is holomorphic in a neighborhood of infinity
or has a pole at infinity; that is, there exists an exterior of the circle |t| > R such that the
function a0(t) expands in it in a Laurent series

a0(t) = tk
∞

∑
j=0

aj

tj , (20)

where k ∈ Z, and k can always be chosen so that the condition a0 6= 0 is fulfilled.
If k ≤ 0, then the series (20) in the neighborhood of infinity is a Taylor series.
Let us construct the asymptotics of the solution of the problem (18) and (19) as t→ ∞,

in the space of functions of exponential growth [28].
Using the method of separation of variables, we look for a solution in the form

u(x, t) = Y(x)v(t), and we obtain a system of equations

∆Y(x) + λY(x) = 0, (21)(
d
dt

)2
v(t) + a0(t)λv(t) = 0 (22)

and the boundary condition (
αY + β ∂Y

∂ν

)∣∣∣
∂Ω

= 0. (23)

Denote by λn the eigenvalues of the operator corresponding to the problem (21) and (23),
and by Yn(x) its eigenfunctions.

Since α(x) ≥ 0, α(x) 6≡ 0, then λ = 0 is not an eigenvalue of the problem (21) and (23).

Lemma 1. All asymptotics of solutions of Equation (22), in spaces of functions of exponential
growth as t→ ∞, have the following form:

1. Let k1 = k + 4 > 2. Then, for k = 2n1 + 1, n1 = −1, 0, . . . , the asymptotics of the solution
of the Equation (22) in the space of functions of exponential growth have the form

v(t) ≈ exp
(

p1tn1+
3
2 +

2n−2
∑

i=1
α1

i tn1− i
2+

3
2

)
t−σ1

∞
∑

i=0
b1

i t−
i
2 + exp

(
p2tn1+

3
2 +

2n−2
∑

i=1
α2

i tn1− i
2+

3
2

)
t−σ2

∞
∑

i=0
b2

i t−
i
2 ,

v(t) ∈ En1+
3
2
(SR);
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2. For k = 2n1, n1 = 0, 1, . . . , the asymptotics of the solution to the Equation (22) in the space
of functions of exponential growth have the form

v(t) ≈ exp
(

p1tn1+1 +
n
∑

i=1
α1

i tn1+1−i
)

t−σ1
∞
∑

i=0
b1

i t−i + exp
(

p2tn1+1 +
n
∑

i=1
α2

i tn1+1−i
)

t−σ2
∞
∑

i=0
b2

i t−i,

v(t) ∈ En1+1(SR),

where p1, p2 are the roots of the polynomial

H0(p) = p2 +

(
1

k1
2 − 1

)2

λa0.

Under the condition k1 = k + 4 ≤ 2, the asymptotics of the solution will be conormal.

Proof. Let us proceed to the construction of the asymptotics of the Equation (22) as t→ ∞.
We make the change 1/r. Then, Equation (22) takes the form(

−r2 d
dr

)2
v(r) + r−ka(r)λv(r) = 0. (24)

Since

r4
(

d
dr

)2
+ 2r

(
r2 d

dr

)
=

(
r2 d

dr

)2
,

then Equation (24) can be rewritten in the form(
d
dr

)2
v(r) + 2r−1

(
d
dr

)
v(r) + r−k−4a(r)λv(r) = 0. (25)

where m = 1, and k1 = k + 4.
First, consider the case k1 > 2m = 2. If k1 = k + 4, then the asymptotics of the solution

of Equation (25) for odd k1 = 2n + 1, n = 1, . . . are constructed by Equation (9), and in the
case of even k1 by Equation (10).

If we introduce the notation k = 2n1 + 1, n1 = −1, 0, . . . , then k1 = k + 4 = 2n1 + 5 =
2n + 1. Since the equality n − 1

2 = 2n1+5
2 − 1 = n1 +

3
2 holds, then from Equation (9), it

follows that

u ≈ exp
(

p1

rn− 1
2
+

2n−2
∑

i=1

α1
i

rn− i
2−

1
2

)
rσ1

∞
∑

i=0
b1

i r
i
2 + exp

(
p2

rn− 1
2
+

2n−2
∑

i=1

α2
i

rn− i
2−1

)
rσ2

∞
∑

i=0
b2

i r
i
2 =

= exp
(

p1

rn1+
3
2
+

2n−2
∑

i=1

α1
i

rn1−
i
2 +

3
2

)
rσ1

∞
∑

i=0
b1

i r
i
2 + exp

(
p2

rn1+
3
2
+

2n−2
∑

i=1

α2
i

rn1−
i
2 +

3
2

)
rσ2

∞
∑

i=0
b2

i r
i
2 .

In the case when k1 = k + 4 = 2n = 2n1 + 4, n1 = 0, 1, 2 . . . , and since n − 1 =
f rac2n1 + 42− 1 = n1 + 1, Equation (10) implies

u(r) ≈ exp
(

p1
rn−1 +

n−2
∑

i=1

α1
i

rn−1−i

)
rσ1

∞
∑

i=0
b1

i ri + exp
(

p2
rn−1 +

n−2
∑

i=1

α2
i

rn−i−1

)
rσ2

∞
∑

i=0
b2

i ri =

= exp
(

p1
rn1+1 +

n
∑

i=1

α1
i

rn1+1−i

)
rσ1

∞
∑

i=0
b1

i ri + exp
(

p2
rn1+1 +

n
∑

i=1

α2
i

rn1−i+1

)
rσ2

∞
∑

i=0
b2

i ri,

where p1, p2 are the roots of the polynomial

H0(p) = p2 + λ

(
1

k+4
2 − 1

)2

a0 =

(
2

2 + k

)2
λa0 + p2.

If k1 ≤ 2m = 2, then taking into account the fact that m = 1, it follows from Theorem 3
that the asymptotic of the solution is conormal.
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Now, we can construct a general solution for the problems in (18) and (19). Denote by
vj(t) the solution of Equation (22) with λ = λj.

Preposition 1. All asymptotes of solutions to the problem (18) and (19) in the space of exponentially
growing functions in the neighborhood of infinity by t can be represented as a linear combination of
functions uj(x, t) ∈ Ekj

(SR, L2(Ω)), j = 0, 1, . . .

uj(x, t) ≈ vj(t)Yλj(x).

Remark 1. Theorem 3 is also applicable to the problem where the Klein–Gordon–Fock equation is
considered instead of the wave Equation (18).

4.3. Heat Equation

Consider the heat equation(
d
dt

)
u(x, t)− a0(t)∆u(x, t) = 0, (x, t) ∈ Q∞ (26)

with the boundary condition (
αu + β

∂u
∂ν

)∣∣∣∣
∂Q∞

= 0; (27)

where α(x) ≥ 0, β(x) ≥ 0, α(x) 6≡ 0, α(x) + β(x) > 0, ν = (ν1, . . . , νn) is the outer unit
normal vector to ∂Ω, and the function a0(t) ≥ 0 is holomorphic in a neighborhood of
infinity or has a pole at infinity; that is, there exists such an exterior of the circle |t| > R
that the function a0(t) expands in it in a Laurent series (20), where k ∈ Z, and k can always
be chosen so that the condition a0 6= 0 is satisfied. If k ≤ 0, then the series (20) in the
neighborhood of infinity is a Taylor series.

Let us construct the asymptotics of the solution of the problem (26) and (27) as t→ ∞
in the space of functions of exponential growth.

Using the method of separation of variables, we look for a solution in the form
u(x, t) = Y(x)v(t), and we obtain a system of equations

∆Y(x) + λY(x) = 0, (28)(
d
dt

)
v(t) + a0(t)λv(t) = 0 (29)

and the boundary condition (
αY + β ∂Y

∂ν

)∣∣∣
∂Ω

= 0. (30)

Denote by λn the eigenvalues of the operator corresponding to problems (28) and (30)
and through Yn(x) the corresponding eigenfunctions.

Lemma 2. The asymptotics of the solution of Equation (29) as t→ ∞ have the form

v(t) ≈ exp

(
p1tk+1 +

k

∑
i=0

α1
k−it

k−i

)
t−σ

∞

∑
i=0

b1
i t−i;

here p1 = − 1
k+1 λa0, α1

i , σ are some constants,
∞
∑

i=0
b1

i ti is an asymptotic series.



Mathematics 2022, 10, 2465 14 of 21

Proof. Let us proceed to the construction of the asymptotics of Equation (29) as t→ ∞. We
make the change t = 1/r. Then, Equation (29) can be rewritten as(

− 1
k + 1

r2+k d
dr

)
v(r) +

1
k + 1

a(r)λv(r) = 0, (31)

for which the main symbol is H0(p) = p + 1
k+1 λa0. Theorem 2 implies

v(r) ≈ exp

(
p1

rk+1 +
k

∑
i=0

α1
i

rk−i

)
rσ

∞

∑
i=0

b1
i ri,

where p1 = − 1
k+1 λa0, α1

i , σ are some constants, and ∑∞
i=0 b1

i ri is an asymptotic series.
Further, making the reverse change from r to t , we obtain the assertion of Lemma 2.

Remark 2. The solution to the (29) equation is

v(r) = C exp λ

(∫ a0
rk+2 dr +

∫ k+1
∑

i=1

αi
rk+2−i dr +

∫ ∞
∑

i=k+2

αi
rk+2−i dr

)
=

= C exp
(

λ a0
rk+1 +

k
∑

i=0

α1
i

rk−i

)
rσg(r),

where g(r) is a holomorphic function and can be represented as

g(r) = C exp λ
∫ ∞

∑
i=k+2

αi

rk+2−i dr = C exp λ
∞

∑
i=k+2

αi
i− k− 1

ri−k−1.

Consequently, the series
∞
∑

i=0
b1

i ri is convergent.

Denote by vt
j(t) the solution of the Equation (29) for λ = λj.

Preposition 2. All asymptotes of solutions of problems (26) and (27) as t → ∞, in the space of
exponentially growing functions, can be represented as a linear combination of functions uj(x, t),
j = 0, 1, . . . , i.e.,

uj(x, t) ≈ vt
j(t)Yλj(x).

4.4. Asymptotics of the Solution of the Helmholtz Equation
4.4.1. Asymptotics of the Solution of the Helmholtz Equation at Infinity

We write the Laplace operator in polar coordinates(
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

∂2

∂ϕ2

)
u + λu = 0. (32)

Obviously, this equation has two singular points ρ = 0 and ρ = ∞. However, at the
point ρ = 0, the Equation (32) has a regular singularity. This implies that the asymptotics
of the solution of this equation in the neighborhood of ρ = 0 are conormal.

Therefore, we construct the asymptotics of the solutions of Equation (32) in a neigh-
borhood of infinity, that is, as ρ→ ∞.

Let us separate the variables

u(ρ, ϕ) = V(ρ)G(ϕ),

we get the equation for the function G(ϕ):

− G′′(ϕ) = µG(ϕ), G(ϕ) = G(ϕ + 2π). (33)
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The solution of the (33) equation is

Gk(ϕ) = C1 cos kϕ + C2 sin kϕ, k ∈ Z,
√

µ = k. (34)

It follows that µ = k2 is an eigenvalue of the (33) problem, which corresponds to the
eigenfunction (34).

After the separation of variables, the equation for the function V(ρ) has the form(
ρ

d
dρ

)2
V(ρ) + λρ2V(ρ)− µV(ρ) = 0. (35)

Note that the point ρ = 0 is a regular singular point of Equation (35); that is, the
asymptotic behavior of the solution of Equation (35) in a neighborhood of zero is conormal.

Lemma 3. Let λ 6= 0. All asymptotics of solutions of Equation (35) in the space of functions of
exponential growth in a neighborhood of infinity have the form

V(ρ) ≈ ρ−
1
2

(
exp(λ1ρ)

∞

∑
i=0

A1
i ρ−i + exp(λ2ρ)

∞

∑
i=0

A2
i ρ−i

)
; (36)

where λi, i = 1, 2 denotes the roots of the polynomial p2 + λ, and ∑∞
i=0 Aj

i x
i is the corresponding

asymptotic series.
Let λ = 0. Then, the asymptotics of solutions to the equation are conormal.

Proof. Let us make the change r = 1/ρ; thus, we get

r2
(

r
d
dr

)2
V(r) + λV(r)− r2µV(r) = 0. (37)

Since the following identity holds

r2
(

r
d
dr

)2
=

(
r2 d

dr

)(
r2 d

dr

)
− r
(

r2 d
dr

)
,

then Equation (37) can be rewritten as(
−r2 d

dr

)2
V(r) + r

(
−r2 d

dr

)
V(r) + λV(r)− r2µV(r) = 0. (38)

We make the substitution V(r) = rσV1(r). Since(
r2 d

dr

)2
V(r) = rσ

(
σ(σ + 1)r2 + 2σr

(
r2 d

dr

)
+

(
r2 d

dr

)2
)

V1(r),

then substituting the obvious equality in the Equation (38), we obtain(
−r2 d

dr

)2
V1(r) + λV1(r) + (2σ− 1)r

(
r2 d

dr

)
V1(r) + (σ(σ + 1)− σ− µ)r2V1(r) = 0. (39)

Putting σ = 1/2, Equation (39) becomes(
−r2 d

dr

)2
V1(r) + λV1(r) +

(
1
4
− µ

)
r2V1(r) = 0. (40)

The main symbol of this equation is p2 + λ.
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Consider the case λ 6= 0. Denote by λi, i = 1, 2 the roots of this polynomial. By
Theorem 2, the solution of Equation (40) in a neighborhood of zero has the asymptotics

V(r) ≈ r
1
2

(
exp

(
λ1

r

) ∞

∑
i=0

A1
i ri + exp

(
λ2

r

) ∞

∑
i=0

A2
i ri

)
.

Let now λ = 0; then, the equation has the form(
−r2 d

dr

)2
V1(r) +

(
1
4
− µ

)
r2V1(r) = 0. (41)

Using formulas (
−r2 d

dr

)2
= 2r3 d

dr
+ r4

(
d
dr

)2
,

we get the equation(
d
dr

)2
V1(r) + 2r−1 d

dr
V1(r) +

(
1
4
− µ

)
r−2V1(r) = 0. (42)

It follows from Theorem 3 that the asymptotics of the Equation (40) are conormal.

Denote by Vk(ρ) the solution of the Equation (35), where µ = k2.

Preposition 3. The solution of the Equation (32) can be represented as linear combinations of functions

uk(ρ, ϕ) = Gk(ϕ)Vk(ρ).

4.4.2. Asymptotics of the Solution of the Helmholtz Equation in Rn

Consider the Helmholtz equation in n-dimensional space.(
1

ρn−1
∂

∂ρ

(
ρn−1 ∂

∂ρ

)
+

1
ρ2 ∆θ

)
u + λu = 0. (43)

where ∆θ is the Laplace–Beltrami operator

∆θ =
n

∑
i=2

1
sin2 θ2 . . . sin2 θi−1 sinn−i θi

∂

∂θi

(
sinn−i θi

∂

∂θi

)
.

Let us apply the method of separation of variables to the Equation (43)

u(ρ, θ) = V(ρ)G(θ);

thus, we get a system of equations(
ρ d

dρ

)2
V(ρ) + (n− 2)ρ ∂

∂ρ V(ρ) + λρ2V(ρ) = µV(ρ),
∆θG(θ) = µG(θ).

where µ denotes the eigenvalue of the Laplace–Beltrami operator. The singular points of
the (43) equation are ρ = 0 and ρ = ∞.

Obviously, in a neighborhood of zero, the asymptotics of the solution will be conormal.
Let us find the asymptotics in a neighborhood of an infinitely distant singular point. As
above, we make the replacement ρ = 1/r. We get the equation(

r2 d
dr

)2
V(r)− (n− 3)r

(
−r2 ∂

∂r

)
V(r) + λV(r)− r2µV(r) = 0. (44)
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Let us make a substitution V(r) = rσV1(r). As above, putting σ = 3−n
2 , we get

the equation (
r2 d

dr

)2
V1(r) + λV1(r) +

(
(3−n)(n−1)

4 − µ
)

r2V1(r) = 0.

The main symbol is H0(p) = p2 + λ.
Consider the case λ 6= 0. By Theorem 1, the solution of the Equation (44) in a

neighborhood of zero has the asymptotics

V(r) ≈ r
3−n

2

(
exp

(
λ1

r

) ∞

∑
i=0

A1
i ri + exp

(
λ2

r

) ∞

∑
i=0

A2
i ri

)
;

where λi, i = 1, 2 denotes the roots of the polynomial.
If λ = 0, then the asymptotic behavior is conormal.

4.4.3. Asymptotics of the Solution of the Helmholtz Equation with a Variable Coefficient at
the Lowest Term

Consider the Helmholtz equation with a variable coefficient at the lowest term(
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

∂2

∂ϕ2

)
u + λa(ρ)u = 0, (45)

where

a(ρ) = ρ−k
∞

∑
j=0

ajρ
j.

We are looking for a solution to Equation (45) in the form

u(ρ, ϕ) = V(ρ)G(ϕ).

Then, for the function V(ρ), we have(
ρ

d
dρ

)2
V(ρ) + λa(ρ)ρ2V(ρ)− µV(ρ) = 0. (46)

Since (
ρ2 d

dρ

)2
= 2ρ3 d

dρ
+ ρ4

(
d

dρ

)2
,

from (46), we get the equation(
d

dρ

)2
V(ρ) + 2ρ−1 d

dρ
V(ρ) + λρ−k−2

∞

∑
j=0

ajρ
jV(ρ)− µρ−4V(ρ) = 0. (47)

where m = 1. We introduce the notation k1 = k + 2, k0 = max(4, k1).

1. If k 6= 2, and since 4 > 2m, then it follows from Theorem 3 that the asymptotics of the
solution of the Equation (47) have the form

V(ρ) ≈ exp
(

p1

ρn− 1
2
+

2n−2
∑

i=1

α1
i

ρn− i
2−

1
2

)
ρσ1

∞
∑

i=0
b1

i ρ
i
2 + exp

(
p2

ρn− 1
2
+

2n−2
∑

i=1

α2
i

ρn− i
2−1

)
ρσ2

∞
∑

i=0
b2

i ρ
i
2 ,

V(ρ) ∈ En− 1
2
(SR),

(48)

for k0 = 2n + 1, n = 1, 2, . . . ; and the form
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V(ρ) ≈ exp
(

p1
ρn−1 +

n−2
∑

i=1

α1
i

ρn−1−i

)
ρσ1

∞
∑

i=0
b1

i ρi + exp
(

p2
Rn−1 +

n−2
∑

i=1

α2
i

ρn−i−1

)
ρσ2

∞
∑

i=0
b2

i ρi,

V(ρ) ∈ En−1(SR),
(49)

for k0 = 2n, n = 1, 2, . . . ; p1, p2 are the roots of the following polynomial

H0(p) = p2 +

(
1

k0
2 − 1

)2

c0.

where c0 = λa0 provided that k1 > 4 and c0 = µ.
2. Let k = 2, and for λa0 6= µ, then the asymptotics have the form (49).

If λa0 = µ, then we rewrite Equation (46) as(
d

dρ

)2
V(ρ) + 2ρ−1 d

dρ
V(ρ) + λR−k0−2

∞

∑
j=0

aj+1ρjV(ρ) = 0.

We choose k0 so that a1 6= 0. Then, it follows from Theorem 3 that for k0 = 1 the
asymptotics are constructed by the Equation (48). If k0 ≤ 0, then the asymptotic behavior
of the solution is conormal.

Denote by Vk(x) the solution of the Equation (46) where µ = k2. Then, the asymptotics
of the solution of the Equation (45) satisfy Preposition 1.

Let us now show how Theorem 3 can be applied to construct asymptotics for solutions
of the Laplace operator, given on manifolds with isolated singularities. As is well known,
there are two types of isolated features: conical and beak type.

4.5. Asymptotics of the Solution of the Laplace Equation in a Cone

In a neighborhood of a conical singular point, we choose polar coordinates (r, ϕ),
and in these coordinates, the Laplace equation has the form

1
ρ2

((
ρ ∂

∂ρ

)2
+ c2 ∂2

∂ϕ2

)
u(ρ, ϕ) = 0. (50)

To construct asymptotics for the solution of the (50) equation in a neighborhood of
a conical point, we apply the method of separation of variables, after which we reduce the
problem to the study of an equation with a regular singular point.

As a result, we find that zero is a regular singularity, and the asymptotic behavior in
the neighborhood of zero is conormal.

4.6. Asymptotics of the Solution of the Laplace Equation on a Manifold with an nth-Order
Beak-Type Singularity

Consider the Laplace equation ∆u = 0 on a Riemannian two-dimensional manifold
with an nth-order beak-type singularity. This means that the Riemannian metric is in-
duced from R3 by an embedding, which is defined as a mapping of the manifold onto a
surface, which is the surface of rotation of the parabola branch y = rn around the axis ~0r
to R3.

We choose polar coordinates (r, ϕ) on the manifold in a neighborhood of zero and
construct the asymptotics of the solution in a neighborhood of the singular point r = 0.

The Laplace equation on a manifold has the form (see, for example, [9])

1
1 + n2r2n−2 r2n ∂2u

∂r2 + nr2n−1
(
n2 − n

)
r2n−2 + 1

(1 + n2r2n−2)
2

∂u
∂r

+

(
∂

∂ϕ

)2
u = 0. (51)

Obviously, the point r = 0 is an irregular singular point of this equation.
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Applying the method of separation of variables and substituting the function u(r, ϕ) =
V(r)G(ϕ) into Equation (51), with respect to the functions V(r) and G(ϕ), we obtain the
system of equations

1
1 + n2r2n−2

d2V(r)
dr2 + nr−1

(
n2 − n

)
r2n−2 + 1

(1 + n2r2n−2)
2

dV(r)
dr
− r−2nλV(r) = 0, (52)

d2

dϕ2 G(ϕ) = λG(ϕ), G(ϕ) = G(ϕ + 2π). (53)

As is known, the eigenvalue of the operator corresponding to Equation (53) has the
form λ = k2, where k ∈ Z, and the eigenfunction Gk(ϕ) corresponding to this eigenvalue is
the expansion

Gk(ϕ) = C1 cos kϕ + C2 sin kϕ,
√

λ = k.

Let us apply Theorem 3 to the Equation (52).
If k 6= 0, then m = 1, k = 2n > 2. It follows from Theorem 3 that the asymptotics will

have the form

V(r) ≈ exp
(

p1
rn−1

)
rσ1

∞
∑

i=0
b1

i ri + exp
(

p2
rn−1

)
rσ2

∞
∑

i=0
b2

i ri,

V(r) ∈ En−1(SR),

where pi, i = 1, 2, are the roots of the polynomial

H0(p) = p2 +

(
k

n− 1

)2
.

If k = 0, then Equation (52) becomes

d2V(r)
dr2 + nr−1 (n

2 − n)r2n−2 + 1
(1 + n2r2n−2)

dV(r)
dr

= 0.

It follows from Theorem 3 that the asymptotics of solutions to this equation are conormal.
It is easy to show that the asymptotics in a neighborhood of zero have the form

C−1/rn−1.
Denote by Vk(r) the solution of the Equation (52) corresponding to the eigenvalue

λ = k2. Then, the following statement is true.

Preposition 4. All asymptotics of solutions of the Equation (51) in the space of functions of n− 1
exponential growth En−1(SR, S1) can be represented as linear combinations

uk(ρ, ϕ) = Gk(ϕ)Vk(r),

where uk(ρ, ϕ) ∈ En−1(SR, S1).

5. Conclusions

The article solves the Poincaré problem for second-order ordinary differential equa-
tions, i.e., we obtain uniform asymptotics of solutions for a second-order equation with
arbitrary irregular singularities. This result is of particular interest for constructing asymp-
totics for solutions of various equations of mathematical physics in the neighborhood of
irregular singular points, which is demonstrated by the examples given in the article.

In addition, the results of this article can be applied in the theory of differential
equations on manifolds with both conical and beak-like singularities. Also of particular
interest is the further study of the asymptotics obtained in Theorem 1—more precisely,
the question of the conditions on the coefficients of the equations that would ensure the
convergence of the asymptotic series contained in the asymptotics of the solutions.
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An example of such a problem, where the wave equation is considered and the
convergence of the series included in the asymptotics of its solution is studied, is presented
in [29].
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