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Abstract: Data from the World Health Organization indicate that Bulgaria has the second-highest
COVID-19 mortality rate in the world and the lowest vaccination rate in the European Union. In
this context, to find the crucial epidemiological parameters that characterize the ongoing pandemic
in Bulgaria, we introduce an extended SEIRS model with time-dependent coefficients. In addition
to this, vaccination and vital dynamics are included in the model. We construct an appropriate
Cauchy problem for a system of nonlinear ordinary differential equations and prove that its unique
solution possesses some biologically reasonable features. Furthermore, we propose a numerical
scheme and give an algorithm for the parameters identification in the obtained discrete problem. We
show that the found values are close to the parameters values in the original differential problem.
Based on the presented analysis, we develop a strategy for short-term prediction of the spread of the
pandemic among the host population. The proposed model, as well as the methods and algorithms
for parameters identification and forecasting, could be applied to COVID-19 data in every single
country in the world.

Keywords: COVID-19 pandemic; time-dependent SEIRS model; Cauchy problem for non-linear
ODE; parameters identification; inverse problems; vaccination; vital dynamics; forecasting

MSC: 34A34; 34C60; 65L05; 92C60

1. Introduction

Mathematical and computer modelling is of great practical importance in controlling
and predicting the spread of various viruses and the development of pandemics caused
by them. SEIR-based models are the most used deterministic models for this purpose.
In the present paper, we explore a time-dependent generalized SEIRS type model with
vaccination and vital dynamics, called the SEIRS-VB model. In this model, the dynamics of
the infection in six groups of the host population are modelled by a Cauchy problem for a
system of nonlinear ordinary differential equations. The new model is a generalization of
the model introduced in our previous work [1].

The pandemic of coronavirus disease COVID-19 caused by the coronavirus SARS-
CoV-2 is characterized by significant morbidity and mortality. The novel coronavirus first
identified in Wuhan, Hubei province, China at the end of 2019 has spread worldwide and
the World Health Organization (WHO) declared five variants of concern (VOC)—three
previously circulating VOCs: Alpha, Beta, Gamma, and two currently circulating Delta and
Omicron. Several new vaccines were created and being endorsed for emergency use at the
end of 2020. The current vaccines may not be a perfect fit for the new Omicron variant,
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but they are still the best line of defense against COVID-19. The coronavirus pandemic in
each country directly affected economic and social life. Consequently, the development of
effective mathematical models and methods for predicting the spread and development of
the epidemiological process is directly related to many societal challenges.

We note that The National Health Commission of China reported new 3486 symp-
tomatic cases and 20,782 asymptomatic infections with COVID-19 on 15 April 2022. This
means that the COVID-19 pandemic is not over yet, and this topic will be relevant in the
future as well.

Recently, there has been a lot of interest in making realistic short- and long-term pro-
jection for COVID-19 transmission dynamics in a number of countries using deterministic
SEIR-based models or creating different possible scenarios for future development of the
pandemic depending on the applied vaccination strategies and measures to limit the spread.
For example, in [2] a SEIRS model with demography and constant coefficients is used for
predicting long-term scenarios and analyzing the time it takes to reach an “endemic equi-
librium”. Discrete SIR-type models with constant coefficients are used in [3] to predict
the COVID-19 pandemic turning point and ending time in the USA. A prediction method,
based on Taylor series expansion for an SIR-like model is applied to Canadian COVID-19
data in [4]. For medium-term and long-term COVID-19 forecasts different optimization
algorithms [5] and stochastic methods such as simulated annealing, differential evolution,
and genetic algorithm in case of SEIR-D-type models are used (see [6–8]). In a number
of countries, a change in recovery and latency rates behaviour has been observed during
the domination of different variants of SARS-CoV-2 or rapid change of the transmission
rate because of government control measures. Hence, it is not realistic to use models with
constant parameters over a long period of time. This is why such hypotheses are mostly
used for short-term forecasts with SIR models. These predictions are usually made under
the assumption that some of the coefficients are constant in a short time interval. In this
case, due to the high variability of daily values, different data smoothing algorithms are
used. For example, in [9] a short-term prediction methodology is suggested in the case
of the classical SIR model, where an infection change ratio is assumed to be a constant
for different periods. In [10] Poisson distribution for the daily incidence number, and a
gamma distribution for the series interval, are used to estimate the effective reproduction
number, which is supposed to stay the same in the forecasting step made by the SIR model.
A distributed optimal control epidemiological model is presented in [11] and interesting
features of the optimal policy for social distancing are shown. The ensemble Kalman
filter as a good short-term predictor is used in [12–14], where an algorithm for short-term
forecasting based on the estimation of the contact parameter in a stochastic SEIR model
with sequential data assimilation is suggested. In [15] we developed a strategy for 14-day
prediction of all compartments in the SEIR model, based on the prediction of the parameters
daily values in Bulgaria. Our strategy takes into account the level of the government control
measures, the new cases/tests dependency on the day of the week, and the length of the
healing process. SIR-based models for studying the spread of the COVID-19 pandemic in
Bulgaria are also applied in [16–18]. Another interesting topic is the modeling of spread
and dynamics of COVID-19 with appropriate fractional models. The reason of this is the
memory effects of the disease (dependence not only of the current state of infected people,
but also from the situation in the past). Let us mention two publications in this area [19,20].
In the first one, a two-side fractional generalized SEIR model is proposed, and the key
epidemiological parameters of COVID-19 pandemic in the United States are identified and
ranked. In [20] different integer-order and fractional-order models are explored, and their
performance with COVID-19 data in China is analyzed.

Recently, several SEIR-based models with vaccination have been studied and used
for modeling of COVID-19 pandemic in different countries. In some models [21,22] it is
assumed that all vaccinated persons are well protected. While in others [1,3,23,24] as in
the present SEIRS-VB model, it is assumed that the vaccine is imperfect and vaccinated
persons are not susceptible only for some period of time.
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On the other hand , some discrete models are very often used instead of the differential
deterministic models (see [3,12,18,25,26]). We will note that the discrete and the differential
models can be considered as “equivalent” only if the step size in the discrete model is
small enough. Actually, this paper is looking for a discrete model that can be used in the
case of real data on the one hand (i.e., with a one-day step for active cases, for example).
On the other hand, it is close enough (in appropriate sense) to the new differential model
SEIRS-VB. The new model is used for modeling and short-term forecasting the spread of
the COVID-19 pandemic in Bulgaria by considering publicly available data from 8 March
2020 to 10 April 2022.

The present paper is organized as follows:
Section 2 begins with the formulation of new SEIRS-VB problem. In Section 2.2, we

study the analytic properties of the solution of this problem and show that it has biologically
reasonable properties. We prove the existence of a unique solution of the problem, which is
well defined and non-negative. In Section 3, we introduce a semi-implicit discrete model
and prove that it has similar biological properties like the differential model SEIRS-VB
if the step size is small enough. Since available data sets contain daily values of some
functions in the differential model, we can assume that the step size in the discrete model
is a priori fixed. We divide the parameters into two groups: (i) those that can be selected
from the available statistical data and (ii) unknown ones (which should be found using
the model). In this context, in Section 4, we formulate an appropriate “inverse” discrete
problem IDP to find the unknown values in the discrete model. Furthermore, we present
an algorithm for solving this problem. Using available COVID-19 data, in Section 5, the
theoretical study is used for identification of the parameters in the discrete model and for
experimental analysis of the COVID-19 pandemic situation in Bulgaria. Comparison with
the model, in Section 6, using the obtained values of parameters, we solve numerically the
original differential problem and show that it gives good approximation of the number
of the active cases in norms of the {lp} family. Based on these results, in Section 7, we
propose a forecasting methodology and make numerical experiments for prediction of the
numbers of: the active cases, the new daily cases, the cumulative COVID-19 deaths, and
the cumulative number of the recovered individuals in Bulgaria for two different 14-day
periods. Discussion and Conclusions are outlined in Sections 8 and 9, respectively.

2. Time-Dependent SEIRS-Based Model with Vaccination and Vital Dynamics
2.1. The SEIRS-VB Model: Formulation

To formulate the new model, named SEIRS-VB, the host population is divided into six
compartments , as follows (see Figure 1):

• S(t)—Susceptible individuals. These are the people who may be infected and can
become virus carriers. In this group, we include all individuals without immunity
(unvaccinated, not fully vaccinated, vaccinated people for whom the vaccine is ineffec-
tive, fully vaccinated or recovered individuals who have lost their immunity). Usually
at the beginning of a pandemic, as in the case of COVID-19, the whole host population
is susceptible.

• E(t)—Exposed individuals. These are virus carrier individuals in the latent stage,
during which they are not virus spreaders. They usually have no symptoms.

• I(t)—Infectious individuals. These are virus carriers and virus spreaders of extremely
high infectivity. The former are likely to transmit the virus in case of contact.

• R(t)—Recovered individuals with immunity. These individuals have disease acquired
immunity. They have recovered, and thus are protected from the disease.

• V(t)—Vaccinated susceptible individuals. These are fully vaccinated persons for
whom the vaccine is effective. However, they have not developed antibodies. They
can do so after a certain period of time or else they will become exposed individuals
before that. It is worth pointing out that, due to the vaccine imperfection, some of the
vaccinated individuals can not develop antibodies, and they can not pass from group
S(t) to group V(t).
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• B(t)—Individuals with vaccination-acquired immunity. These are vaccinated individ-
uals who are well protected from future infection because they have antibodies.

τ
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β

ω
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α

θ θ θ θ

θ θ

Λ

Figure 1. The model diagram.

SEIRS-VB model (1) involves three “chains” S-E-I-R-S, S-V-B-S and S-V-E-I-R-S.

1. The S-E-I-R-S chain (horizontal red line in Figure 1) describes infection transmission
among unvaccinated individuals. Each susceptible individual from (S) can be infected
in case of contact with infectious persons and is transferred to group (E) with trans-
mission rate β(t). Furthermore, the individual goes in group (I) with latency rate ω(t)
and later to group (R) with recovery rate γ(t). Later, this person loses disease-acquired
immunity and moves again to group (S) with re-infection rate λ(t).

2. The chains S-V-B-S and S-V-E-I-R-S describe the change in the proportion of the
numbers of the groups that contain vaccinated persons. Each vaccinated person in
(S) can move to group (V) with vaccination parameter α(t) or stay in group (S) due
to imperfect vaccines which means that this does not provide 100 % safety (with
effectiveness σ < 1). Each individual in group (V) can develop antibodies and go to
group (B) with antibodies rate µ(t) or be infected before that and move to group (E)
with the transmission rate β(t). Individuals in group (B) lose vaccination-acquired
immunity and move again to group (S) with re-infection rate ν(t).

3. The SEIRS-VB model describes vital dynamics as well. We assume that all new born
individuals are susceptible and they come to group (S) with birth rate Λ(t). At the
same time, individuals in each model’s group can move out from the model, due
to natural mortality with rate θ(t). Of course, infectious individuals (I) can leave
the model due to COVID-19 mortality with rate τ(t). Since we use a model with
re-susceptibility, it is reasonable to assume that all individuals having received booster
doses of vaccines are new fully vaccinated persons, i.e., belong to group (S) who can
possibly move to (V) due to these doses.

It is natural that the total population size is the number of all living individuals

N(t) := S(t) + E(t) + I(t) + R(t) + B(t) + V(t).
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The SEIRS-VB model is described by the following Cauchy problem for a system of
nonlinear ordinary differential equations∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dS
dt

= Λ(t)N(t)− (α(t) + θ(t))S(t)− β(t)
N(t)

S(t)I(t) + λ(t)R(t) + ν(t)B(t),

dE
dt

=
β(t)
N(t)

S(t)I(t) +
β(t)
N(t)

V(t)I(t)− (ω(t) + θ(t))E(t),

dI
dt

= ω(t)E(t)− (γ(t) + τ(t) + θ(t))I(t),

dR
dt

= γ(t)I(t)− (λ(t) + θ(t))R(t),

dV
dt

= α(t)S(t)− (µ(t) + θ(t))V(t)− β(t)
N(t)

I(t)V(t),

dB
dt

= µ(t)V(t)− (ν(t) + θ(t))B(t)

(1)

with non-negative initial conditions

S(t0) = S0, E(t0) = E0, I(t0) = I0, R(t0) = R0, V(t0) = V0, B(t0) = B0, (2)

where t0 ≥ 0 is a real number.
The coefficients in the system (1) are time-dependent, and they involve the parameters

listed in Table 1.

Table 1. Parameters of the SEIRS-VB model.

Parameter Description Units

Λ(t) birth rate births
population /day

a(t) vaccination rate vaccinated
population /day

σ vaccine effectiveness excess risk
risk among vaccinated

α(t) vaccination parameter σa(t)
β(t) transmission rate 1/days
γ(t) recovery rate 1/ days
ω(t) latency rate 1/days
θ(t) natural mortality rate deaths

population /day

τ(t) mortality rate of infectious
people

deaths
in f ectious /day

λ(t) reinfection rate of recovered
individuals 1/days

ν(t) reinfection rate of vaccinated
individuals 1/days

µ(t) antibody rate 1/days

In the classical SIR and SEIR models [27], as well as in many SIR/SEIR-based models
with constant coefficients, it is assumed that the population size N is a constant. In the
model (1), the population size N(t) is a time-dependent function. Summing up the equa-
tions in the system (1), we obtain

dN
dt

= [Λ(t)− θ(t)]N(t)− τ(t)I(t). (3)
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2.2. Properties of the Analytic Solution of the SEIRS-VB Model

To study the biologically reasonable futures of model in the the case when the popula-
tion is fixed (1), following [28–30] we introduce the functions

S̃(t) :=
S(t)
N(t)

, Ẽ(t) :=
E(t)
N(t)

, Ĩ(t) :=
I(t)
N(t)

,

R̃(t) :=
R(t)
N(t)

, Ṽ(t) :=
V(t)
N(t)

, B̃(t) :=
B(t)
N(t)

,
(4)

where, obviously, N(t) > 0 for the considered time-frame [t0, T].
For the new unknowns and from (1) and (2), we obtain the following reduced Cauchy

problem:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dS̃
dt

= Λ(t)− (α(t) + Λ(t))S̃(t) + (τ(t)− β(t))S̃(t) Ĩ(t) + λ(t)R̃(t) + ν(t)B̃(t),

dẼ
dt

= β(t)S̃(t) Ĩ(t) + β(t)Ṽ(t) Ĩ(t)− (ω(t) + Λ(t))Ẽ(t) + τ(t)Ẽ(t) Ĩ(t),

dĨ
dt

= ω(t)Ẽ(t)− (γ(t) + τ(t) + Λ(t)) Ĩ(t) + τ(t)( Ĩ(t))2,

dR̃
dt

= γ(t) Ĩ(t)− (λ(t) + Λ(t))R̃(t) + τ(t)R̃(t) Ĩ(t),

dṼ
dt

= α(t)S̃(t)− (µ(t) + Λ(t))Ṽ(t) + (τ(t)− β(t)) Ĩ(t)Ṽ(t),

dB̃
dt

= µ(t)Ṽ(t)− (ν(t) + Λ(t))B̃(t) + τ(t)B̃(t) Ĩ(t)

(5)

with non-negative initial conditions

S̃(t0) = S̃0, Ẽ(t0) = Ẽ0, Ĩ(t0) = Ĩ0, R̃(t0) = R̃0, Ṽ(t0) = Ṽ0, B̃(t0) = B̃0, (6)

where
S̃0 + Ẽ0 + Ĩ0 + R̃0 + Ṽ0 + B̃0 = 1. (7)

Summing up the equations in (5) , for

Ñ(t) := S̃(t) + Ẽ(t) + Ĩ(t) + R̃(t) + B̃(t) + Ṽ(t)

we obtain
dÑ
dt

= 0

and because of (7) obviously
Ñ(t) ≡ 1.

Let us introduce the notations

x̃(t) :=
(
S̃(t), Ẽ(t), Ĩ(t), R̃(t), Ṽ(t), B̃(t)

)
,

x̃0 :=
(
S̃0, Ẽ0, Ĩ0, R̃0, Ṽ0, B̃0

)
,

p(t) := (Λ(t), θ(t), ω(t), µ(t), α(t), β(t), γ(t), τ(t), ν(t), λ(t)) (8)
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and

f (t, x̃) =



Λ(t)− (α(t) + Λ(t))S̃ + (τ(t)− β(t))S̃ Ĩ + λ(t)R̃ + ν(t)B̃
β(t)S̃ Ĩ + β(t)Ṽ Ĩ − (ω(t) + Λ(t))Ẽ + τ(t)Ẽ Ĩ

ω(t)Ẽ− (γ(t) + τ(t) + Λ(t)) Ĩ + τ(t) Ĩ2

γ(t) Ĩ − (λ(t) + Λ(t))R̃ + τ(t)R̃Ĩ
α(t)S̃− (µ(t) + Λ(t))Ṽ − β(t)Ṽ Ĩ + τ(t)Ṽ Ĩ

µ(t)Ṽ − (ν(t) + Λ(t))B̃ + τ(t)B̃ Ĩ

. (9)

Then, the Cauchy problem (5) and (6) can be rewritten in the form∣∣∣∣ ˙̃x(t) = f (t, x̃),
x̃(t0) = x̃0.

(10)

Remark 1. According to the notation: here and further, we write that a vector is nonnega-
tive/positive if all its components are nonnegative/positive.

Remark 2. Let us note that the initial conditions for the pandemic diffusion models with N = 1
usually satisfy the follows assumptions (see also [28]):

0 < Ĩ0 � 1, 0 ≤ Ṽ0 � 1, 0 ≤ Ẽ0 � 1, S̃0 = 1− Ẽ0 − Ĩ0 − Ṽ0, R̃0 = 0, B̃0 = 0.

Therefore, the conditions of the following theorem are natural.

Theorem 1. Let x̃0 ≥ 0, S̃0 > 0, Ĩ0 > 0, p ∈ C([t0, T]) and p(t) ≥ 0, Λ(t) > 0, β(t) >
0, ω(t) > 0 for t0 ≤ t ≤ T. Then, there exists a unique solution x̃(t) of the Cauchy problem
(10), which is well defined and bounded for all t ∈ [t0, T] and x̃(t) ≥ 0, S̃(t) > 0, Ĩ(t) > 0 for
t ∈ [t0, T].

Proof. According to (8), the nonnegativity of p(t) in the assumption of this theorem means
that Λ(t) ≥ 0, θ(t) ≥ 0, ω(t) ≥ 0, µ(t) ≥ 0, α(t) ≥ 0, β(t) ≥ 0, γ(t) ≥ 0, τ(t) ≥
0, ν(t) ≥ 0, λ(t) ≥ 0. In view of Table 1, the nonnegativity of the parameters in p(t)
is a biologically reasonable property. Let us note first that, from the special kind of the
function f (t, x̃) (second-order polynomials with respect to x̃, see (9)), it follows that f , ∂ f

∂x̃j
∈

C([t0, T]× R6), j = 1, 2, ..., 6. According to Picard’s existence and uniqueness theorem
(Theorem 1.1., p. 8 in [31]), there exists a unique solution x̃(t) of the Cauchy problem
(10) defined in the interval [t0, T1] for some T1 ∈ (t0, T]. Now, we would like to show that
T1 = T.

Now, we prove that x̃(t) ≥ 0 and S̃(t) > 0, Ĩ(t) > 0 for t ∈ [t0, T1]. First assume, on
the contrary, that S̃(t) Ĩ(t) vanishes in (t0, T1]. Denote with t1 ∈ (t0, T1] the first time such
that S̃(t1) Ĩ(t1) = 0, i.e., S̃(t) > 0 and Ĩ(t) > 0 for t ∈ [t0, t1).

Then, for t ∈ [t0, t1], we have from the system (5):

R̃(t) = e
∫ t

t0
[τ(s) Ĩ(s)−λ(s)−Λ(s)] ds

(
R̃0 +

∫ t

t0

γ(s) Ĩ(s)e
∫ s

t0
[λ(σ)+Λ(σ)−τ(σ) Ĩ(σ)] dσ ds

)
≥ 0, (11)

Ṽ(t) =e−
∫ t

t0
[µ(s)+Λ(s)+(β(s)−τ(s)) Ĩ(s)] ds

×
(

Ṽ0 +
∫ t

t0

α(s)S̃(s)e
∫ s

t0
[µ(σ)+Λ(σ)+(β(σ)−τ(σ)) Ĩ(σ)] dσ ds

)
≥ 0,

(12)

Ẽ(t) =e−
∫ t

t0
[ω(s)+Λ(s)−τ(s) Ĩ(s)] ds

×
(

Ẽ0 +
∫ t

t0

β(s)[S̃(s) + Ṽ(s)] Ĩ(s)e
∫ s

t0
[ω(σ)+Λ(σ)−τ(σ) Ĩ(σ)] dσ ds

)
> 0,

(13)
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B̃(t) = e
∫ t

t0
[τ(s) Ĩ(s)−ν(s)−Λ(s)] ds

(
B̃0 +

∫ t

t0

µ(s)Ṽ(s)e
∫ s

t0
[ν(σ)+Λ(σ)−τ(σ) Ĩ(σ)] dσ ds

)
≥ 0. (14)

Note that, for the inequalities (13) and (14) we had used the already proved (11) and (12).
Now, from the first equation of the system (5), we have

S̃(t1) =e
∫ t1

t0
[(τ(s)−β(s)) Ĩ(s)−α(s)−Λ(s)] ds

×
(

S̃0 +
∫ t1

t0

[Λ(s) + λ(s)R̃(s) + ν(s)B̃(s)]e
∫ s

t0
[(β(σ)−τ(σ)) Ĩ(σ)+α(σ)+Λ(σ)] dσ ds

)
> 0,

because of (12)–(14) and S̃0 > 0.
Therefore, Ĩ(t1) = 0. Then, from the third equation of the system (5), we have

dĨ
dt

(t1) = ω(t1)Ẽ(t1) > 0,

and, because Ĩ(t) > 0 for t0 ≤ t < t1, it leads to a contradiction with Ĩ(t1) = 0. It follows
that Ĩ(t) is also always positive for t ∈ [t0, T1].

Hence, S̃(t) > 0 and Ĩ(t) > 0 for t ∈ [t0, T1]. Now, it is easy to see that the inequalities
(11)–(14) hold for all t ∈ [t0, T1]. In this way, we show that x̃(t) ≥ 0 for t ∈ [t0, T1].

Since x̃(t) ≥ 0 and S̃(t) + Ẽ(t) + Ĩ(t) + R̃(t) + Ṽ(t) + B̃(t) = 1, we obtain that ‖x̃‖ ≤√
6, i.e., the solution is uniformly bounded on [t0, T1]. Now, by Extension theorem

(Theorem 3.1., p. 12 in [31]), we conclude that T1 ≡ T, i.e., the solution x̃(t) exists on [t0, T].
This completes the proof.

To study the solutions of original problem (1) and (2), we introduce the notations

x(t) := (S(t), E(t), I(t), R(t), V(t), B(t)),

x0 := (S0, E0, I0, R0, V0, B0).

Theorem 2. Let x0 ≥ 0, S0 > 0, I0 > 0, p ∈ C([t0, T]) and p(t) ≥ 0, Λ(t) > 0, β(t) >
0, ω(t) > 0 for t0 ≤ t ≤ T. Then, there exists a solution x(t) of the Cauchy problem (1) and (2),
which is defined for t ∈ [t0, T] and x(t) ≥ 0, S(t) > 0, I(t) > 0 for t ∈ [t0, T]. The solution with
such properties is unique.

Proof. To prove the existence and uniqueness of such a solution, we use Theorem 1.
(i) Existence. Denote

N0 := S0 + E0 + I0 + R0 + V0 + B0 > 0

(because x0 ≥ 0 with S0 > 0 and I0 > 0) and let us consider the Cauchy problem (10) with
initial condition x̃0 := x0/N0 ≥ 0.

Since S̃0 = S0/N0 > 0, Ĩ0 = I0/N0 > 0 and all other conditions of Theorem 1 are
fulfilled, Theorem 1 gives a function x̃(t)= (S̃(t), Ẽ(t), Ĩ(t), R̃(t), Ṽ(t), B̃(t)) ≥ 0, which is
a unique solution of the problem (10), defined for t ∈ [t0, T].

Let us consider the Cauchy problem∣∣∣∣ Ṅ(t) = [Λ(t)− θ(t)− τ(t) Ĩ(t)]N(t),
N(t0) = N0.

(15)

Obviously, the unique solution of problem (15) is

N(t) = N0e
∫ t

t0
[Λ(s)−θ(s)−τ(s) Ĩ(s)] ds

> 0,

and it is defined for t ∈ [t0, T].
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Above, we transformed the system (1) to the system (5). Now, following the reverse
way and using N(t) > 0, we obtain that the function x(t) := N(t)x̃(t) ≥ 0 is a solution of
the Cauchy problem (1) and (2) in [t0, T] and S(t) > 0, I(t) > 0 for all t ∈ [t0, T].

(ii) Uniqueness. Let

x1(t) = (S1(t), E1(t), I1(t), R1(t), B1(t), V1(t))

and
x2(t) = (S2(t), E2(t), I2(t), R2(t), B2(t), V2(t))

be two solutions of the problem (1) and (2) with initial condition x1(t0) = x2(t0) = x0,
which are defined for t ∈ [t0, T] and x1(t) ≥ 0, x2(t) ≥ 0, S1(t) > 0, I1(t) > 0, S2(t) >
0, I2(t) > 0 for all t ∈ [t0, T]. We define the functions

N1(t) := S1(t) + E1(t) + I1(t) + R1(t) + B1(t) + V1(t) > 0,

N2(t) := S2(t) + E2(t) + I2(t) + R2(t) + B2(t) + V2(t) > 0

for t ∈ [t0, T] and obviously N1(t0) = N2(t0) =: N0 > 0.
Then, the functions x̃1(t) := x1(t)/N1(t) ≥ 0 and x̃2(t) := x2(t)/N2(t) ≥ 0 are two

solutions of the system (5), defined for t ∈ [t0, T] and x̃1(t0) = x̃2(t0) = x̃0 := x0/N0 ≥ 0
with S̃0 := S0/N0 > 0, Ĩ0 := I0/N0 > 0 and S̃1(t) > 0, Ĩ1(t) > 0, S̃2(t) > 0, Ĩ2(t) > 0 for
t ∈ [t0, T]. Now, Theorem 1 gives x̃1(t) = x̃2(t) for t ∈ [t0, T] and therefore

x1(t)
N1(t)

=
x2(t)
N2(t)

, t0 ≤ t ≤ T. (16)

In particular, we have

I1(t)
N1(t)

=
I2(t)
N2(t)

, t0 ≤ t ≤ T.

Now, summing up the equations in the corresponding systems for x1(t) and x2(t),
respectively, it follows that

Ṅ1(t) = [Λ(t)− θ(t)]N1(t)− τ(t)I1(t),

Ṅ2(t) = [Λ(t)− θ(t)]N2(t)− τ(t)I2(t).

Hence,
Ṅ1(t)
N1(t)

=
Ṅ2(t)
N2(t)

,

which implies N1(t)/N2(t) = const. for t ∈ [t0, T]. Finally, since N1(t0) = N2(t0) = N0,
we conclude that N1(t) = N2(t) for t ∈ [t0, T]. Now, (16) gives x1(t) = x2(t) for t ∈ [t0, T].

This completes the proof.

3. Discretization of the SEIRS-VB Model

In this section, we introduce a discrete analogue of the differential SEIRS-VB model.
We are going to show that, if the step size in the discrete model is sufficiently small, the basic
properties of its solution are close to those of the solution of the differential model.

Let us denote by
A(t) = I(t) + E(t)

the number of active cases at the time t, i.e., the number of people who are virus carriers.
Some of them are asymptomatic (E), but others are infectious with symptoms (I). The PCR
tests can detect RNA from SARS-CoV-2, roughly 1–3 days before the onset of the symptoms.
That varies among different variants of virus: 5-14 days for the Wuhan variant, 5–10 for
the Alpha variant and 5–7 for the Delta variant and Omicron variant. This means that the
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virus can be detected no earlier than 48–72 h after the exposure [32]. We assume that the
active cases (A) are positive tested individuals, reported by the World Health Organization.

Summing up the second and the third equations in (1), we obtain the following form
of SEIRS-VB model:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dS
dt

= Λ(t)N(t)− [α(t) + θ(t)]S(t)− β(t)
N(t)

S(t)I(t) + λ(t)R(t) + ν(t)B(t),

dA
dt

=
β(t)
N(t)

[S(t) + V(t)]I(t)− θ(t)A(t)− [γ(t) + τ(t)]I(t),

dI
dt

= ω(t)[A(t)− I(t)]− [γ(t) + τ(t) + θ(t)]I(t),

dR
dt

= γ(t)I(t)− [λ(t) + θ(t)]R(t),

dV
dt

= α(t)S(t)− β(t)
N(t)

I(t)V(t)− [µ(t) + θ(t)]V(t),

dB
dt

= µ(t)V(t)− [ν(t) + θ(t)]B(t)

(17)

with non-negative initial data

S(t0) = S0, A(t0) = A0, I(t0) = I0, R(t0) = R0, V(t0) = V0, B(t0) = B0. (18)

Therefore, the total population size is

N(t) = S(t) + A(t) + R(t) + V(t) + B(t).

We consider the time-frame t1, t2, ..., tK, where t0 ≤ t1 < t2 < ... < tK ≤ T and
introduce the notation for the values of functions

(Sk, Ak, Ik, Rk, Vk, Bk) = (S(tk), A(tk), I(tk), R(tk), V(tk), B(tk)),

and
Nk := N(tk) = Sk + Ak + Rk + Vk + Bk,

for k = 1, 2, ..., K and the values of the parameters

pk := (Λk, θk, ωk, µk, αk, βk, γk, τk, νk, λk)

= (Λ(tk), θ(tk), ω(tk), µ(tk), α(tk), β(tk), γ(tk), τ(tk), ν(tk), λ(tk)),

k = 1, 2, ..., K− 1.
We introduce the following semi-implicit finite difference scheme as discretization

of the Cauchy problem for system (17) considered for t1 ≤ t ≤ T with given initial data
S(t1) = S1, A(t1) = A1, I(t1) = I1, R(t1) = R1, V(t1) = V1, B(t1) = B1:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Sk − Sk−1
tk − tk−1

= Λk−1Nk−1 − [αk−1 + θk−1]Sk−1 −
βk−1
Nk−1

IkSk−1 + λk−1Rk−1 + νk−1Bk−1,

Ak − Ak−1
tk − tk−1

=
βk−1
Nk−1

[Sk−1 + Vk−1]Ik − θk−1 Ak−1 − [γk−1 + τk−1]Ik−1,

Ik − Ik−1
tk − tk−1

= ωk−1(Ak−1 − Ik−1)− [γk−1 + τk−1 + θk−1]Ik−1,

Rk − Rk−1
tk − tk−1

= γk−1 Ik−1 − [λk−1 + θk−1]Rk−1,

Vk −Vk−1
tk − tk−1

= αk−1Sk−1 −
βk−1
Nk−1

IkVk−1 − [µk−1 + θk−1]Vk−1,

Bk − Bk−1
tk − tk−1

= µk−1Vk−1 − [νk−1 + θk−1]Bk−1,

(19)

where k = 2, 3, . . . , K.
Summing up the following equations: S-equation (the first), A-equation (the second),

R-equation (the fourth), V-equation (the fifth) and B-equation (the sixth) in system (19), we
obtain

Nk − Nk−1
tk − tk−1

= [Λk−1 − θk−1]Nk−1 − τk−1 Ik−1. (20)

Equation (20) can be considered as a discretization of differential Equation (3).
Our first aim is to show that the discrete problem (19) with appropriate initial data

has biologically reasonable features, similar to those of the differential problem (1) and (2).

Theorem 3. Let S1 > 0, A1 ≥ I1 > 0, R1 ≥ 0, V1 ≥ 0, B1 ≥ 0, pk−1 ≥ 0, Λk−1 > 0, βk−1 >
0, ωk−1 > 0 for k = 2, 3, ..., K. Let also tk − tk−1 = h > 0 for all k = 2, 3, ..., K, and

max
k=2,...,K

qk−1 ≤ 1/h, (21)

where

qk−1 := θk−1 + max{αk−1 + βk−1 −Λk−1, µk−1 + βk−1, γk−1 + τk−1 + ωk−1, λk−1, νk−1}.

Then, for the values calculated by (19), we have Sk > 0, Ak ≥ Ik > 0, Rk ≥ 0, Vk ≥ 0, Bk ≥ 0 for
all k = 1, 2, ..., K.

Proof. The statement of the theorem holds for k = 1, and we suppose that Sk−1 >
0, Rk−1 ≥ 0, Vk−1 ≥ 0, Bk−1 ≥ 0, Ak−1 ≥ Ik−1 > 0 for some k. Therefore, Nk−1 > Sk−1 > 0.

Now, we solve the equations in (19) with respect to Sk, Ak, Ik, Rk, Bk and Vk, respec-
tively. Then , since tk − tk−1 = h for all k = 2, 3, ..., K, and (21) holds, from I-equation (the
third), R-equation (the fourth) and B-equation (the sixth) in system (19), it follows that

Ik = hωk−1 Ak−1 + [1− h(γk−1 + ωk−1 + τk−1 + θk−1)]Ik−1 > 0,

Rk = hγk−1 Ik−1 + [1− h(λk−1 + θk−1)]Rk−1 ≥ 0,

Bk = hµk−1Vk−1 + [1− h(νk−1 + θk−1)]Bk−1 ≥ 0.
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Hence, subtracting I-equation (the third) from A-equation (the second) in (19), we obtain

Ak − Ik = h
βk−1
Nk−1

[Sk−1 + Vk−1]Ik + [1− h(ωk−1 + θk−1)](Ak−1 − Ik−1) ≥ 0.

On the other hand, Ik−1 ≤ Ak−1 < Nk−1 and, with the help of (21), we calculate

Ik = hωk−1 Ak−1 + [1− h(γk−1 + ωk−1 + τk−1 + θk−1)]Ik−1

< [1− h(γk−1 + τk−1 + θk−1)]Nk−1

≤ Nk−1.

(22)

Using S-equation (the first) and V-equation (the fifth) in (19) with tk − tk−1 = h, we
find

Sk = hΛk−1Nk−1

+

[
1− h

(
αk−1 + θk−1 + βk−1

Ik
Nk−1

)]
Sk−1 + hλk−1Rk−1 + hνk−1Bk−1,

Vk = hαk−1Sk−1 +

[
1− h

(
µk−1 + θk−1 + βk−1

Ik
Nk−1

)]
Vk−1.

Now, using Equations (21) and (22) and since Nk−1 − Sk−1 > 0, we obtain

Sk≥ hΛk−1(Nk−1 − Sk−1)

+ [1 + h(Λk−1 − αk−1 − θk−1 − βk−1)]Sk−1 + hλk−1Rk−1 + hνk−1Bk−1 > 0,

Vk≥ hαk−1Sk−1 + [1− h(µk−1 + βk−1 + θk−1)]Vk−1 ≥ 0.

Hence, Nk > Sk > 0. The proof is complete.

Remark 3. Theorem 3 gives a sufficient condition for non-negativity of the solution to the discrete
problem (19). We see that the solution of discrete problem (19) has the same nonnegativity properties
as the solution of the continuous problem (17) if the initial data and parameters satisfy analogical
conditions, and the step size is small enough (see (21)).

4. Parameter Identification

In a real situation, like the COVID-19 pandemic, the step size in the discrete model
(19) is fixed, and we have data for some components of the solution and values of certain
parameters. This leads to an inverse problem of a special kind.

In order to formulate a realistic “inverse” problem, that arises from practice, we divide
the parameters pk into two groups

pk = ( p̃k, p̂k), k = 1, 2, ..., K− 1,

where p̃k := (Λk, θk, ωk, µk, νk, λk) are parameter’s values that it is natural to assume to
be known and p̂k := (αk, βk, γk, τk) are values that we have to find.

Now, we introduce three groups that do not appear explicitly in SEIRS-BV model,
but the official data sets usually contain information for the numbers of individuals in
these compartments:

1. Rtotal(t)—The cumulative number of the individuals recovered from the disease to
the time t. Unlike R(t), individuals who have already lost disease-acquired immunity
are counted in Rtotal(t).

2. Dtotal(t)—The cumulative number of COVID-19 deaths;
3. Vtotal(t)—The cumulative number of the fully vaccinated individuals.
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It is clear that Rtotal(t), Dtotal(t), andVtotal(t) are not decreasing functions. Actually,
in the classical SIR/SEIR models, because of the internal immunity and the absence of vital
dynamics, the groups R(t) and Rtotal(t) coincide. As in SIR-type models, we have

dRtotal
dt

= γ(t)I(t). (23)

In the same manner (see [25] and references therein),

dDtotal
dt

= τ(t)I(t). (24)

Let us introduce the notation for the available measurements

mk := (Ak, Rtotalk, Dtotalk, Vtotalk) = (A(tk), Rtotal(tk), Dtotal(tk), Vtotal(tk)),

k = 1, 2, ..., K.
Similarly, we denote the values of the unknown functions:

gk := (Sk, Ik, Rk, Vk, Bk).

Now, we are ready to formulate the following appropriate “inverse” problem.
Problem IDP: Using the given data g1, { p̃k}K−1

k=1 , {mk}K
k=1, find the values(

{gk}K
k=2, { p̂k−1}K

k=2
)
, such that the relations (19) hold.

Since the reported data for COVID-19 is on a daily basis, we propose the following
algorithm to solve the IDP problem in the case h = 1 day.

Algorithm for solving IDP ( with h = 1):

1. Replacing derivatives in (23) and (24) by finite difference with step h = 1, it leads to
the following relations and notations

Iγ,k−1 := γk−1 Ik−1 = Rtotalk − Rtotalk−1,

Iτ,k−1 := τk−1 Ik−1 = Dtotalk − Dtotalk−1,
(25)

k = 2, 3, ..., K. Since the values {Dtotalk}K
k=1 and {Rtotalk}K

k=1 are given and non-
decreasing in respect to k, we find via (25) the nonnegative values {Iγ,k−1}K

k=2,
{Iτ,k−1}K

k=2.
2. Since N1 = S1 + A1 + R1 + V1 + B1 is given, the relations (20), (24) and (25) imply

Nk = (1 + Λk−1 − θk−1)Nk−1 − Iτ,k−1, k = 2, 3, ..., K. (26)

Thus the values of population size can be calculated.
3. The values of the vaccination parameter are

αk−1 = σ
Vtotalk −Vtotalk−1

Nk−1
, k = 2, 3, ..., K, (27)

where σ is the vaccine effectiveness. Since the values {Vtotalk}K
k=1 are given, we find

via (27) the nonnegative values {αk−1}K
k=2.

4. Obviously, Nk−1 6= 0 and we introduce the notations

Iβ,k−1 := βk−1
Ik

Nk−1
, k = 2, 3, ..., K. (28)
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Now, going step by step from k− 1 to k, using (25) and (28), we rewrite the relations
(19) in the form∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Sk = [1− αk−1 − θk−1 − Iβ,k−1]Sk−1 + Λk−1Nk−1 + λk−1Rk−1 + νk−1Bk−1,

Ak = (1− θk−1)Ak−1 + (Sk−1 + Vk−1)Iβ,k−1 − Iγ,k−1 − Iτ,k−1,

Ik = [1−ωk−1 − θk−1]Ik−1 + ωk−1 Ak−1 − Iγ,k−1 − Iτ,k−1

Rk = [1− λk−1 − θk−1]Rk−1 + Iγ,k−1,

Vk = [1− µk−1 − θk−1 − Iβ,k−1]Vk−1 + αk−1Sk−1,

Bk = [1− νk−1 − θk−1]Bk−1 + µk−1Vk−1,

(29)

where k = 2, 3, . . . , K.
Starting with the nonnegative initial data A1 and g1 = (S1, I1, R1, V1, B1), where
S1 > 0 and A1 ≥ I1 > 0, we calculate

4.1. From the second equation in (29), we obtain

Iβ,1 =
1

S1 + V1
[A2 + (θ1 − 1)A1 + Iγ,1 + Iτ,1].

We note that Iβ,1 ≥ 0, because A2 − A1 + Iγ,1 + Iτ,1 ≥ 0 are the new cases for
day t2.

4.2. Now, using (29), we calculate consistently the values {Sk}K
k=2, {Ik}K

k=2, {Rk}K
k=2,

{Vk}K
k=2, {Bk}K

k=2 and, if Sk−1 + Vk−1 6= 0

Iβ,k−1 =
1

Sk−1 + Vk−1
[Ak + (θk−1 − 1)Ak−1 + Iγ,k−1 + Iτ,k−1], k = 3, 4, ..., K. (30)

4.3. Finally, if Ik−1 6= 0 and Ik 6= 0, we calculate

βk−1 = Nk−1
Iβ,k−1

Ik
, γk−1 =

Iγ,k−1

Ik−1
, τk−1 =

Iτ,k−1

Ik−1
, k = 2, 3, ..., K. (31)

4.4. If one or more of the values Sk−1 + Vk−1, Ik−1 is equal to zero for some k, and
the algorithm must stop at the first such k. Otherwise , the algorithm continues
and all values {gk}K

k=1 and { p̂k−1}K
k=2 can be uniquely determined. Actually,

since we are looking for a biologically reasonable solution of the problem
IDP, i.e., for nonnegative solution of this problem, we should also stop the
algorithm if some of the calculated values in the step 4.2 are negative.

5. Identification of Parameters in the Discrete Problem

We conduct a set of numerical experiments to solve IDP problem with Bulgarian
COVID-19 data and to study the original differential problem (1). The period under
consideration is 8 March 2020–10 April 2022. Within the above-mentioned period, we
extract several parts that correspond to domination of different variants of the coronavirus.
In each of them, we fix the values of the known parameters { p̃k}K−1

k=1 using some offi-
cial data respectively: [33–38]. In order to calculate appropriate values for parameters
p̃k := (Λk, θk, ωk, µk, νk, λk), we suppose that

• Λk = Λ is the average birth rate for 2015–2020;
• θk = θ is the average natural mortality rate for 2015–2020;
• ωk = 1/Te, where Te is the incubation (latency) period for the dominant variant

of COVID-19;
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• µk = 1/Ta, where Ta is the average time taken for antibodies to develop;
• νk = 1/Tb, where Tb is the duration of the immune responses in individuals with

vaccination-acquired immunity;
• λk = 1/Tr, where Tr is the duration of the immune responses in recovered individuals.

For calculation of the birth and natural mortality rates, we use available data in
the Information System INFOSTAT of the National Statistical Institute of the Republic
of Bulgaria [35].

Four vaccines are in use in Bulgaria—Comirnaty (developed by BioNTech and Pfizer)
known as Pfizer, Vaxzevria (previously COVID-19 Vaccine AstraZeneca), Spikevax (pre-
viously COVID-19 Vaccine Moderna) and Janssen. Taking into account the numbers of
the fully vaccinated people with these vaccines and the product information in [38], we
calculate the average values of vaccines’ parameters. This way, we can assume that, during
the COVID-19 mass vaccination campaign in Bulgaria, one vaccine is used with average
values of parameters specified in Table 2.

Table 2. The given parameter’s values.

Parameter Description Values

Λ birth rate 2.4095× 10−5

θ natural mortality rate 4.1904× 10−5

Te latency period 7 days 1, 6 days 2, 5 days 3,
4 days 4

Ta
time taken for antibodies to

develop 14 days

Tb
duration of vaccine-based

immunity 180 days

Tr
duration of disease-based

immunity 180 days

σ vaccine effectiveness 0.85 2, 0.70 3, 0.45 4

for 1 Wuhan variant, 2 Alpha variant, 3 Delta variant, 4 Omicron variant.

The initial data for COVID-19 pandemic in Bulgaria are

A1 = 4, g1 = (S1, I1, R1, V1, B1) = (6941259, 4, 0, 0, 0). (32)

We apply the algorithm described in Section 4 with step size h = 1, officially reported
measurements {mk}K

k=1 = {(Ak, Rtotalk, Dtotalk, Vtotalk)}K
k=1, initial data (32), and the

parameters’ values { p̃k}K−1
k=1 (Table 2). The algorithm provides a unique non-negative

solution

{gk}K
k=1 = {(Sk, Ik, Rk, Vk, Bk)}K

k=1, { p̂k−1}K
k=2 = {(αk−1, βk−1, γk−1, τk−1)}K

k=2

of problem IDP and Sk > 0, Ak ≥ Ik > 0 for k = 1, 2, ..., K. The obtained weekly average
values of infection and recovery rates are given in Figure 2.

Remark 4. The Wuhan is usually used as a name of the first variant of the virus. To avoid possible
misunderstanding, we note that, in the following Figures 2–4, we point out the names of different
variants (Wuhan, Alpha, Delta, Omicron) of SARS-CoV-2 and the corresponding periods in which
they dominated in Bulgaria.
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Figure 2. The weekly average values βweek, γweek of infection and recovery rates.
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Figure 3. The weekly average values of vaccination parameter αweek and mortality rate τweek.
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We observe that the infection rate βweek decreases at the time of partial lockdowns
(27 October 2020, 22 March 2021) or when strong rules and restrictions (21 October 2021)
were imposed. The above-mentioned infection rate has been decreasing since green cer-
tificates were introduced (21 October 2021) as a preventive measure. On the other hand,
the infection rate increased rapidly with the beginning of the first (the autumn of 2020) and
second (the spring of 2021) waves and with the invasion of Delta (22 July 2021) or Omicron
(2 January 2022) variants of SARS-CoV-2 in Bulgaria. We observe the following relations
for the infection rate values for the first two weeks of Delta (δ) or Omicron (o) waves
βo,week1 ≈ 2 βδ,week1 and βo,week2 ≈ 3 βδ,week2 . The variation in infection rate for the Omicron
variant is less than for the other virus variants. The reason for this is that the measures
of social distancing were weak during the Omicron wave. This behavior of the Omicron
infection rate causes a big wave which reaches its peak faster than the Delta wave. At the
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same time, the peaks of the recovery rate γweek follow the peaks of the infection rate with
some delay.

The obtained weekly average values of the vaccination parameter αweek and mortality
rate τweek are given in Figure 3.

We observe that the vaccination parameter αweek increases with the introduction of
green certificates in Bulgaria, but it is still the lowest rate in the European Union and one
of the lowest rates globally. At the same time, the COVID-19 mortality rate in Bulgaria is
one of the highest levels in the world. It is natural that the peaks of the mortality rate τweek
follow the peaks of the infection rate with some delay.

6. Numerical Solution of the Differential Problem

Using Bulgarian COVID-19 data, in Section 5, we already found the daily values
αk, βk, γk, τk, k = 1, 2, ..., K − 1 of the parameters in the discrete problem (19). A natu-
ral question that arises is: How close are they to the daily values of the parameters
α(t), β(t), γ(t), τ(t) in the differential problem (1)?

In order to answer this question, we solve numerically a recurrent sequence of initial
problems for differential equation systems. Each of these problems corresponds to one
of the days t1, t2, . . . , tK of the considered period of the pandemic. We do this using the
selected values of parameters {Λk}K−1

k=1 , {θk}K−1
k=1 , {ωk}K−1

k=1 , {λk}K−1
k=1 , {νk}K−1

k=1 , {µk}K−1
k=1 and

the calculated values for parameters {αk}K−1
k=1 , {βk}K−1

k=1 , {γk}K−1
k=1 , {τk}K−1

k=1 . More precisely,
using the built-in function ode45 in Matlab (see [39]), which implements a version of Runge–
Kutta 4th/5th-order method, for t ∈ [tk−1, tk], we solve the Cauchy problem SEIRS−VBk,
k = 2, 3, . . . , K:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dS̃k
dt

= Λk−1Ñk(t)− (αk−1 + θk−1)S̃k(t)−
βk−1

Ñk(t)
S̃k(t) Ĩk(t)

+ λk−1R̃k(t) + νk−1B̃k(t),

dẼk
dt

=
βk−1

Ñk(t)
S̃k(t) Ĩk(t) +

βk−1

Ñk(t)
Ṽk(t) Ĩk(t)− (ωk−1 + θk−1)Ẽk(t),

dĨk
dt

= ωk−1Ẽk(t)− [γk−1 + τk−1 + θk−1] Ĩk(t),

dR̃k
dt

= γk−1 Ĩk(t)− (λk−1 + θk−1)R̃k(t),

dṼk
dt

= αk−1S̃k −
βk−1

Ñk(t)
Ṽk(t) Ĩk(t)− (µk−1 + θk−1)Ṽk(t),

dB̃k
dt

= µk−1Ṽk(t)− (νk−1 + θk−1)B̃k(t),

dÑk
dt

= (Λk−1 − θk−1)Ñk(t)− τk−1 Ĩk(t),

S̃k(tk−1) = S̃k−1(tk−1), Ẽk(tk−1) = Ẽk−1(tk−1), Ĩk(tk−1) = Ĩk−1(tk−1),

R̃k(tk−1) = R̃k−1(tk−1), Ṽk(tk−1) = Ṽk−1(tk−1), B̃k(tk−1) = B̃k−1(tk−1),

Ñk(tk−1) = Ñk−1(tk−1),

(33)
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where S̃1(t1) = S1, Ẽ1(t1) = E1 = 0, Ĩ1(t1) = I1 = A1, R̃1(t1) = R1, Ṽ1(t1) = V1, B̃1(t1) =
B1, Ñ1(t1) = N1 = S1 + E1 + I1 + R1 + V1 + B1.

The values of functions S̃k−1(t), Ẽk−1(t), Ĩk−1(t), R̃k−1(t), Ṽk−1(t), B̃k−1(t) and Ñk−1(t)
(solution of the problem SEIRS−VBk−1) at the end of the day tk−1 are used as initial data
in the next problem SEIRS−VBk, which describe the quantitative changes over the day tk.
The obtained piecewise linear curve is shown in Figure 4.

Since the numbers of active cases Apandemic = (A1, A2, ..., AK) are known, we will
compare them with the values Ãpandemic = (Ẽ1(t1) + Ĩ1(t1), Ẽ2(t2) + Ĩ2(t2), ..., ẼK(tK) +

ĨK(tK)), obtained by the procedure, described above. To do this, we use two different
norms—the `2 one and the sup-norm `∞, i.e.,

Error(`2, A) :=
‖Ãpandemic − Apandemic‖2

‖Apandemic‖2
= 0.044, (34)

Error(`∞, A) :=
‖Ãpandemic − Apandemic‖∞

‖Apandemic‖∞
= 0.035. (35)

These results show that the suggested method for identification of the parameters in
the discrete problem leads to the parameters’ values which are very close to the values of the
time-dependent coefficients in the differential problem. We can use other discretizations of
the SEIRS-VB model, based for example on an explicit or implicit Euler method, but better
results give the suggested semi-implicit discretized model (19).

7. Short-Term Forecasting

In this section, we present a methodology for short-term prediction of the numbers
of active cases (A), new daily cases, COVID-19 deaths (Dtotal) and cumulative num-
ber or recovered individuals (Rtotal). We assume that the parameters’ values p̃k :=
(Λk, θk, ωk, µk, νk, λk) are known. The experiments are based on the parameter iden-
tification method developed in Section 4 and the results obtained in Section 5. One possible
way is to predict the unknown parameters’ values p̂k := (αk, βk, γk, τk) for the short- term
forecast period using their values (calculated in Section 5) for several days before this
period. It is worth mentioning that, in order to solve the problem IDP (see Algorithm for
solving IDP in Section 4), we have to calculate the values

uk−1 :=
(

Iβ,k−1, Iγ,k−1, Iτ,k−1, αk−1

)
,

first and then, via (31), we obtain βk−1, γk−1, τk−1. For that purpose, we predict the values
of uk−1 in order to make the forecast for numbers of individuals in the compartments of
SEIRS-VB model more accurate. To fix the notations, let the first day of the forecast period
be denoted by tn. Then, the last day of this forecast period will be denoted tn+13.

We denote by
ũk−1 :=

(
Ǐβ,k−1, Ǐγ,k−1, Ǐτ,k−1, α̌k−1

)
the predicted values of the parameters, using the proposed methodology, in order to
distinguish them from the corresponding official ground-true data uk−1, reported by the
Bulgarian officials.

The last known values are An−1, Rtotaln−1, Dtotaln−1 and the last calculated values
are Sn−1, In−1, Rn−1, Vn−1, Bn−1, which are obtained using the last known parameter’s
value un−2. We will predict the values Šk, Ǎk, Ǐk, Řk, V̌k, B̌k, Řtotalk, Ďtotalk and ǔk−1 for
k = n, n + 1, ..., n + 13.

We perform two sets of numerical experiments, related to predicting a 14-day-time-
frame in the future, based on the available official data for Bulgaria up to the first day
of the time-frame. These time-frames are: 18–31 October 2021 and 7–20 February 2022,
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respectively. During the first time-frame, the Delta variant of the virus was dominant,
while, during the second time-frame, the Omicron variant dominated.

For each time-frame, we make the prediction in three steps:
Prediction step 1. It is easy to discover cases/weekdays dependency in the official

data. For example, the officially reported cases for Saturday and Sunday (reported on
Sunday and Monday, respectively) are much fewer than the cases for Monday (reported on
Tuesday). The same is true if we compare a holiday with a working day of the week. For
this reason, we assume dependency of the parameters’ values on the weekdays. To verify
this assumption, we examine the ratios between any two consecutive daily parameter
values over different 7-day periods before the forecast period. For example, we study the
behavior of the ratios

δβ,k := (δ1
β,k, δ2

β,k, ..., δ7
β,k) = (Iβ,k/Iβ,k−1, Iβ,k+1/Iβ,k, ..., Iβ,k+6/Iβ,k+5) (36)

and δγ,k, δτ,k, δα,k, defined in a similar way for γ, τ, α, respectively. Let us note that all
these ratios are known for k ≤ n− 8. After analyzing them, we forecast in an appropriate
way the values δ̌β,n−1, δ̌β,n+6, δ̌γ,n−1, δ̌γ,n+6, δ̌τ,n−1, δ̌τ,n+6, δ̌α,n−1, δ̌α,n+6.

Prediction step 2. The first predicted day is tn and the values of parameters Iβ,n−2
Iγ,n−2, Iτ,n−2, αn−2 for the day tn−1 are known. Then, our forecast of parameters’ values
for the day tn is

Ǐβ,n−1 = δ̌1
β,n−1 Iβ,n−2, Ǐγ,n−1 = δ̌1

γ,n−1 Iγ,n−2,

Ǐτ,n−1 = δ̌1
τ,n−1 Iτ,n−2, α̌n−1 = δ̌1

α,n−1αn−2
(37)

and for the next six days are as follows:

Ǐβ,n+j−2 = δ̌
j
β,n−1 Ǐβ,n+j−3, Ǐγ,n+j−2 = δ̌

j
γ,n−1 Ǐγ,n+j−3,

Ǐτ,n+j−2 = δ̌
j
τ,n−1 Ǐτ,n+j−3, αn+j−2 = δ̌

j
α,n−1α̌n+j−3

(38)

for j = 2, 3, ..., 7. Similarly, for the next 7 days, we define

Ǐβ,n+6 = δ̌
j
β,n+6 Ǐβ,n+j+4, Ǐγ,n+j+5 = δ̌

j
γ,n+6 Ǐγ,n+j+4,

Ǐτ,n+j+5 = δ̌
j
τ,n+6 Ǐτ,n+j+4, αn+j+5 = δ̌

j
α,n+6α̌n+j+4

(39)

for j = 1, 2, ..., 7.
In such a way, we predict all parameters’ values which are needed for calculating the

number of individuals in each of the considered compartments.
Prediction step 3. Since the values Sn−1, An−1, In−1, Rn−1, Vn−1, Bn−1 and Rtotaln−1,

Dtotaln−1 for the last day before the considered forecast period are known, we can predict
the number of individuals in each of these compartments during the period tn, ..., tn+13. Us-
ing (25) and the predicted daily values of parameters, we calculate the values {Řtoatalk}n+13

k=n
and {Ďtoatalk}n+13

k=n of the recovered individuals and COVID-19 deaths, respectively. Fur-
thermore, using again the predicted daily values of the parameters and (29), we calculate the
values {Ǎk}n+13

k=n of active cases and the new daily cases {Ǎk− Ǎk−1 + Ǐγ,k−1 + Ǐτ,k−1}n+13
k=n+1.

More precisely, for each day of the considered time-frame, using the morning values
(Šk−1, Ǎk−1, Ǐk−1, Řk−1, V̌k−1, B̌k−1), (Ďtotalk−1, Řtotalk−1), the parameter values p̃k−1 and
the predicted values ǔk−1, we calculate (Šk, Ǎk, Ǐk, Řk, V̌k, B̌k) (using (29)) and (Ďtotalk,
Řtotalk) (using (25)).

7.1. The First Time-Frame 18–31 October 2021

This time-frame is related to the peak of new daily cases of the wave caused by Delta
variant of the virus. The reported cases on October 19th are considered as the values for
October 18 th and so on. We consider the known ratios δβ,k, δγ,k, δτ,k and δα,k for the last
seven weeks before the first predicted day—18th October 2021, Monday. The values of the
ratio δβ,k are given in Table 3.
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Table 3. Documentation of the ratio δβ,k.

Mon/Sun Tue/Mon Wed/Tue Thur/Wed Fri/Thur Sat/Fri Sun/Sat
k δ1

β,k δ2
β,k δ3

β,k δ4
β,k δ5

β,k δ6
β,k δ7

β,k

n− 8 5.573 0.999 0.959 0.957 1.081 0.543 0.536
n− 15 5.452 1.021 0.887 0.905 1.079 0.502 0.499
n− 22 5.098 1.014 0.832 0.957 1.020 0.587 0.418
n− 29 5.138 0.929 0.388 2.156 1.037 0.545 0.478
n− 36 4.559 1.015 0.918 0.926 1.097 0.503 0.482
n− 43 1.386 2.957 0.975 0.833 0.998 0.559 0.481
n− 50 4.624 0.982 0.850 0.896 1.048 0.521 0.572

As we expected, almost always δ1
β,k > δ

j
β,k, j = 2, 3, ..., 7. Of course, there is an

exception: δ1
β,n−43 < δ2

β,n−43 because Monday, 6th September 2021 (Unification Day) is
an official holiday in Bulgaria, and the reported new infected cases are much fewer than
usual. An analogous situation is with δ3

β,n−29 and δ4
β,n−29 because 22nd September 2021

(The Independence Day in Bulgaria) is also a holiday. Such values should not be used in
prediction of δ̌β,n−1 and δ̌β,n+6.

On the other hand, the values in Table 3 show that, in each column, δ
j
β,k ≈ constj

during almost all considered weeks. That is why we set in prediction step 1

δ̌
j
β,n−1 :=

1
3

(
δ

j
β,n−8 + δ

j
β,n−15 + δ

j
β,n−22

)
,

δ̌
j
β,n+6 :=

1
3

(
δ̌

j
β,n−1 + δ

j
β,n−8 + δ

j
β,n−15

) (40)

for j = 1, 2, ..., 7.
Now, using (37)–(39) in prediction step 2, we derive the desired values { Ǐβ,k−1}n+13

k=n .
The behavior of the other ratios in the considered seven weeks is similar, and, in the same
manner (as (40)), we predict other daily parameters’ values. Finally, we can make the
prediction step 3.

The experimental comparison between the official data and our prediction for the
first time-frame is illustrated in Figures 5–8. The official data are in the blue color and the
predicted values are in the red color.
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Figure 5. The first time-frame. Official (blue) and predicted (red) data for active cases.
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Figure 6. The first time-frame. Official (blue) and predicted (red) data for the new daily cases.

2 4 6 8 10 12 14

2.2

2.25

2.3

2.35

2.4

2.45

x 10
4

DAY OF THE TIME−FRAME

Figure 7. The first time-frame. Official (blue) and predicted (red) data for cumulative number of
COVID-19 deaths.
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Figure 8. The first time-frame. Official (blue) and predicted (red) data for cumulative number of
recovered individuals.

We observe a very good agreement between the predicted and the confirmed data
during the first and the second week of the time-frame. However, the forecast for the first
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week is more accurate than for the second. It is interesting that, with this experiment, we
predict the exact day of the peak of new daily cases and even the numbers of the predicted
and reported cases on this day are very close. The number of recovered individuals and
COVID-19 deaths are also fitted very well.

In order to analyze the accuracy of the proposed prediction methodology, the relative
weekly-based errors (see (34) and (35)) for the compartments for both the first and the
second 14-days-time-frames are documented in Table 4.

Table 4. Relative errors of the prediction for week 1 (18–24 October 2021) and week 2 (25–31
October 2021).

Compartment Error (l2, Week1) Error (l2, Week2) Error (l∞, Week1) Error (l∞, Week2)

Active cases 0.018 0.034 0.029 0.042
New daily cases 0.090 0.138 0.132 0.168

Deaths 0.005 0.013 0.007 0.016
Recovered 0.001 0.001 0.002 0.002

7.2. The Second Time-Frame 7–20 February 2022

This time-frame is related to the peak of active cases of the wave caused by the Omicron
variant of the virus. Actually, in Bulgaria, this is the pandemic’s tallest peak (see Figure 4).
Because of the very fast invasion of the Omicron variant, the peak has been reached only
four weeks after the first confirmed cases with this variant. We consider again the known
ratios δβ,k, δγ,k, δτ,k and δα,k for the last seven weeks before the first predicted day—7th
February 2022. Behavior of δβ,k, δτ,k, δα,k is similar to the Delta wave, wile δγ,k oscillates
(see Table 5).

Table 5. Documentation of the ratio δγ,k.

Mon/Sun Tue/Mon Wed/Tue Thur/Wed Fri/Thur Sat/Fri Sun/Sat
k δ1

γ,k δ2
γ,k δ3

γ,k δ4
γ,k δ5

γ,k δ6
γ,k δ7

γ,k

n− 8 2.311 0.857 1.051 1.306 1.135 0.557 0.593
n− 15 4.249 0.459 1.790 0.971 0.656 0.292 2.444
n− 22 0.447 3.186 0.490 0.442 5.049 0.649 1.101
n− 29 10.917 1.425 4.729 0.650 0.562 0.408 1.326
n− 36 1.229 2.100 0.565 2.221 0.401 2.655 0.047
n− 43 4.265 1.381 1.485 0.485 0.512 0.201 4.522
n− 50 8.402 0.878 0.734 0.950 0.237 0.681 1.293

Since the behavior of δ
j
γ,n−22 is very different from behavior of δ

j
γ,n−8 and δ

j
γ,n−15 in

contrast to the first time-frame (see (40)) in prediction step 1, we set

δ̌
j
γ,n−1 :=

1
2

(
δ

j
γ,n−8 + δ

j
γ,n−15

)
, δ̌

j
γ,n+6 :=

1
2

(
δ̌

j
γ,n−1 + δ

j
γ,n−8

)
, j = 1, 2, ...7.

In a similar way, we calculate δ̌
j
β,n−1, δ̌

j
τ,n−1, δ̌

j
α,n−1 and δ̌

j
β,n+1, δ̌

j
τ,n+1, δ̌

j
α,n+6 for

j = 1, 2, ..., 7.
To predict the daily values of parameters (prediction step 2), we use the same method-

ology as in the prediction of the first time-frame. Now, we are able to make a prediction step
3. The comparison between the official data and our prediction for the second time-frame
is illustrated in Figures 9–12. The official data are in the blue color and the predicted data
are in the red color.
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Figure 9. The second time-frame. Official (blue) and predicted (red) data for active cases.
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Figure 10. The second time-frame. Official (blue) and predicted (red) data for the new daily cases.
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Figure 11. The second time-frame. Official (blue) and predicted (red) data for the cumulative number
of COVID-19 deaths.
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Figure 12. The second time-frame. Official (blue) and predicted (red) data for cumulative number of
recovered individuals.

We observe a good agreement between the predicted and the reported data. The peak
of active cases and the number of COVID-19 deaths are fitted very well. The predicted
active cases for the second week are smaller than the officially documented ones and the
daily differences between the two plots are larger than in the first time-frame. At the same
time, the predicted number of new cases is larger than the reported ones. The number of
recovered individuals is fitted well. This experiment shows that the proposed methodology
works well even in such a delicate situation, when the parameters change their behavior
quite significantly.

The relative weekly-based errors for the compartments for both the first and the second
14-days-time-frames are documented in Table 6.

Table 6. Relative errors of the prediction for week 1 (7–13 February 2022) and week 2 (14–20
February 2022).

Compartment Error (l2, Week1) Error (l2, Week2) Error (l∞, Week1) Error (l∞, Week2)

Active cases 0.015 0.048 0.023 0.077
New daily cases 0.107 0.230 0.137 0.210

Deaths 0.001 0.005 0.001 0.007
Recovered 0.001 0.028 0.002 0.041

We observe a good agreement between the corresponding error margins of the two
norms l2 and l∞ (see (34) and (35), Tables 4 and 6), which suggest robustness of the proposed
model with respect to the norm choice within the {lp} family. Let us note that, for the
active cases, deaths and recovered individuals, we predict the cumulative number, while,
for the dally cases, we consider only the new infectious individuals on the corresponding
day. Thus, the relative forecast errors are naturally larger for the new daily cases than the
corresponding forecast errors for the other compartments.

8. Discussion

Actually, since the considered model takes into account some factors that play an
essential role in the viral diseases’ dynamics such as re-susceptibility, duration of the latency
period (specific for each of the dominant virus variants) and the vaccines’ effectiveness.
After finding the models parameters in Section 5, we are able to calculate the daily number
of Susceptible individuals Sk, Recovered individuals Rk, Vaccinated susceptible individuals
Vk and individuals with antibodies Bk. It should be noted that there is no official data on
the size of these compartments, as public data sets contain information on the cumulative
number of recovered and vaccinated persons. That is why the results obtained by our
model can be very useful. For example, in Figure 13, we give the daily relative size of the
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compartment of all susceptible individuals Sk + Vk in Bulgaria, which is closely related to
the determination of the herd immunity threshold (see [40]).
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Figure 13. The relative size of the susceptible individuals calculated with the SEIRS-VB model.

In the months following the emergence of SARS-CoV-2, “herd immunity” was fre-
quently cited as the long-term destination of the COVID-19 pandemic. However, since
the “Delta” variant appeared (end of August 2021), our idea was to calculate in our
mathematical-computer model the level of “herd immunity”, and it seemed to be more
than 90%, which is impossible to be achieved. From our group, we announced this fact and
discussed it at a Conference of UBM on 5 September 2021. At the same time, at least two
publications [41,42] in this area appeared in the USA with discussions on how it is better to
react to this situation?

The idea of herd immunity primarily supports high vaccination coverage and the
acquisition of natural immunity due to illness.

Although COVID-19 vaccines provide some protection against infection and a mild
form of COVID-19, they have failed to stop the transmission of the virus, especially for the
highly transmitted delta and omicron variants. An excellent example in this regard was
the decision of the United Kingdom Government to allow the opening of society based on a
high percentage of vaccination coverage, which minimizes the risk of severe COVID-19 and
death. Indeed, significantly increased mortality was not achieved, but the daily incidence
reached over 270,000 new cases per day with Omicron. This decision has demonstrated
that the purpose of herd immunity, even in a resource-rich environment, is unattainable
[43].

An interesting study based on 17 cases of genetically confirmed re-infection with
COVID-19 showed that one immunocompromised patient had mild symptoms in the first
infection but developed severe symptoms leading to death in the second infection. Overall,
68.8% (11/16) had a similar burden; 18.8% (3/16) had worse symptoms, and 12.5% (2/16)
had milder symptoms with the second episode. The conclusion is that, in general, re-
infection with different strains is possible and, in some cases, may develop more severe
infections with the second episode [44].

Recently, John Ashton, in his review, claimed that the dominance of politics over
science as manifested by the rush to abandon all measures of virus control has led to the
emergence of a dominant domestic narrative that the pandemic is over. The assumption
has been spreading that COVID-19 will only be of nuisance value on a par with the flu
in the future. Such a decision has already been taken in Spain. In addition, this theory
plays down the associated morbidity and mortality associated with COVID-19 compared
to influenza [45].

A similar reaction came from EMA’s vaccine strategy chief Marco Cavaleri almost
simultaneously. They also discussed what would be better to do in such a situation. The
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question is: How should we be thinking about “herd immunity” to COVID-19? According
to today’s data for the rate of “herd immunity”, we can not eliminate SARS-CoV-2, and the
virus continues to circulate. We do not have enough effective vaccines, and due to the
high mutation rate of the virus, the vast majority of the population still can be exposed.
That is why we should keep working, predicting and monitoring the situation according to
this reality!

Once again, we note that all results in this study were obtained using official data sets.
A debatable question is what is the true number of infections with SARS-CoV-2. We cannot
answer this question, but we suppose that the most accurate among the reported data are
the numbers of COVID-19 deaths. Here we will discuss the results of our study on mortality
from COVID-19 and additional mortality during the ongoing pandemic in Bulgaria. Using
the available data for deaths in Bulgaria (see [35]) for the last five years 2015, 2016, 2017,
2018 and 2019 before the beginning of the COVID-19 pandemic, we calculate the expected
and excess deaths per 100,000 population for the considered period of the pandemic.

An interesting observation is that the times of the excess deaths peaks and the peaks
of COVID-19 deaths in Bulgaria coincide (see Figure 14). We will note that the excess
deaths during the peak periods are more than twice as big as COVID-19 deaths. This could
mean that the COVID-19 is about twice as deadly or that their measures taken to limit
its spread cause death as much as the virus itself. In the same time, the WHO reported
(see [46]) that the deaths associated with the COVID-19 pandemic between 1 January 2020
and 31 December 2021 were approximately 14.9 million. Hence, globally, the excess deaths
from COVID-19 pandemic is about three times more than the reported. Further study
is warranted to investigate how the different restriction measures and the vaccination
strategy used affect the transmission rate and COVID-19 mortality rate in Bulgaria or in
other countries with high mortality.
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Figure 14. Excess and COVID-19 deaths (per 100,000 population) on a weekly basis.

9. Conclusions

In the present paper, we formulate a new time-dependent deterministic model SIRS-
VB with vaccination and vital dynamics. Since available measurements were made at the
end of each day of the pandemic, we introduce a semi-implicit finite difference scheme with
a step size of 1 day, and then we provide an algorithm for identification of the parameters
in the obtained discrete problem. Furthermore, we conduct numerical experiments which
show that the calculated parameters values are very close to the values of parameters
in the original differential problem. This allows us to calculate realistic values for all
compartments in the considered deterministic model by using the suggested identification
procedure. The presented study cannot predict the emergence of a new variant or strain of
the virus or a new wave caused by it. However, the results in Section 7 show that, when
a new wave appears, the model can be efficiently used for making 14-day forecasts for
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daily numbers of the new infectious cases and the new deaths. The presented prediction
methodology is based on the cases/weekdays dependence of the real-time existing data.
It requires a very careful analysis of the available data, taking into account the atypical
daily values of the parameters during recent weeks and whether such type of values are
expected during the forecast period.
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