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Abstract: Aspect-level sentiment classification aims to predict the sentiment polarities towards the
target aspects given in sentences. To address the issues of insufficient semantic information extraction
and high computational complexity of attention mechanisms in existing aspect-level sentiment classi-
fication models based on deep learning, a contextual graph attention network (CGAT) is proposed.
The proposed model adopts two graph attention networks to aggregate syntactic structure informa-
tion into target aspects and employs a contextual attention network to extract semantic information in
sentence-aspect sequences, aiming to generate aspect-sensitive text features. In addition, a syntactic
attention mechanism based on syntactic relative distance is proposed, and the Gaussian function is
cleverly introduced as a syntactic weight function, which can reduce computational complexities and
effectively highlight the words related to aspects in syntax. Experiments on three public sentiment
datasets show that the proposed model can make better use of semantic information and syntactic
structure information to improve the accuracy of sentiment classification.

Keywords: aspect-based sentiment analysis; syntactic relative distance; attention mechanism; graph
attention network; BERT; deep learning

MSC: 68T07

1. Introduction

Aspect-level sentiment classification (ALSC), also known as target sentiment classi-
fication, is a subtask of aspect-based sentiment analysis (ABSA), which aims to identify
sentiment polarity expressed by aspects [1] in sentences. As shown in Figure 1, a user
can mention aspects “food” and “service” and express two opposite sentiments over them.
The opinion word for “food” is “great”, which is positive, and the opinion word for “service”
is “dreadful”, which is negative. It is inappropriate to assign one sentence-level sentiment
label (positive or negative) for a sentence containing aspects with different sentiment po-
larities. ALSC can identify the sentiment polarities of different aspects for fine-grained
sentiment analysis.

The core of ALSC is to find out opinion words of target aspects accurately. Tang [2] and
Wang [3] adopted long short-term memory networks (LSTMs) and an attention mechanism
to mine semantic information to achieve semantic alignment between opinion words and
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target aspects. However, these methods did not fully utilize syntactic structure information.
It is difficult to deal with sentences with complex syntactic structures, such as double
negative sentences. Zhang [4] and Wang [5] applied graph neural networks (GNNs) to
explicitly exploit syntactic structure information to capture long-range dependencies of
words. However, these models did not treat sentences as word sequences and ignored
semantic information of sentences, making it difficult to cope with sentences that need to
understand context words, such as sentences with implicit opinion words.

great but the was dreadful.food pos service neg

Figure 1. A sentence containing aspects with different sentiment polarities.

In sentiment classification tasks, context words that get closer to the target aspects
are generally more significant for identifying sentiment polarities. Based on the shortest
path length on dependency trees between words and aspects (syntactic relative distance,
SRD), He [6] proposed an attention mechanism to find context words that are close to target
aspects in syntax. However, this attention mechanism has a high computational cost, and
the assigned syntactic weight decreases sharply with SRD increases, resulting in sentiment
information loss.

To tackle these problems, a novel aspect-level sentiment classification model (contex-
tual graph attention network, CGAT) is proposed, which combines a syntactic attention
mechanism and a contextual graph attention network.

The contributions of our work are summarized as follows.

• A contextual graph attention network is proposed. After taking target aspects as roots
to reconstruct dependency trees, the contextual graph attention network applies two
graph attention networks to mine syntactic structure information related to aspects
and adopts a contextual attention network to extract semantic information, aiming to
enhance sentiment expression of target aspects.

• A syntactic attention mechanism based on SRD is proposed, which has low computa-
tional complexity and cleverly introduces the Gaussian function as a syntactic weight
function. The syntactic attention mechanism avoids the loss of sentiment information
from weight decaying sharply and effectively focuses on opinion words of aspects.

The remainder of this paper is organized as follows. In Section 2, recent works in
ALSC are described. In Section 3, the implementation details of the proposed model CGAT
are explicitly introduced. In Section 4, extensive experiments are reported to assess the
performance of CGAT. In Section 5, our work is summarized.

2. Related Work

Many aspect-level sentiment classification works employ bidirectional long short-
term memory (Bi-LSTM) and an attention mechanism to extract semantic information
of sentences. Huang [7] used a Bi-LSTM to model sentences and aspects and adopted
an attention mechanism to capture interactive features between them. Chen [8] utilized
multiple attention layers to capture aspect-related long-range dependency information.
Fan [9] presented a multi-grained attention mechanism to capture interaction features
between sentences and aspects. Park [10] adopted a Bi-LSTM to encode left contexts and
right contexts of aspects separately and applied a gated recurrent unit (GRU) to extract
aspect sentiment features.

Since convolutional neural networks (CNNs) have the advantage of modeling local
features, there are some attempts to exploit CNNs for ALSC. For modeling sentences and
aspects by utilizing a Bi-LSTM, Cheng [11] adopted different sizes of convolution kernels
to extract local features of words. After dividing sentences into multiple regions, Liu [12]
applied a CNN to extract local features of different regions and employed a hierarchical
LSTM to mine temporal relations of sentences and associations between sentences.
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Cognitive linguistics [13] holds that syntactic structure information helps to inter-
pret semantics expressed by sentences. To utilize syntactic structure information to assist
text analysis, early approaches tried hand-crafted coders [14], though they required care-
ful design. Afterward, for mining more comprehensive syntactic structure information,
Dozat [15] used deep learning to parse dependencies between words without manual
design. Moreover, to detect sentiment and emotions around aspects “gender” and “gap”
in 10,000 tweets, Stella [16] used a multi-layer perceptron to extract syntactic structure
information and build a network of non-stopwords. Similarly, to investigate sentiments
and emotions around aspects “love” and “live” in suicide notes, Sofia [17] used syntactic
structure information to construct subject–verb–object triads.

Recently, because of the flexibility of graph neural networks (GNNs) in dealing with
complex topological structures, GNNs have been widely applied to mine syntactic structure
information of sentences. Zhang [4] adopted a graph convolutional network (GCN) to
capture syntactic structure information on dependency trees. Lu [18] designed a gated
mechanism based on Bi-LSTM to guide the encoding of sentiment information related to
aspects, followed by a GCN to capture long-range dependencies of words. After concate-
nating dependency relations and their two sides words, Du [19] employed a GCN and a
multi-head attention mechanism to capture aspect-related sentiment information. Wang [5]
reconstructed dependency trees by taking aspects as roots and applied BERT and graph
attention networks (GATs) to explicitly encode dependency relations. Wang [20] applied
BERT and attention mechanisms to fuse syntactic structure information extracted by GCNs
with other information, such as semantics, location, parts of speech, and aspects.

Some studies show that words in different positions contribute differently to recogniz-
ing aspect sentiments. The closer to the target aspect, the more important the word may
be. Tang [21] assigned weights to words based on their index in the sentence. Zhang [4],
Chen [8], Fan [9], Park [10], Wang [20], and Chen [22] assigned weights to words based
on the number of words between words and aspects (position distance, PD). He [6] and
Su [23] assigned weights to words based on the shortest path lengths on dependency trees
between words and aspects (syntax relative distance, SRD).

3. Method

The overall framework of proposed model CGAT is illustrated in Figure 2. It essentially
consists of three components: an input layer, a syntactic attention mechanism, and a
contextual graph attention network.
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Average Pooling

𝐶𝐿𝑆 + 𝑆 + 𝑆𝐸𝑃 + 𝐴 + [𝑆𝐸𝑃]
Syntactic  Attention

Figure 2. The overall framework of the proposed model CGAT.
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The input layer converts each word into word embedding via BERT to obtain sentence
and aspect representations. The syntactic attention mechanism calculates syntactic weights
based on SRD and assigns them to each word. The contextual graph attention network
applies two graph attention networks to extract syntactic structure information and utilizes a
contextual attention network to extract semantic information from sentence-aspect sequences.

Our task is to predict the sentiment polarity of the target aspect, which can be positive,
neutral, or negative.

3.1. Input Layer

Given an aspect–sentence pair (S, A), a target aspect (i.e., words or phrases)
A = {wa

1, wa
2, · · · , wa

l } containing l words is a sub-sequence of the sentence
S = {ws

1, ws
2, · · · , ws

L} with L words. The details of the input layer are as follows.
Firstly, a sentence S and its target aspect A are input into BERT [24], one of the state-of-

the-art word embedding models, and Xs = {xs
1, xs

2, · · · , xs
L} and Xa = {xa

1, xa
2, · · · , xa

l } are
obtained, where xi ∈ Re is an e-dimensional word vector.

Xs = BERT(S) (1)

Xa = BERT(A) (2)

Secondly, Xs ∈ RL×e and Xa ∈ Rl×e are fed into a low-dimensional linear space,
and the hidden layer representations of a sentence, Vs = {vs

1, vs
2, · · · , vs

L} and an aspect,
Va = {va

1, va
2, · · · , va

l }, are obtained.

Vs = XsWs + bs (3)

Va = XaWa + ba (4)

where Ws, Wa ∈ Re×d, bs, ba ∈ Rd, and d are the dimensions of the hidden layer.
Finally, average pooling on Va ∈ Rl×d is used to acquire aspect representation Ha ∈ Rd.

Ha = mean(Va) (5)

3.2. Syntactic Attention Mechanism

Researchers [4,10,20,22,25] showed that a context word closer to the target aspect is
generally more significant than a farther one for determining sentiment polarity. In the
proposed model, the syntactic attention mechanism calculates syntactic weights based on
SRD and assigns them to Vs to acquire the sentence representation with syntactic weight Hs.

As shown in Figure 3, the opinion word of the target aspect “size” is “busy”, and the
number of words between them is 7, which is remote. It indicates that weighting context
words based on position distance (PD) may fail to focus on those words close to target
aspects in syntax.

det

root
punct

prepaux

cop

Can be a bit busy around peak times because of the .size

SRD 3 3 4 3 2 3 4 3 2 1 1 30

PD 11 10 9 8 7 6 5 4 3 2 1 10

neg

npadvmod prep mwe

pobj

det

pobj

nn

Figure 3. Position distance (PD) and syntactic relative distance (SRD).

After generating a syntactic dependency tree by parsing the sentence, the shortest
path length between “size” and “busy” on the dependency tree is two. This indicates that
the syntactic relative distances (SRD) between words and aspects can effectively emphasize
those context words remote in PD but close to aspects in syntax.
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Some studies [6,23,25] found that a context word far away from aspects should not be
abandoned, as it may contribute to recognizing aspect sentiment. Further analyses found
that the SRDs and the importance of words approximately satisfy a negative correlation
when the amount of data reaches a certain scale. The remoter the SRD between words and
aspects, the smaller the contribution of words.

Based on these analyses, the Gaussian function is cleverly introduced into the syntactic
attention mechanism as a syntactic weight function, aiming to calculate syntactic weights
based on SRDs.

ρs
i = g(ds

i ) = A ∗ e−
(ds

i−µ)2

2σ2 (6)

ds
i =


0 n = 0,
n 1 ≤ n < ω,
ω n ≥ ω.

(7)

where peak A = 1, mean µ = 0, standard deviation σ = 5, attention window size ω = 4, n
denotes SRD, and ds

i is the improved SRD. When 1 ≤ n < ω, ds
i = n, syntactic weight ρs

i
decreases slowly with increases in SRD. When n ≥ ω, set ds

i = ω, and the contribution of
the word to aspect sentiment recognition is considered.

Without involving other factors, the calculation of syntactic weight only relates to
SRD, which reduces computational complexity. In addition, syntactic weight decreases
slowly with increases in SRD, avoiding the loss of sentiment information and enabling the
syntactic attention mechanism to pay more attention to aspect-related words.

After calculating the syntactic weight of each word in the sentence through the syn-
tactic weight function, a syntactic weight vector ρs = {ρs

1, ρs
2, · · · , ρs

L} can be acquired by
connecting. Finally, the corresponding elements of ρs ∈ RL and Vs ∈ RL×d are multiplied
to obtain the sentence representation with syntactic weight Hs ∈ Rd.

Hs = ρs � Vs (8)

where � is element-wise multiplication.

3.3. Contextual Graph Attention Network

The contextual graph attention network consists of a graph attention network, a
relational graph attention network, and a contextual attention network, in order to extract
syntactic structure information and semantic information.

3.3.1. Aspect-Oriented Dependency Tree

A dependency tree is a graph structure that describes dependency relations between
words, which contains abundant syntactic structure information. However, it is commonly
not aspect-oriented, and there is a lot of redundant information that is irrelevant to the
target aspect. Therefore, to capture aspect-related syntactic structure information, the
dependency tree is reconstructed as an aspect-oriented dependency tree to highlight the
syntactic relationships between words and aspects.

Figure 4 is the reconstructed dependency tree, and the details of reshaping are as follows.
Firstly, taking a target aspect as a root node. If the aspect contains multiple words, it

would be treated as an entity and maintain dependencies with other words.
Secondly, retaining dependency relations that connect directly to the target aspect and

removing other dependency relations.
Finally, establishing new connections (n connected) with the target aspect for those

words without dependency relations, where n represents SRD.
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4:con

root

3:con

3:con

Can be a bit busy around peak times because of the .size neg

det

pobj

3:con

2:con

3:con

4:con

3:con

3:con

2:con

Figure 4. An aspect-oriented dependency tree.

3.3.2. Graph Attention Network

After reconstructing dependency trees, target aspects connect with context words. A
graph attention network can aggregate sentiment information to target aspects.

A dependency tree can be represented as a graph structure with L nodes, where each
node denotes a word in the sentence. Additionally, the neighborhood nodes of node i can
be denoted by Ni. Applying a GAT and a multi-head attention mechanism can aggregate
neighborhood node representations and iteratively update each node representation.

hn+1
atti

= ‖K
k=1 ∑

j∈Ni

αn
ijh

n
attj

Wn
k (9)

αn
ij = softmax(hn

atti
· hn

attj
) (10)

where hn+1
atti
∈ Rd is the attention head representation of node i at layer n+1, ‖K

k=1 denotes
the vector concatenation operation, αn

ij ∈ R1 is a normalized attention coefficient between

node i and node j at layer n, and Wn
k ∈ Rd×d/K is a weight matrix of the k-th attention head

at layer n. Additionally, we adopt a dot-product operation to compute αn
ij.

Initialize h0
atti

as hs
i ∈ Hs. The final node representation Hn

att = {hn
att1

, hn
att2

, · · · , hn
attL
}

can be obtained at the last GAT layer, where Hn
att ∈ RL×d. The interactive features be-

tween Hn
att and aspect representation Ha ∈ Rd are captured; we name the multi-head text

representation Hatt ∈ Rd.
Hatt = HaWkHn

att + bk (11)

where Wk ∈ Rd×L is a weight matrix and bk ∈ Rd is a bias.

3.3.3. Relational Graph Attention Network

After reconstructing dependency trees, dependency relations connect with target
aspects and context words, indicating their syntactic dependency or relative distance. The
relational graph attention network can aggregate the syntactic structure information to the
target aspect.

A dependency relation between node i and node j is mapped into the relation embed-
ding rij ∈ Rd. Similarly, we employ another GAT and multi-head attention mechanism to
encode each dependency relation.

hn+1
reli

= ‖M
m=1 ∑

j∈Ni

βijhn
relj

Wn
m (12)

βij = softmax(rijWr + br) (13)

where hn+1
reli
∈ Rd is the relational head representation of node i at layer n+1, βij ∈ R1 is a

normalized attention coefficient between node i and node j, Wn
m ∈ Rd×d/M, Wr ∈ Rd×1,

and br ∈ R1.
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Similarly, we initialize h0
rel as hs

i ∈ Hs. The final dependency relation representation
Hn

rel = {hn
rel1 , hn

rel2 , · · · , hn
relL
} can be obtained at the last GAT layer, where Hn

rel ∈ RL×d.
Finally, we align the dimensions of Hn

rel with Ha to generate multi-head relation representa-
tion Hrel ∈ Rd.

Hrel = HaWmHn
rel + bm (14)

where Wm ∈ Rd×L and bm ∈ Rd.

3.3.4. Contextual Attention Network

After constructing a sentence-aspect sequence, the contextual attention network adopts
BERT to adaptively model words based on context words, aiming to fully extract semantic
information of the sentence and obtain semantic features Hcon.

Firstly, construct a sentence-aspect sequence SA, “[CLS] + S +[SEP]+ A +[SEP]”, where
the symbol “[CLS]” aggregates semantic information and “[SEP]” separates sentences
and aspects.

Secondly, input SA to BERT and take out the hidden layer feature of the first symbol
“[CLS].”

Xc = BERT(SA) (15)

Hcls = Xc[1] (16)

Finally, linearly transform Hcls ∈ Re to obtain the aspect-sensitive semantic feature
Hcon ∈ Rd.

Hcon = HclsWc + bc (17)

where Wc ∈ Re×d and bc ∈ Rd.

3.4. Sentiment Classification

The final text representation HText ∈ R3d can be obtained by concatenating the output
of the contextual graph attention network: Hatt, Hrel and Hcon.

HText = Hatt‖Hrel‖Hcon (18)

where ‖ denotes the vector concatenation.
Feed HText to a fully connected layer and softmax activation function to obtain senti-

ment classification results p(a).

H = σ(σ(HTextWh
1 + bh

1)W
h
2 + bh

2) (19)

p(a) = softmax(HW p + bp) (20)

where H ∈ Rd, Wh
1 ∈ R3d×d, Wh

2 ∈ Rd×d, W p ∈ Rd×3, bh
1 ∈ Rd, bh

2 ∈ Rd, and bp ∈ R3.
Additionally, σ is a HardSwish activation function [26].

The proposed model employs standard cross-entropy and L1 normalization as the
objective function to optimize network parameters. The L1 normalization reduces the
number of non-zero parameters to prevent overfitting.

L(θ) = − ∑
(S,A)∈D

log p(a) + γ ∗ L1(θ) (21)

where D denotes the collection of sentence-aspect pairs, A represents the aspects appearing
in sentence S, θ contains all the trainable parameters, and γ is a normalized coefficient.

4. Experiments
4.1. Datasets and Settings

To assess the classification performance of the proposed model CGAT, experiments
were conducted on three public sentiment analysis datasets. Two of them contain reviews
from the SemEval 2014 Task [27], Restaurant and Laptop, and the third dataset contains
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Twitter data collected by Dong [28] in 2014. The basic statistics of the three datasets are
summarized in Table 1.

In the experiment, word vector dimension e was set to 768, and hidden layer dimen-
sions d were set to 400. The Biaffine parser [15] was adopted to parse dependency relations
to generate syntactic dependency trees. The numbers of attention head K and relational
head M were both 6 in the contextual graph attention network. The L1 normalization
coefficient γ was 1× 10−8. The batch size was 16, and the learning rate was 5× 10−5. All
training of the model was conducted on GPU (NVIDIA Tesla P100).

Table 1. The basic statistics of three datasets.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

Restaurant 2164 728 637 196 807 196
Laptop 994 341 464 169 870 128
Twitter 1561 173 3127 346 1560 173

4.2. Baselines

The original experiment results of LSTM+SynATT+TarRep, RAM, MGAN, HRT_Bi,
ASGCN, BE-GCN, and Mem+BERT on three datasets are cited. To ensure the fairness of
experiments, model R-GAT+BERT was reimplemented in the same experiment environment
as the proposed model CGAT.

LSTM+SynATT+TarRep [6] pre-sets K representative aspects to extract important
information related to target aspects and assigns weights to context words based on SRD
and association degree with target aspects.

RAM [8] adopts multi-layer attention to capture aspect-related sentiment information
and utilizes position information to assign weights to words.

MGAN [9] designs a multi-grained attention mechanism to capture interaction fea-
tures between context words and aspects and assigns weights based on position distance.

HRT_Bi [10] utilizes a Bi-LSTM to encode the left contexts and the right contexts of
aspects separately and uses a GRU to mine aspect-related sentiment information.

ASGCN [4] employs a GCN to extract syntactic structure information.
BE-GCN [19] combines words and their dependencies and adopts a GCN and a

multi-head attention mechanism to capture aspect-related sentiment information.
Mem+BERT [20] adopts a GCN to extract syntactic structure information and utilizes

an attention mechanism to fuse syntactic structure information, semantic information,
location information, parts of speech, and aspects.

R-GAT+BERT [5] reconstructs ordinary dependency trees into aspect-oriented and
exploits two GATs to model dependency relations.

4.3. Results and Analysis
4.3.1. Main Results

The performances of different models on the three datasets are shown in Table 2, and
there several observations can be noted.

Firstly, the proposed model CGAT outperformed other models in accuracy and MF1.
Secondly, on the three datasets, compared with LSTM+SynATT+TarRep, RAM, MGAN,

HRT_Bi, ASGCN, and BE-GCN, CGAT achieved average increases of 5.30%, 5.82%, and
5.59% in accuracy, and 8.32%, 5.43%, and 6.16% in average MF1. The main reason is that
CGAT is based on BERT, which can adaptively model words according to context words
and effectively extract semantic information.

Thirdly, the performance of CGAT significantly improved compared with Mem+BERT
and R-GAT+BERT. This phenomenon shows that the proposed syntactic attention mecha-
nism can effectively highlight aspect-related context words, which is beneficial for mining
syntactic structure information.
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Table 2. Comparison results of different models on the three datasets.

Category Model PD SRD
Restaurant Laptop Twitter

ACC MF1 ACC MF1 ACC MF1

Att.

LSTM+synATT+TarRep
√

80.63 71.32 71.94 69.23 - -
RAM

√
80.23 70.80 74.49 71.35 69.36 67.30

MGAN
√

81.25 71.94 75.39 72.47 72.54 70.81
HRT_Bi

√
81.96 74.09 74.45 70.83 73.27 71.98

Syn.

ASGCN
√

80.77 72.02 75.55 71.05 72.15 70.40
BE-GCN 80.86 72.18 75.70 71.82 72.01 70.55

Mem+BERT
√

85.18 77.32 78.68 73.93 72.98 72.08
R-GAT+BERT 85.09 79.22 79.00 75.78 75.15 73.97

Att.+Syn. CGAT(ours)
√

86.25 80.38 80.41 76.48 77.46 76.37

4.3.2. Ablation Study

To evaluate the effectiveness of different components in CGAT, four groups of ablation
experiments were designed. The specific description of each group is as follows.

CGAT/S removes syntactic attention mechanism S.
CGAT/G removes graph attention network G.
CGAT/R removes relational graph attention network R.
CGAT/C removes contextual attention network C.
As shown in Table 3, removing any components would lead to decreases in accuracy

and MF1.

Table 3. Ablation results of different components.

Model
Restaurant Laptop Twitter

ACC MF1 ACC MF1 ACC MF1

CGAT/S 84.55 76.77 77.74 73.94 72.69 70.58
CGAT/G 84.29 76.42 78.37 74.08 73.12 71.97
CGAT/R 86.07 79.70 79.62 76.08 74.42 72.65
CGAT/C 80.98 73.07 74.92 70.22 72.25 70.58

CGAT 86.25 80.38 80.41 76.48 77.46 76.37

Removing syntactic attention mechanism S, the accuracy of CGAT was decreased by
1.70%, 2.67%, and 4.77% on the three datasets, respectively. This indicates that the syntactic
attention mechanism S can effectively highlight words close to aspects in syntax, which is
beneficial to improving the performance of sentiment classification.

Removing G, R, or C would result in varying degrees of accuracy drop. This phe-
nomenon shows that the contextual attention network can effectively extract syntactic
structure information and semantic information, which is helpful for sentiment classifi-
cation. In particular, removing C would lead to a sharp drop in accuracy, indicating that
semantic information extracted by C is crucial for recognizing aspect sentiment.

4.3.3. Effect of Different Parameters

To observe the effects of different peaks A and attention window sizes ω in the syntactic
attention mechanism, two series of experiments were designed.

(1) Effect of different peaks
To observe the effects of different peaks, we designed 10 groups of comparison experi-

ments in which peak A increased from 0.6 to 1.5 in Equation (6). The experimental results
are shown in Figure 5a.

As depicted in Figure 5a, the overall trend of the accuracy is an increase at first and
then a decrease; the highest point is when the peak A is 1. Therefore, peak A was selected
as 1.
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(2) Effect of different attention window sizes
To observe the effects of different attention window sizes, we designed three groups of

comparison experiments in which the window size ω increased from 3 to 5 in Equation (7).
The experimental results are shown in Figure 5b.

As depicted in Figure 5b, CGAT reached the highest accuracy on three datasets when
the attention window size ω was 4. Therefore, attention window size ω was set to 4.

(b)(a)

Figure 5. Effects of different parameters in CGAT: (a) peak A; (b) attention window size ω.

4.3.4. Syntactic Weight Visualization

To observe the performance of the proposed syntactic attention mechanism on multi-
aspect sentences, the syntactic weight were visualized by selecting representative sentences
from the dataset Restaurant.

As shown in Figure 6a, for a sentence containing aspects with the same sentiment po-
larity, “The food is great and the milkshakes are even better!”, the syntactic attention mechanism
successfully discriminates opinion words with different aspects.

As shown in Figure 6b, for a sentence containing aspects with different sentiment
polarities, “The appetizers are ok , but the service is slow”, the syntactic attention mechanism still
captured the opinion words of different aspects and avoided the interference of other words.

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

!

food

milkshakes

(a)

, .

appetizers

service

(b)

Figure 6. Visualization of syntactic weight: (a) a sentence containing aspects with the same sentiment
polarity; (b) a sentence containing aspects with different sentiment polarities .

5. Conclusions

This paper has proposed a novel aspect-level sentiment classification model CGAT
based on a contextual graph attention network. Rooted in target aspects to reconstruct de-
pendency trees, the proposed model adopts two graph attention networks to mine syntactic
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structure information, and utilizes a context attention network to generate aspect-sensitive
semantic features. In addition, a simple and efficient syntactic attention mechanism based
on SRD was proposed, where the Gaussian function is cleverly introduced as the syntactic
weight function.

Experimental results on three public sentiment datasets showed that CGAT outper-
forms other models and can effectively identify sentiment polarity expressed by aspects.
The contextual graph attention network can effectively extract aspect-related semantic in-
formation and syntactic structure information. With a low computational cost, the syntactic
attention mechanism effectively avoids the loss of sentiment information and emphasizes
aspect-related words in syntax.

Future research will consider adopting image information to augment sentiment
expressing of textual information.
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