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Abstract: A great challenge for intelligent transportation systems (ITS) is missing traffic data. Traffic
data are input from various transportation applications. In the past few decades, several methods
for traffic temporal data imputation have been proposed. A key issue is that temporal information
collected by neighbor detectors can make traffic missing data imputation more accurate. This
review analyzes traffic temporal data imputation methods. Research methods, missing patterns,
assumptions, imputation styles, application conditions, limitations, and public datasets are reviewed.
Then, five representative methods are tested under different missing patterns and missing ratios.
California performance measurement system (PeMS) data including traffic volume and speed are
selected to conduct the test. Probabilistic principal component analysis performs the best under the
most conditions.

Keywords: missing data imputation; time series analysis; missing pattern
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1. Introduction

With the development of smart cities, a lot of data can be collected to make many
aspects of a city better, such as transportation [1]. The mining of traffic data can be used
in the society and city analysis [2–4]. Tremendous traffic data can be collected by various
sensors, including loop detectors, probe vehicles, infrared radars, and cameras. These
datasets, such as volume, delays, travel time reliability, and emissions, not only capture the
dynamic operating status of transportation systems but are also expensive in terms of the
human and material resources needed to install the required devices and store the data.

Furthermore, the collected data face two problems. One problem is missing data.
Missing data can be caused by sensor malfunctions, communication network problems,
restricted power supply conditions, scheduled maintenance, severe weather, or aging
problems [5–7]. For instance, the missing ratio of traffic data in Beijing was nearly 10%,
and 4% was caused by the malfunction of sensors. Under extreme conditions, the missing
ratio could reach 20% [8]. For the California performance measurement system (PeMS), the
missing ratio could also reach 10%. The other problem is data sparseness, which usually
happens when the detector coverage is low. Many applications of intelligent transportation
systems (ITSs) rely on complete data, so the missing data problem influences the promotion
of ITSs and their applications [9–13]. For example, on congested roads or during peak
hours, missing data can mislead traffic analysis and traffic management. Additionally, the
statistical analysis can also be misled. Generally, due to missing data, the dataset becomes
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smaller in degrees of freedom and it can cause overfitting problems. It has been shown that
the effective information loss is 18.3% if 2% of data are missing [14], and this increases to
35%~98% if 10%~35% of data are missing [15]. More importantly, different missing patterns
have different assumptions, which may lead to biased solutions. Moreover, these biased
results for the input data will not satisfy the high-quality data requirement of machine
learning algorithms.

This paper summarizes the research methods, missing patterns, assumptions, impu-
tation styles, application conditions, limitations, and public datasets of existing temporal
imputation methods. This paper is organized as follows. Section 2 reviews temporal miss-
ing data imputation methods and their applicability. In Section 3, the PeMS data source is
introduced. Then the presentative methods are tested and discussed in Section 4. Finally,
Section 5 concludes this study and points out some future research directions.

2. Analysis of Methods
2.1. Research Methods

The common imputation methods can be divided in two groups, i.e., simple methods
and complex methods. Simple methods use simple operations. For instance, the value of
lost items can be set as the mean or median. Simple methods may be a good choice when
the loss percentage is low because of the lower information loss and the small calculation
burden. Many researches suggest simple methods with all possible values imputation
(APV) [16] and historical mean, median, and mode values imputation (MMMI) [17,18]. In
addition, the common factor method (CFM) is also one of temporal imputation methods,
and it calculates different impact factors as coefficients by using historical data and estimates
the value of missing data by using their average with consideration of the weighted
factors [19,20]. Simple methods are usually based on the assumption that the traffic data
are evolved regularly. However, simple methods cannot perform well once the amount
of missing data is large, especially when they encounter consecutive missing data. When
the number of missing items is large, the features of data cannot be extracted, which
means that the model cannot classify data sensitively. Furthermore, if the influence of
various stochastic factors exists, the fluctuations and randomness of traffic data should
not be ignored. As a result, the imputation of this kind of traffic dataset cannot adopt
simple methods that rely on historical data or factors. For solving this problem, complex
methods are proposed. Complex methods can fix complex patterns of traffic data and have
better performance under some special practical conditions [21–28]. Complex methods
mainly include three categories: prediction methods, interpolation methods, and statistical
learning methods.

Prediction methods impute the dataset by predicting the value of missing data via predic-
tion models, which are usually based on historical data [29]. Previously, one-way prediction
methods, including heuristic techniques (HT) (historical average, weighted average) [30],
Kalman filter (KF) [31], autoregressive integrated moving average (ARIMA) [32], data aug-
mentation (DA) [30], seasonal ARIMA [33,34], feed-forward neural network (FFNN) [35] and
fractionally integrated vector autoregressive and moving average (VARFIMA) [36], have been
based mostly on temporal neighboring information. However, these methods assume that the
value of the missing interval of a day is similar to the latest intervals or the same interval in
neighboring days. This assumption does not consider the random fluctuation of traffic flows
among days. Actually, two-way spatial or temporal data can improve the prediction accuracy.
Considering spatial and temporal dependency, more and more studies use matrix-based meth-
ods for the prediction. Matrix-based methods utilize the full information of different days at
the same detector or multiple detectors on the same day. Different extended ARIMA models
have been studied to consider the spatial correlation between different detectors [37–41]. After
the multivariable state-space model was tested [42], an extended Kalman filter approach was
developed, which shares errors at two adjacent road links for the traffic flow estimation [43].
Moreover, various Bayesian networks (BN) have been designed and examined [44–46]. In
addition, the adaptive least absolute shrinkage and selection operator (LASSO) has been
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used to select the model and estimate coefficients simultaneously when forecasting missing
data [47,48].

Additionally, the full consideration of the data collected near the missing data can im-
prove the imputing accuracy. To utilize the data collected near the missing data and retain
appropriate training time costs for the online imputing procedure, interpolation methods
have been proposed. They replace the value of the missing data with the average or the
weighted average of known multidimensional data in the same site or neighboring states of
adjacent sites by regression and clustering with temporal and spatial information [49]. Sim-
ilar to prediction methods, temporal neighboring interpolation methods (e.g., exponential
smoothing (ES) [50], splines interpolation (SI) [51], hot (cold) deck imputation (HDI) [52],
Bayesian iteration imputation (BII) [53], regression methods (RM) [54–59], multiple imputa-
tion (MI) [60,61], k-nearest neighbor imputation (KNN) [62], and improved KNN version
local least squares (LLS) [63]) are commonly used to interpolate missing values. Another
type of interpolation method is pattern neighboring-based methods [64,65], which try to
find the closest fluctuation and missing pattern from the neighboring days or detectors.
A self-organized map-based method for urban networks, which is associated with wavelet,
has also been tested [66]. However, it is hard to build a database that includes all possible
patterns because it cannot be guaranteed that all patterns have been collected and recorded
previously. Pattern neighboring-based methods neglect the stochastic variation of traffic
flow. As a result, once there is no record of a proper pattern, the chosen pattern is not
similar enough to the original one and their shapes cannot match well. A large number
of studies have shown that the various patterns of traffic volumes are usually similar to
the patterns of weekdays among different weeks or the patterns of other detectors on the
same day. In addition, it is necessary to apply a multi-vector or matrix-based data structure
to complement the imputation process for making use of either full spatial or temporal
flow variation information. Fuzzy c-means (FCM) [67] is a statistical clustering approach
applied to resolve missing data with the input of matrix-based data. The widely ignored
distinction between days in a week is introduced, and the input is represented as the value
of a time step of a certain day in a week to distinguish patterns of different days. The fuzzy
c-means algorithm is introduced to classify the known days at the same station, and the
values of missing data are imputed by minimizing the errors between the imputation and
the value of clusters, for which a genetic algorithm is applied. This is reasonable because
vehicles generally move along a specific route and through a sequence of intersections, and
the variations in the traffic flow of nearby intersections are related.

Statistical learning is a kind of machine learning using statistical methods. It can be
regarded as a special case of data-based machine learning. Starting from some observation
(training) samples, this paper attempts to obtain some laws that cannot be obtained through
principle analysis, and use these laws to analyze objective objects, so as to make a more
accurate prediction of future data. Statistical learning methods try to learn the scheme by
fitting and mapping with the utilization of the observed data, then impute the missing data
multiple times and make statistical inferences in an iterated procedure [68]. The statistical
model refers to the model based on probability theory and the mathematical statistical
method. Some processes cannot derive their models with theoretical analysis methods,
but the functional relationship between variables can be obtained through experimental
data and mathematical statistics, which is called the statistical model. Classical statisti-
cal models, including expectation–maximization (EM) [69] and maximization likelihood
(ML) [70], the treatment method for C4.5 [44], Bayesian network (BN), and Markov chain
Monte Carlo (MCMC) [44], and probabilistic principal component analysis (PPCA) [71],
are undertaken to address statistical imputation. Having a statistical foundation is one
advantage of EM and ML. However, EM and ML have some limitations. For instance,
the original data distribution needs to be assumed. BN learns the probability distribu-
tions and produces unbiased estimations and confidence intervals. Unfortunately, in the
process of estimating parameters, BN and MCMC rely heavily on the prior knowledge.
The above methods are operated with the vector-based input with interval to interval
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variations. Matrix-based PPCA integrates PCA and ML for adapting a high missing ratio,
in which PCA builds up the latent sliding regression model to separate the significant and
dominant Gaussian-type linear parts of low-dimension traffic flow from the parts that are
normal and hard to describe by models, and ML uses the dominant parts to calculate the
value of missing data. As a result, PPCA balances the periodicity, predictability, and other
statistical features. Kernel PPCA (KPPCA) is also proposed to construct the relationship
between collected data and latent variables, which is nonlinear [72]. An extension of the
data cube in data mining is described for large traffic flow databases, which arranges
data as two-dimensional spatial-temporal plots [73]. These matrix-based and cube-based
methods usually focus on special locations, and only time series data are explored. Some
problems need to be solved: (1) the matrix data results in the spatial data and temporal
data not being utilized simultaneously [74]; (2) the mode number cannot exceed the matrix
dimension, which is two, so the methods based on the matrix can only discover limited
mode correlations; (3) when the missing ratio is large, matrix-based methods cannot impute
data well, especially in some extreme cases. Recent statistical methods mainly focus on the
traffic data in the spatial dimension. As for the temporal dimension, the patterns are more
focused. The Bayesian estimation method was introduced to modify PPCA (BPCA) [75]
and tested in two neighboring points (one is from the upstream detector, and the selected
time is the interval before the current time interval. The other is from the downstream
detector, and the selected time is the time interval after the current time interval). Continu-
ous hyperparameters are introduced and used to determine the latent variable dimension.
PPCA does not require prior distribution. PPCA is unlikely to face overfitting problems.
The best latent variable dimension still remains an intractable problem. Because the best
latent variable dimension cannot be determined, the imputation error and the complexity
of models are not determined, and they change with the best latent variable dimension.
Clearly, vehicles move in both the spatial dimension and temporal dimension. As a result,
it is more reasonable that the traffic data are analyzed in three or more dimensions, and
they can contain both spatial and temporal data. As an extension of matrix-based methods,
tensor-based methods were developed. Tensor-based methods can combine multiple vari-
ables to estimate missing data by introducing multi-way spatial relations, such as link-mode
and hour-mode. A first-order weighted optimization Tucker decomposition imputation
method (TDI) determines principal components by the weighted optimization (WOPT)
algorithm, which can adapt the missing ratio up to 90% [23]. The truncated higher-order
singular value decomposition (HOSVD) initialization is used to supply a suboptimal initial
approximation because Tucker decomposition is not unique, which brings a nonconvex
objective function. A limited number of researches have described the latent traffic patterns
explored by tensor models since existing methods try to fill the gap between practical data
and tensor models. Additionally, the size of a core tensor is usually determined manually
in most numerical studies, instead of relating to total features.

The aforementioned prediction, interpolation, and statistical imputation methods
apply typical regression, neural network, classifier, and other machine learning models to
impute missing data with means, regression, correlations, clustering, patterns, and schemes
to build up a good foundation for deep learning imputation methods. Driven by data
quantity, more deep learning methods are promising to perform better imputation accuracy
than the above traditional methods. Considering the spatial and temporal dependency,
the kernel regression model combined with k-nearest neighbors (KNN) has also been
applied to forecast missing values with consideration of spatial data from neighboring
stations [76]. Generic traffic flow features are firstly captured by using the stacked autoen-
coder model (SAE) [77]. Likewise, a stacked denoising autoencoder (SDAE) is further used
to find relationships among neighbor sensor clusters using a k-means clustering algorithm
based on the average daily traffic [78]. The function of SDAE is validated over a dataset,
which contains traffic flows with 10–90% missing ratios during 6 days. Next, considering
the data condition covering both weekdays and weekends and nearly 50% of missing
data, SDAE is used to extract missing features from more data dimensions for missing data
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imputation [79]. Missing data with no gap length restrictions are interpolated by two brand
new machine learning methods [80], in which the spatial context is modeled by surround-
ing sensors and the optimal pattern clusters are learned by an automated clustering analysis
tool. A long short-term memory (LSTM) framework is employed to infer missing traffic
data based on the combination of the mean value and the last observation data, neglecting
the pseudo-periodic characteristics of the traffic data [81]. An exponential function and
a partition function are utilized to resolve the attention weights for predicting the missing
values [82]. Then two temporal smoothing methods are applied to infer missing data with
consideration of long-period and short-period information with the revised LSTM, by using
missing flags and missing interval weights [83]. The prediction residual is also learned by
using a masking vector and an influential factor with an exponential distribution to model
the decay weights in cells. A spatial and temporal multi-view learning algorithm that inte-
grates LSTM units and support vector regression (SVR) is proposed [84]. Other traffic data,
such as probe data from floating vehicles, are also used to improve the imputation accuracy
by data fusion [85]. Multi-output Gaussian processes (GPs) are employed to combine the
spatial and temporal missing patterns together with probe data. Observation uncertainty is
resolved through the Bayesian nonparametric formalism of GPs. The complicated spatial
dependencies between nearby road segments are captured by a multi-output extension
mechanism through convolution [84]. Afterward, a convolutional neural network (CNN) is
proposed to act as the context encoder for imputing the images with missing data, which
transforms the raw data into spatial–temporal images in advance. A neural network for
deep learning can offer a flexible framework for extracting and identifying the dynamic
spatial and temporal local trends of observed data, and it can recognize the patterns of
missing data and memorize the historical information in the long term.

Supervised classification algorithms are also introduced to combine with imputation
methods [86,87], in which different types of classifiers including KNN, approximate models,
and decision trees are trained by data previously imputed by various imputation methods.
Consequently, the imputation performance is measured by the classification accuracy
through cross-validation. The results imply that complicated imputation methods usually
outperform simpler methods. No matter what method is adopted, the most important
thing is to fully utilize the potential spatial- and temporal-related data.

Additionally, some scholars have used traffic simulation models to perform traffic
data imputation, such as DynaSmart [88], DynaMIT [89], Vissim [90], Paramics [91], and
TransWorld [92,93]. However, these simulation models are closely related to the adopted
assumptions and the validation accuracy of basic simulation modules in the systems, which
is not easy to handle well.

2.2. Missing Pattern

Before selecting the most suitable imputation methods, we have to identify the missing
data types.

According to recent works [7,8,28,80,94], the statistical missing patterns can be divided
into three types: missing at determinate/missing not at random (MNAR), missing at
random (MAR), and missing completely at random (MCAR). These missing patterns are
shown in Figure 1, and they have the following characteristics:

1. MNAR: The missing data are regular. It usually means that there are some faults
in detectors.

2. MAR: The points of missing traffic data are related to nearby points. They usually
occur as a group at special intervals, but the position of each group is random.

3. MCAR: The missing data are isolated, random, and independent.
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Figure 1. Illustration of different missing patterns (MNAR, MAR, MCAR).

Actually, MCAR is a kind of MAR. MCAR is special in all MAR because the missing
possibility is almost certain, and it is hard to perform the data imputation when detectors
suffer from long-time malfunction. In this case, MAR and MCAR are usually used to
conduct the imputation.

There is another classification measured by the length of missing time, in which the
missing patterns are categorized as short-period missing values and long-period missing
values [83].

2.3. Assumption

Most existing imputing methods usually make clear assumptions in advance. Because
traffic variations are influenced by many factors, which cannot be fully considered, these
methods are restricted when applied in many cases. The assumptions are as follows.

1. Data are lost randomly.
2. Missing data are at low missing rates.
3. Missing data are assumed to have determined attributes or patterns.
4. Missing data are mostly influenced by historical data, neighboring data, or spatial

data, without consideration of variations from interval to interval, from day to day, or
from upstream to downstream.

2.4. Imputation Style

There are two kinds of imputation styles: the singular choice imputation and the
multiple choice imputation [6].

1. Singular choice imputation (SCI)

The imputation result is directly achieved by the proposed model or scheme in SCI, in
which the algorithms do not focus on multiple choices of different attributes or patterns
by methods, and efforts are not taken to improve the spatiotemporal correlation analysis
and do not incorporate the most valuable information for imputation. Because of the fast
computational speed, SCI is often applied for real-time analysis. As most patterns and
attributes are predetermined in models and strategies of prediction methods and interpola-
tion methods, they are mostly SCI methods, such as hot deck, average, and regression.

2. Multiple choice imputation (MCI)

MCI methods overcome the drawback of SCI methods that derive standard errors of
the estimated parameters that are too small. The basic idea of MCI is: (a) proposing a model
that incorporates random variation in imputing missing data; (b) generating complete
datasets for M times; and (c) analyzing each complete dataset and utilizing statistical
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parameters, probabilistic results, and EM- or ML-iterated algorithms from M cases to infer
the best single one. Thus, it can deal with the inherent uncertainty of the imputations. For
MI, the data must be missing at random. Most statistical methods are MCI.

2.5. Applicable Conditions

Under various and complex traffic conditions with different data qualities, different
imputation methods show distinct performances, which is related to the application and
invalid conditions of the methods.

First, the relationship between imputation performance and the missing rate has been
argued frequently in many studies. The effects of missing rates on hybrid neural network
approaches were evaluated [95]. Each day has 12 consecutive hour gaps, which can impact
on the effect of time interval and the effectiveness of selected imputation methods [64]. Gaps
are generated for 10% to 90% of the dataset by using a clustering approach. It was found
that the result is acceptable even with a large missing ratio [78]. Even for a challenging
missing range of 1 month, the method still gives an acceptable result [61]. These methods,
used to generate random gaps, are similar to the missing pattern of MNAR, in which the
data loss is usually caused by some faults in the detector or in the process of communication.
TDI figures out the imputation for the missing ratio up to 90% [23]. The mixed missing rate
is also tested [8,93]. Consecutive interval missing data are tackled properly by the massive
vector classification method, and the performance with the data of different interval units
(i.e., 5 min, 15 min, and 1 h) is tested [83].

Second, the numbers of partially missing detectors and invalid detectors in the spatial
range are also critical factors to be discussed, which will heavily influence MCAR and
MNAR and the performance of methods affected by spatial elements. However, these
kinds of studies are rare.

In summary, different methods are effective under distinct conditions, such as
the number of partially missing detectors, the number of invalid detectors, interval
units, missing patterns, data size, and missing rates, which can determine the real-time
application performance.

1. Offline imputation with moderate-to-high datasets

Many imputation works are offline since the goal of imputing data is mining the latent
regulation and correlation behind the data. Without the high requirement of calculating
speed, offline imputation can also fully utilize moderate-to-high datasets to capture precise
patterns of traffic flows, even with data before and after the points of missing data. Since
offline imputation is concentrated on imputation accuracy, the complexity of models is
much higher than online imputation.

2. Online imputation with light-to-moderate datasets

With the restriction of online calculating, the small-size input with low-dimension
data is more appropriate for online imputation. With the increasing applications of real-
time traffic control, traffic routing, and traffic management, the requirements of online
imputation are adjusted with consideration of the balance between the calculation speed
and the imputation accuracy. Some old and simple imputation methods may help a lot in
this situation, with accelerations to the calculation speed.

2.6. Limitations

Based on the aforementioned characteristics of the existing imputation methods,
a series of common limitations need to be resolved, which can be concluded as follow:

1. Compared with the tensor-based method [23], CM [27], and KM [28], vector and
matrix methods share partial spatiotemporal information so that the results seem to
be good when the main features are achieved by chance. However, without sufficient
information incorporated, most cases will fail, especially in extreme conditions, since
daily periodicity similarity, local interval fluctuation, variation from day to day, and
spatial influence between upstream and downstream should be considered.
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2. When data are integrated from multiple shorter-term observations, the main reason
for missing data is the error at the stage of processing data. Additionally, the stage
of data aggregation can lead to data loss. Moreover, the repeated and error data are
considered as missing data to be imputed.

3. Most methods focus on spatiotemporal feature learning, but they cannot perform very
well in urban traffic. This is because being divided by signal phases and the length of
the phase time of traffic lights, the turning movements can influence the variation in
traffic flows both in temporal and spatial aspects [8].

4. Since there is no mechanism to resolve the parameters of model structures, the param-
eters of model structures should be determined before the operation of imputation
methods, and the chosen parameters will impact the result greatly [23,28,75].

5. Probe data can be a new source that can enrich the data collected by loops and point
detectors [28,84]. If the data upstream can be obtained in advance, some proper
methods can be used to make the prediction or reconstruction of downstream data
more accurate.

6. It is worth studying the quantity of sparsity detector and location optimization with
a consideration of missing data imputation under different missing rates and the rela-
tionship of their threshold conditions with the number of partially missing detectors,
the number of invalid detectors, and missing rates [96].

7. Although the imputation methods are various, it is vital to investigate the perfor-
mance of each method under different traffic conditions and their application and
invalid conditions.

2.7. Public Datasets

The benchmark datasets still need to be improved, which is a critical problem in
temporal data imputation. If the benchmark datasets are lacking, the findings and methods
cannot be compared well, and the proposed methods may only perform well with some
special datasets. The commonly-used datasets are summarized in Table 1.

Table 1. Summary of public datasets.

Dataset City,
Country Duration Time Resolution Spatial Coverage Data Type

PeMS (Li et al.,
2018 [83])

California,
USA

1 June 2011–
31 August 2011 5 min

Three detectors in S
Valley Free Way in

Santa Clara, CA, USA
Traffic flow data

Communications
Commission (Chen

et al., 2017 [97])

Guangzhou,
China

1 August 2016–
30 September 2016 10 min

214 road segments in
urban expressways

and arterials
Traffic speed data

ANPR systems’ data
(Zhang et al.,

2019 [98])
China 1 December 2017–

31 December 2017 30 min Traffic management
department of a city Missing data cases

Birmingham parking
data (Chen et al.,

2020 [99])

Birmingham,
England

4 October 2016–19
December 2016 30 min 30 car parks 14.89% missing values

Hangzhou metro
passenger flow data

(Chen et al.,
2020 [99])

Hangzhou,
China

1 October 2019–
25 October 2019 10 min 80 metro stations Incoming passenger flow

Seattle freeway traffic
speed data (Chen
et al., 2020 [99])

Seattle,
USA

1 January 2015–28
January 2015 5 min 323 loop detectors Freeway traffic

speed data

Remote Traffic
Microwave Sensors
(Bae et al., 2018 [28])

Knoxville,
USA 1 December 2015– 5 min

Two major highways
in the Knoxville

region, I-40 and I-75

Traffic count, speed, and
occupancy information

Changshou Road
(Chen et al.,
2017 [97])

Shanghai,
China

25 August 2008–
29 August 2008 -

Section consists of
seven signalized

intersections
Travel time data
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Table 1. Cont.

Dataset City,
Country Duration Time Resolution Spatial Coverage Data Type

FHWA (Fard and
Mohaymany [100])

Los Angeles,
USA 2004– 60 min Southern section of

the US101 highway

Location, speed,
acceleration, and type

of vehicles

AADT (Ma et al.,
2019 [96])

California,
USA 2010– -

253 road segments
with 7218 data
collection sites

Traffic count data

Microwave sensors
(Ma et al., 2017 [27])

Beijing,
China

1 June 2015–
7 June 2015 2 min Two ring

expressways

Latitude and longitude,
timestamp, traffic flow,
speed, and occupancy

Open Data portal
(Laña et al., 2018 [80])

Madrid,
Spain 2014–2016 1 min 3600 ATRs in

urban freeways Resolution data

The PeMS dataset, built by the California Department of Transportation, is the most
widely used one. The data of PeMS has been collected since 2001. The special range of data
of PeMS covers the freeways across all major cities of California. The data of the PeMS
dataset is collected from nearly 40,000 individual detectors. The data are aggregated for
each 30 s, and the resolution of data is 5 min. The content of the PeMS dataset contains
detector data, traffic counts, vehicle classification, incidents, lane closures, etc. Although the
PeMS dataset has sufficient data, its environment is freeways, which means that it cannot
support the data imputation studies of the urban traffic system. Microwave sensors are
also an important source of data and have been distributed all over the world. The largest
amount of Chinese data has been collected by the government and research institutions.

3. Missing Data Imputing Methods with Mathematical Formulation

Based on a previous literature review, we know the development of distinct massing
data imputing methods. In this section, we give a brief review of their formulations.

3.1. PPCA-Based Missing Data Imputing

PPCA model assumes that every sample yi depends on a q-dimensional latent variable
xi as follows [7].

yi = Wxi + µ + εi (1)

where d << q is proposed to retrieve the common hidden feature of traffic flow data.
µ is a d-dimensional column vector that characterizes the sample average of yi. Here, the
subscript i denotes the index of the observation/latent variable. PPCA model assumes
that the latent variables xi follows a q-dimensional multivariate Gaussian distribution,
xi ∼ Nq(0, I). The d-dimensional column vector εi is introduced as isotropic noise satisfy-
ing εi ∼ Nd

(
0, σ2 I

)
, where σ2 is the scaling factor. This relaxes the strict assumption on

daily flow similarity and makes the model more flexible. The projection matrix W ∈ Rd×q

represents a mapping between the latent variable space and the observed variable space
followed by all the observed latent variable pairs (yi, xi).

When some elements of y1, . . . , yn are missing, we search µ, W, and σ2 that produce
maximum likelihood in agreement with the known data

arg max
µ,W,σ2

Lc1 = arg max
µ,W,σ2

n

∑
i=1

ln
{

p
(

ymiss
i , yknown

i , xi

)}
(2)

where the conditional probability density function is
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p
(

ymiss
i , yknown

i , xi

)
= p

(
yi, xi|µ, W, σ2)

= p
(

yi|xi, µ, W, σ2)× p(xi)

=
(
2πσ2)−d/2 exp

{
− ‖yi−Wxi−µ‖2

2σ2

}
×(2π)−q/2 exp

{
− 1

2 xT
i xi

} (3)

Meanwhile, we impute ymiss
i to best fit with the above distribution assumptions and

thus the estimated maximum likelihood. Moreover, if some data are missing, µ is calculated
by taking the average of the available data, and ‖·‖means the Euclidean norm.

3.2. GMM-Based Missing Data Imputing

The Gaussian mixture model (GMM) is commonly used for clustering. Each GMM
consists of several Gaussian distributions, each of which is called a component, representing
a different cluster. All the components are linearly added together to form a probability
density function (PDF) of GMM.

There is a set of observed data, which is X = {x1, . . . , xn}. Each vector xi is
a p-dimensional vector. We assume that X is generated by a GMM with K components.
The function fk(xi) represents the probability density function of the k component,
expressing the probability of xi generated by the k component. Hence, the PDF of the
GMM is as follows

P(xi) =
K

∑
k=1

πk fk(xi|µk, εk) (4)

where πk represents the weight of the k component in the GMM, µk and εk represent the
mean vector and covariance matrix of the k component, respectively, P(xi) represents
the probability of xi generated by the GMM. The PDF of the k component fk(xi|µk, εk) is
expressed as

fk(xi|µk, εk) =
exp

{
− 1

2 (xi − µk)
T∑−1

k (xi − µk)
}

(2π)p/2|εk|1/2 (5)

In a GMM, we assume that X is generated by a GMM with k components and X. The
complete data are Y = (X, Z) = {(x1, z1), . . . , (xn, zn)}. Z is the implicit category of the
data. zi represents the cluster of xi and zi = (zi1, . . . , ziK)

zik =

{
1 if xi belongs to group k
0 otherwise

(6)

Assuming that there are K clusters and the weight of the k component in the GMM is
πk and θk is the corresponding parameter, the density of zi based on xi is as follows

K

∏
k=1

fk(xi|θk)
zik (7)

The logarithmic likelihood function of the imputation data with some missing data
of Y is

L(θk, πk, zik|x) =
n

∑
i=1

K

∑
k=1

zik[log πk fk(xi|θk)] (8)

Expectation–maximization algorithm (EM) is usually used to solve the above problem.

3.3. KNN-Based Missing Data Imputing

With the KNN method, a categorical missing value is imputed with the majority
among its k nearest neighbors. The average value (mean) of the k nearest neighbors is
regarded as the prediction for a numerical missing value. It is formally defined as follows.
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Given (X, U, 0) and the set of its k nearest neighbors Dk =
{(

Xj, Yj, 1
)∣∣j = 1, 2, . . . , k

}
, the

KNN estimator is defined as

Y =


argmaxv

{
∑

(Xj ,Yj ,1)∈Dk

1
(
Yj = v

)}
, i f Y is categorical

1
k

k
∑

j=11
Yj, if Y is numerical

(9)

where v is a value in the domain of the target feature Y and 1
(
Yj = v

)
is an indicator

function that returns the value 1 if its argument is true and 0 otherwise.
Therefore, KNN imputation is a model-free method. The similarity between an instance

and its nearest neighbors, determined from the differences between instances, should
certainly be maximal for selecting the nearest neighbors. The usually used method is
Minkowski distance (or its variants) as follows

d(i, j) =
p

∑
k=1

(∣∣xi1 − xj1
∣∣q)1/q

(10)

where q is a nonnegative integer called the Minkowski coefficient.

3.4. Copula-Based Missing Data Imputing

The copula method expresses that a joint distribution can be decomposed into
a combination of several one-dimensional margin distributions and a copula function with
a cumulative distribution function of marginal Fp

(
zp
)

that can be generated as follows

Fp
(
zp
)
= F

(
z1, . . . , zp

)
= Cθ

(
F1(z1), . . . Fp

(
zp
))

(11)

Cθ is a cdf of p-dimensional random variables, and is also known as a copula function.
θ is a parameter vector of the copula, commonly referred to as the dependence parameter
vector. The copula function can be obtained via an inversion method.{

ui = fi(zi) i = 1, . . . , p
C
(
u1, . . . , up

)
= Fc

(
f−1
1 (u1), . . . , f−1

p
(
up
)) (12)

where ui ∈ [0, 1] represents the probability density function, Fc(·) is the joint distribution,
and f−1

i (·) is the inverse of the marginal distribution.
For the copula-based missing data imputing, we use the copula theory to detect the

spatial correlation based on the distance, verify the spatial autocorrelation’s existence, and
find the optimal correlation function. In addition, marginal distribution is also conducted
to obtain an optimal distribution by the fitting process, and the parameters of the above
procedure are estimated. Then, the copula-based interpolation can be finished through
numerical integration of the density function to complete the missing data imputation.

3.5. Tensor-Based Missing Data Imputing

Tensor representation is one of the most practical ways to estimate a multidimensional
object whose entries are indexed by several variables. Tensor is often used for extracting
hidden structures and capturing underlying correlations between modes in the data with
a multimode system. In many applications, tensor completion problems can formulate the
missing data problem. While tensors naturally have a high dimensional characteristic, the
tensor of interest is often low-rank, or approximately so. Hence, the low-rank approxima-
tion can be used for missing data estimation or tensor completion. More details can be
found in the literature [75].
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3.6. ARIMA-Based Missing Data Imputing

The ARIMA model is a time series analysis and prediction model and is represented
by the following finite difference equations.

ϕ(B)Yt = θ(B)εt (13)

ϕ(B) = 1− ϕ1B− ϕ2B2 − . . .− ϕpBp (14)

θ(B) = 1− θ1B− θ2B2 − . . .− θqBq (15)

where BXt = Xt−1, B is the lag operator, ϕi(i = 1, 2, . . . , p) are autoregressive parameters,
θj(j = 1, 2, . . . q) are moving average parameters, and εt ∼ N

(
0, σ2) is the error term that

follows a normal distribution.
The level and variance represent parameters that are analogous to cross-sectional

statistical methods. The slope and autocorrelation parameters represent parameters unique
to longitudinal designs. The appropriate order is used for constructing the model and
forecasting time series.

3.7. Random Forest-Based Missing Data Imputing

Random forest (RF) is an algorithm that generalizes ensembles of decision trees
with the ability to perform regression and classification. RF uses bagging aggregation
to combine multiple random predictors to aggregate predictions by allowing for high
complexity without overgeneralizing and overfitting the training data. In this approach,
separate training sets are bootstrapped from the training set, and the predictive functions{ ∧

f ∗1 (x),
∧
f ∗2 (x), . . . ,

∧
f ∗B(x)

}
are built. The final predictive part is an average of these

f̂avg(x) =
1
B

B

∑
b=1

ˆf ∗b(x) (16)

where the asterisk marks a function on a bootstrapped set; random forests are an improve-
ment over bagged trees.

3.8. LSTM-Based Missing Data Imputing

To facilitate an understanding of the method in this paper, we briefly introduce the
mechanism of LSTM. The advantage of LSTM is that it uses forget gates to select valuable
short-term and long-term memory from the dataset and avoid the problem of vanishing and
exploding gradients, rather than simply recording recurrent states by RNN. The process of
LSTM is as follows

it = σ(Wixt + Uiht−1 + Vibt−1) (17)

ot = σ(Woxt + Uoht−1 + Vobt−1) (18)

C̃t = tanh(WCxt + UCht−1 + VCbt−1) (19)

Ct = ψtCt−1 + itC̃t (20)

ht = ottanh(Ct) (21)

Equations (17)–(19) refer to the input gate(it), forget gate(ψt), and output gate(ot),
respectively, in which W, U, and V are trainable weighted transition matrices governing
the connection from corresponding inputs to the hidden layer, while b is bias terms, xt is
the input information at the interval t, ht−1 is the output of the hidden layer at the interval
t− 1, and Ct−1 is the cell information at the interval t− 1; C̃t and Ct are the candidate and
new cell information at the interval t, respectively.

LSTM-M is used for managing missing data from the two categories, in which
a long-period and a short-period mechanism are designed for modeling missing data
in the input variables, and hidden states are employed to capture the properties mentioned
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above. Weights rt are introduced to control the impact of a unique meaning and time stamp
and to be flexible from 0 to 1 according to the time interval relative to the previous variables.
Thus, the weights should represent the patterns and be conducive to the inference tasks

rt = exp{−max(0, Wrlt + br)} (22)

where Wr and br are parameters to be learned jointly with those in the LSTM network. The
LSTM-M time series model for missing data incorporates two temporal prediction scales to
obtain the missing data directly from the input values.

4. Test and Results
4.1. Test Data

This paper uses PeMS to conduct the test. The data of PeMS were collected from the
highways in California. This paper selects several adjacent stations. There are 12 loop
detectors, and they are located on the southbound Highway 99. Figure 2 summarizes the
selected 12 detectors of the PeMS dataset. The data from 1 January 2018 to 31 December
2019 are used to do the test. Detector IDs, detector locations, and the direction are shown
in Table 2.

4.2. Test and Results

Normalized mean absolute error (NMAE) and normalized root mean square error
(NRMSE) are used to evaluate the performance of the imputation methods. The formula-
tions for calculating NMAE and NRMSE are as follows

NMAE =
∑i,j

∣∣∣∣ fij −
∧
fij

∣∣∣∣
∑i,j
∣∣ fij
∣∣ (23)

NRMSE =

√
1
|φ|∑i,j

∣∣∣∣ fij −
∧
fij

∣∣∣∣2
1
T ∑i,j

∣∣ fij
∣∣ (24)

where φ is a normalized parameter.
Then, all mentioned methods are tested with integrated data missing patterns. The

respective results are shown in Table 3. PPCA has the best performance.
For a better test, five representative methods of all types of methods are selected

to conduct further tests and comparisons, including PPCA, KNN, LSTM, LSTM-M, and
ARIMA, and they are tested under three different missing patterns (MCAR, MAR, and
MNAR) and missing ratios. The results are shown in Figures 3–8.

For the traffic flow data depicted in Figures 3, 5 and 7, PPCA is clearly superior to
the other methods. In the MAR scenario, KNN also shows a good imputation advantage.
Under different missing ratios, the performance of ARIMA is relatively flat. The other
four temporal imputation methods change continuously with the missing ratio. In the
traffic speed data depicted in Figures 4, 6 and 8 PPCA significantly outperforms the other
methods, and ARIMA has amazing performance. It can be seen that for different data
situations, different temporal imputation methods perform in various ways. Compared
with the other three methods, the fluctuations of PPCA and ARIMA are relatively small. In
terms of traffic speed in the MAR scenario, KNN shows a good imputation advantage. It
can be seen that KNN performs significantly better than other methods except for PPCA in
MAR scenarios. Although the improved LSTM-M is better than LSTM for errors of both
different flow and speed datasets, LSTM-M and LSTM are worse than the other methods.

A similar conclusion can be obtained by inspecting Figures 9–12, which show the
errors for the different methods of three missing patterns. Figures 9 and 10 show boxplots
for the average flow imputation results of different missing ratios. Figures 11 and 12
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show boxplots for the average speed imputation results of different missing ratios. These
figures display different missing patterns clearly. The input performance of each method
is different. In terms of the temporal data imputation of traffic flow, PPCA is far superior
to other methods, followed by KNN. Traditional LSTM and the improved LSTM-M are
not effective.

In the temporal data imputation of traffic speed, PPCA is far superior to other methods.
Surprisingly, ARIMA shows unexpected results, far better than KNN, LSTM, and LSTM-M.
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Table 2. Description of 12 detectors’ corresponding information.

Detector ID Location Direction

1 241.59 North to South
2 241.20 North to South
3 240.83 North to South
4 240.43 North to South
5 240.34 North to South
6 239.82 North to South
7 238.97 North to South
8 238.76 North to South
9 238.37 North to South
10 238.18 North to South
11 237.87 North to South
12 235.50 North to South
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Table 3. Results with integrated data missing patterns.

Missing Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

PPCA
NRMSE 14.76 12.17 13.61 13.62 14.09 17.27 22.00 22.96 24.67
NMAE 9.41 8.18 8.54 8.96 9.85 13.31 17.65 18.39 19.81

GMM
NRMSE 30.61 31.06 36.13 48.46 50.91 53.21 55.23 59.06 62.17
NMAE 22.35 24.79 29.13 40.52 41.66 44.41 46.29 54.16 58.12

KNN
NRMSE 16.62 15.09 16.93 18.06 20.81 16.52 16.94 30.19 33.13
NMAE 10.07 9.23 10.22 10.47 13.09 10.68 10.74 20.96 24.13

Copula NRMSE 32.31 29.05 34.18 33.83 34.32 31.07 33.47 34.13 34.14
NMAE 24.23 22.39 25.93 25.67 26.28 24.02 25.05 25.88 25.95

Tensor
NRMSE 18.69 12.90 18.09 23.37 28.22 14.59 15.92 27.09 29.26
NMAE 10.79 8.34 10.13 12.82 17.03 9.67 9.70 19.76 22.07

ARIMA
NRMSE 28.81 23.25 27.95 26.67 28.04 25.76 26.66 27.44 27.81
NMAE 22.07 19.10 22.15 21.55 22.32 20.08 20.46 21.55 22.13

Random Forest
NRMSE 30.61 33.43 36.78 41.11 41.62 39.98 40.82 43.13 46.91
NMAE 22.35 25.18 32.73 31.08 32.06 31.22 30.70 34.22 38.12

LSTM
NRMSE 12.40 14.80 20.03 28.43 33.53 37.36 40.68 41.86 43.12
NMAE 8.06 9.69 15.18 20.32 24.36 28.51 30.68 31.72 33.10

LSTM-M
NRMSE 11.92 15.26 19.37 28.61 32.59 38.15 40.01 41.29 42.33
NMAE 7.54 10.02 14.24 19.97 23.46 29.21 30.27 31.06 32.13

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 3. MCAR patterns and imputed flow of NMAE and NRMSE. 

 
Figure 4. MCAR patterns and imputed speed of NMAE and NRMSE. 

 
Figure 5. MAR patterns and imputed flow of NMAE and NRMSE. 

 
Figure 6. MAR patterns and imputed speed of NMAE and NRMSE. 

Figure 3. MCAR patterns and imputed flow of NMAE and NRMSE.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 3. MCAR patterns and imputed flow of NMAE and NRMSE. 

 
Figure 4. MCAR patterns and imputed speed of NMAE and NRMSE. 

 
Figure 5. MAR patterns and imputed flow of NMAE and NRMSE. 

 
Figure 6. MAR patterns and imputed speed of NMAE and NRMSE. 

Figure 4. MCAR patterns and imputed speed of NMAE and NRMSE.



Mathematics 2022, 10, 2544 16 of 22

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 3. MCAR patterns and imputed flow of NMAE and NRMSE. 

 
Figure 4. MCAR patterns and imputed speed of NMAE and NRMSE. 

 
Figure 5. MAR patterns and imputed flow of NMAE and NRMSE. 

 
Figure 6. MAR patterns and imputed speed of NMAE and NRMSE. 

Figure 5. MAR patterns and imputed flow of NMAE and NRMSE.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 3. MCAR patterns and imputed flow of NMAE and NRMSE. 

 
Figure 4. MCAR patterns and imputed speed of NMAE and NRMSE. 

 
Figure 5. MAR patterns and imputed flow of NMAE and NRMSE. 

 
Figure 6. MAR patterns and imputed speed of NMAE and NRMSE. Figure 6. MAR patterns and imputed speed of NMAE and NRMSE.

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 7. MNAR patterns and imputed flow of NMAE and NRMSE. 

 
Figure 8. MNAR patterns and imputed speed of NMAE and NRMSE. 

For the traffic flow data depicted in Figures 3, 5, and 7, PPCA is clearly superior to 
the other methods. In the MAR scenario, KNN also shows a good imputation advantage. 
Under different missing ratios, the performance of ARIMA is relatively flat. The other four 
temporal imputation methods change continuously with the missing ratio. In the traffic 
speed data depicted in Figures 4, 6, and 8, PPCA significantly outperforms the other meth-
ods, and ARIMA has amazing performance. It can be seen that for different data situa-
tions, different temporal imputation methods perform in various ways. Compared with 
the other three methods, the fluctuations of PPCA and ARIMA are relatively small. In 
terms of traffic speed in the MAR scenario, KNN shows a good imputation advantage. It 
can be seen that KNN performs significantly better than other methods except for PPCA 
in MAR scenarios. Although the improved LSTM-M is better than LSTM for errors of both 
different flow and speed datasets, LSTM-M and LSTM are worse than the other methods. 

A similar conclusion can be obtained by inspecting Figures 9–12, which show the 
errors for the different methods of three missing patterns. Figures 9 and 10 show boxplots 
for the average flow imputation results of different missing ratios. Figures 11 and 12 show 
boxplots for the average speed imputation results of different missing ratios. These figures 
display different missing patterns clearly. The input performance of each method is dif-
ferent. In terms of the temporal data imputation of traffic flow, PPCA is far superior to 
other methods, followed by KNN. Traditional LSTM and the improved LSTM-M are not 
effective. 

Figure 7. MNAR patterns and imputed flow of NMAE and NRMSE.

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 7. MNAR patterns and imputed flow of NMAE and NRMSE. 

 
Figure 8. MNAR patterns and imputed speed of NMAE and NRMSE. 

For the traffic flow data depicted in Figures 3, 5, and 7, PPCA is clearly superior to 
the other methods. In the MAR scenario, KNN also shows a good imputation advantage. 
Under different missing ratios, the performance of ARIMA is relatively flat. The other four 
temporal imputation methods change continuously with the missing ratio. In the traffic 
speed data depicted in Figures 4, 6, and 8, PPCA significantly outperforms the other meth-
ods, and ARIMA has amazing performance. It can be seen that for different data situa-
tions, different temporal imputation methods perform in various ways. Compared with 
the other three methods, the fluctuations of PPCA and ARIMA are relatively small. In 
terms of traffic speed in the MAR scenario, KNN shows a good imputation advantage. It 
can be seen that KNN performs significantly better than other methods except for PPCA 
in MAR scenarios. Although the improved LSTM-M is better than LSTM for errors of both 
different flow and speed datasets, LSTM-M and LSTM are worse than the other methods. 

A similar conclusion can be obtained by inspecting Figures 9–12, which show the 
errors for the different methods of three missing patterns. Figures 9 and 10 show boxplots 
for the average flow imputation results of different missing ratios. Figures 11 and 12 show 
boxplots for the average speed imputation results of different missing ratios. These figures 
display different missing patterns clearly. The input performance of each method is dif-
ferent. In terms of the temporal data imputation of traffic flow, PPCA is far superior to 
other methods, followed by KNN. Traditional LSTM and the improved LSTM-M are not 
effective. 

Figure 8. MNAR patterns and imputed speed of NMAE and NRMSE.



Mathematics 2022, 10, 2544 17 of 22Mathematics 2022, 10, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 9. Different missing patterns of different methods and imputed flow of NMAE. 

 
Figure 10. Different missing patterns of different methods and imputed flow of NRMSE. 

In the temporal data imputation of traffic speed, PPCA is far superior to other meth-
ods. Surprisingly, ARIMA shows unexpected results, far better than KNN, LSTM, and 
LSTM-M. 

 
Figure 11. Different missing patterns of different methods and imputed speed of NMAE. 

 
Figure 12. Different missing patterns of different methods and imputed speed of NRMSE. 

Figure 9. Different missing patterns of different methods and imputed flow of NMAE.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 9. Different missing patterns of different methods and imputed flow of NMAE. 

 
Figure 10. Different missing patterns of different methods and imputed flow of NRMSE. 

In the temporal data imputation of traffic speed, PPCA is far superior to other meth-
ods. Surprisingly, ARIMA shows unexpected results, far better than KNN, LSTM, and 
LSTM-M. 

 
Figure 11. Different missing patterns of different methods and imputed speed of NMAE. 

 
Figure 12. Different missing patterns of different methods and imputed speed of NRMSE. 

Figure 10. Different missing patterns of different methods and imputed flow of NRMSE.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 9. Different missing patterns of different methods and imputed flow of NMAE. 

 
Figure 10. Different missing patterns of different methods and imputed flow of NRMSE. 

In the temporal data imputation of traffic speed, PPCA is far superior to other meth-
ods. Surprisingly, ARIMA shows unexpected results, far better than KNN, LSTM, and 
LSTM-M. 

 
Figure 11. Different missing patterns of different methods and imputed speed of NMAE. 

 
Figure 12. Different missing patterns of different methods and imputed speed of NRMSE. 

Figure 11. Different missing patterns of different methods and imputed speed of NMAE.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 9. Different missing patterns of different methods and imputed flow of NMAE. 

 
Figure 10. Different missing patterns of different methods and imputed flow of NRMSE. 

In the temporal data imputation of traffic speed, PPCA is far superior to other meth-
ods. Surprisingly, ARIMA shows unexpected results, far better than KNN, LSTM, and 
LSTM-M. 

 
Figure 11. Different missing patterns of different methods and imputed speed of NMAE. 

 
Figure 12. Different missing patterns of different methods and imputed speed of NRMSE. Figure 12. Different missing patterns of different methods and imputed speed of NRMSE.

5. Discussion

In actual traffic conditions, three missing patterns are often randomly integrated. We
verify the random missing patterns by different methods. As shown in Figure 13 for the
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missing flow of 20%, 50%, and 80%, the correspondence relationship between the ground
truth (abscissa) and the imputation value (ordinate) clearly shows that the closer to the
red line, the more accurate the imputation value is compared to the ground truth. PPCA
performs the best among the five temporal imputation methods. As the missing ratio
increases, all models show gradual fragility, which is moving away from the red line.
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As shown in Figure 14 for missing speeds of 20%, 50%, and 80%, in the five temporal
imputation models, we can still clearly see that the corresponding relationship between
the ground truth (abscissa) of PPCA and the imputation value (ordinate) is closer to the
middle red line. With the increase in the missing ratio, the temporal imputation methods
show gradual fragility of a different degree.
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6. Conclusions

Missing values of traffic time series data is a common problem in intelligent transporta-
tion systems. This paper reviews the development of temporal imputation. It summarizes
the strategy of temporal imputation, covering all stages of the process, from creating data
sets with artificial blanks to evaluating the obtained results. We have witnessed major
developments in transportation imputation research. Five representative methods are
compared, which are widely used: PPCA, KNN, LSTM, LSTM-M, and ARIMA. Models
capture important temporal information in the datasets from different patterns to estimate
missing values. All missing patterns show different degrees and provide reliable results
with different missing rates. The complex upstream–downstream correlations in urban road
networks also need more explanation. We will discuss the summary of spatial imputation
and spatial–temporal imputation models in future work.
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