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Abstract: The cross-modal retrieval task can return different modal nearest neighbors, such as image
or text. However, inconsistent distribution and diverse representation make it hard to directly
measure the similarity relationship between different modal samples, which causes a heterogeneity
gap. To bridge the above-mentioned gap, we propose the deep adversarial learning triplet similarity
preserving cross-modal retrieval algorithm to map different modal samples into the common space,
allowing their feature representation to preserve both the original inter- and intra-modal semantic
similarity relationship. During the training process, we employ GANs, which has advantages in
modeling data distribution and learning discriminative representation, in order to learn different
modal features. As a result, it can align different modal feature distributions. Generally, many
cross-modal retrieval algorithms only preserve the inter-modal similarity relationship, which makes
the nearest neighbor retrieval results vulnerable to noise. In contrast, we establish the triplet similarity
preserving function to simultaneously preserve the inter- and intra-modal similarity relationship
in the common space and in each modal space, respectively. Thus, the proposed algorithm has a
strong robustness to noise. In each modal space, to ensure that the generated features have the
same semantic information as the sample labels, we establish a linear classifier and require that
the generated features’ classification results be consistent with the sample labels. We conducted
cross-modal retrieval comparative experiments on two widely used benchmark datasets—Pascal
Sentence and Wikipedia. For the image to text task, our proposed method improved the mAP values
by 1% and 0.7% on the Pascal sentence and Wikipedia datasets, respectively. Correspondingly, the
proposed method separately improved the mAP values of the text to image performance by 0.6% and
0.8% on the Pascal sentence and Wikipedia datasets, respectively. The experimental results show that
the proposed algorithm is better than the other state-of-the-art methods.

Keywords: cross-modal retrieval; generative adversarial network; triplet similarity preserving; deep
representation learning

MSC: 68T45

1. Introduction

Multimedia data with different modalities, such as image, text, video, and audio, are
mixed together and represent comprehensive knowledge needed in order to perceive the
real world [1–6]. Exploring the cross-modal retrieval between image and natural language
has recently attracted great interest among researchers, due to its great importance in
various applications, such as bi-directional image and text retrieval, natural language object
retrieval, image captioning, and visual question answering [7]. The image–text cross-modal
retrieval algorithms can return samples with the same semantic label, but with a different
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modality from the query sample. Figure 1 illustrates the image–text cross-modal retrieval
tasks, which include image retrieving text and text retrieving image. In Figure 1, there
are airplane images as well as texts describing the airplane number, flight status, airplane
type, etc. A critical task for cross-modal retrieval is to measure the similarity between
the image and text. To achieve this goal, many existing cross-modal retrieval algorithms
propose to deep-learning network that can map different modal features into the common
space. As shown in Figure 1, we mapped airplane images and texts into the common
space using the pre-trained deep network, and measured their similarity relationship by
computing the distances among the different modal features.
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Figure 1. The cross-modal retrieval task includes image retrieving text and text retrieving images.

In order to obtain an excellent cross-modal retrieval performance, different modal
features need to be mapped into the common space by preserving their original semantic
neighbor information. Firstly, the cross-modal retrieval algorithm aims to retrieve the
nearest neighbor with a different modality from the query sample. So, the semantic relation-
ship among the different modal samples needs to be preserved. Secondly, the cross-modal
retrieval algorithms usually return more than one neighbor. Thus, the preservation of the
intra-modal semantic relationship also needs to be taken into consideration.

Generally, most cross-modal retrieval algorithms only focus on preserving different
modal similarity relationships in the common space, while ignoring the similarity relation-
ship preserving problem in each single-modal space. As a result, many dissimilar samples
could have similar feature representations. Unfortunately, the noise would further make
these dissimilar samples have almost the same feature representations, and these dissimilar
samples would be incorrectly returned as the nearest neighbors. Furthermore, different
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modal features have inconsistent distributions and representations. However, many exist-
ing methods learn the common representations without aligning their distributions [8]. To
solve the above-mentioned problems, we propose a novel cross-modal network based on
an adversarial learning algorithm, as shown in Figure 2.
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Figure 2. The framework of the proposed cross-modal retrieval algorithm.

The proposed method consists of the following parts: the image modal network, the
text modal network, the cross-modal adversarial network, the common space network,
and the classification network. (1) For the image modality, we pre-trained VGG-19 [9]
on ImageNet and considered the 4096-dimensional vector generated by the fc7 layer as
the image modal feature hi

α. Then, three full-connected layers were employed to learn
the image representation vi in the common space. (2) For the text modality, we used the
Doc2Vec [10] model to generate the 300-dimensional text modal feature hi

β. Similarly, three
full-connected layers were employed to learn the text representation ti in the common
space. (3) For the cross-modal adversarial network, we considered the fully connected
layers in each modality as the image generator Gv and the text generator Gt. Furthermore,
we established a common discriminator DM to distinguish the input feature’s modality
information. Adversarial learning utilized the mini-max mechanism to train the generator
networks Gv and Gt and the discriminator network DM. During the iterative training
process, the generators aimed to minimize the probability of being correctly recognized
by the discriminator. In contrast, the discriminator tried to maximize the probability of
correctly recognizing the sample’s modal information. When the algorithm converged, we
could align the feature distributions between the different modalities. (4) For the common
space network, we established the triplet similarity preserving function to preserve the
inter- and intra-modal similarity relationship. (5) For the classification network, we utilized
a linear projection function to classify the sample features, and required the classification
results to be consistent with the original semantic labels. Thus, the generated features had
the same semantic information as the sample’s label.
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The main contributions were as follows:

(1) We employed the generative adversarial network to learn different modal features
in the common space, which could reduce the distribution difference between the
different modal features using the mini-max mechanism;

(2) In the common, image, and text spaces, we separately designed the triplet similarity
preserving function to preserve both the inter- and intra-modal similarity relationship.
This could also boost the retrieval results for robustness to noise;

(3) To avoid the loss of semantic information during learning image and text features, we
established a linear function to predict the generated feature labels, and required that
the prediction labels were identical to the original semantic labels.

2. Related Work

The cross-modal retrieval algorithm can retrieve similar samples with different modal-
ities, which helps to comprehensively perceive and recognize the query sample. However,
different modal features have different distributions and diverse representations, which
lead to the heterogeneity gap. Thus, to directly compute the different modal similarity
relationship, different modalities need to be mapped into a common space [7,11–13]. Tradi-
tionally, linear projection functions with an optimized target statistical value are utilized to
map different modal features into a common space [14]. The canonical correlation analysis
(CCA) [11] finds a linear combination to maximize the pairwise correlations between the
two data sets, and associates different modal features by projecting them into a common
space. The cross-modal factor analysis (CFA) [12] learns different modalities’ common space
by minimizing the data pair’s Frobenius norm. Joint representation learning (JRL) [13]
learns the sparse projection matrices, and adds the unlabeled data to improve the diver-
sity of the training data. The deep-learning-based cross-modal retrieval methods employ
the scalable nonlinear transformation to learn the sample’s content representation [14].
Ngiam et al. [15] proposed a bimodal auto-encoder to learn different modal correlations,
and applied the restricted Boltzmann machine (RBM) to generate the common space. The
multimodal deep neural network (MDNN) [16] utilizes the deep convolutional neural
network (CNN) to learn the image feature and employs the neural language model (NLM)
to learn the text feature. Furthermore, MDNN establishes the correlation between different
modal features by projecting them into a common space.

Generally, the cross-modal retrieval algorithms can be divided into three categories,
namely unsupervised approaches [11,17,18], pairwise approaches [19,20], and supervised
approaches [14,21]. The unsupervised methods directly exploit different modal feature in-
formation to learn their common representations [7]. For example, CCA [11], Deep-CCA [17],
and Deep Canonical Correlated Auto-encoder (DCCAE) [18] utilize the correlations be-
tween heterogeneous data to learn the common representations. The pairwise-based meth-
ods, such as the multiview metric learning with global consistency and local smoothness
(MVML-GL) method [22] and the modality-specific deep structure (MSDS) method [20],
generate the similarity metrics according to the similarity relationship between different
modal sample pairs [7]. The supervised methods try to preserve the original semantic
label information in the common space. Sharma et al. [23] proposed the generalized
multi-view analysis (GMA) method based on CCA, which supervises learning the com-
mon representations using the semantic category labels. In [14] and [21], generative
adversarial networks [24] are used to generate different modal features and reduce the
distribution difference.

3. The Proposed Method
3.1. Notations

The notations used in this paper are given as follows. O = {ai,bi}n
i = 1 denotes n pairs

of image and text. ai is the image and bi is the text. yi = [yi1,yi2,. . . ,yic]∈Rc is the semantic
label vector, where c is the number of the categories. If the i-th instance belongs to the
j-th category, yij = 1, otherwise yij = 0. Y = [y1,y2,. . . ,yn]∈Rc×n is the label matrix. f(x) and
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g(x) represent the image and text feature learning network. vi = f(ai)∈Rdv is the feature
of image ai and V = [v1,v2,. . . ,vn]∈Rdv×n is the image feature matrix. ti = g(bi)∈Rdt is text
feature and T = [t1,t2,. . . ,tn]∈Rdt×n is the text feature matrix. dv and dt represent the number
of dimensions.

3.2. The Triplet Similarity Relationship Preserving Function

The cross-modal retrieval algorithm measures the similarity relationship between
different modal samples in the common space, and returns the samples with minimal
distance between the nearest neighbors. To obtain an excellent cross-modal retrieval
performance, the distance between the same category samples should be smaller than that
between different categories samples. In Figure 3a, the anchor and positive samples belong
to the same category. In contrast, the anchor and negative samples belong to different
categories. Thus, in Figure 3b, the anchor’s feature should be similar to the positive sample
and different from the negative sample. This ensures the positive samples can first be
returned as the nearest neighbors of the anchor.
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To achieve the above goal, we proposed to simultaneously preserve the inter- and
intra-modal triplet similarity relationship.

In this paper, we designed the triplet loss function between the image–text, image−image,
and text−text, respectively.

The triplet similarity preserving function between image–text is defined as in Equation (1):

LO = ∑
V

[
d
(
Va, Tp

)
− d(Va, Tn) + α

]
+

+∑
T

[
d
(
Ta, Vp

)
− d(Ta, Vn) + α

]
+

(1)

In Equation (1), Lo represents the image–text loss. d(·) is the Euclidean distance. Va,
Vp, and Vn represent the anchor, positive, and negative images, respectively. Ta, Tp, and Tn
represent the anchor, positive, and negative texts, respectively. α is the error margin.

Generally, most of the existing methods only focus on preserving the similarity rela-
tionship between different modal samples, while not preserving the similarity relationship
among the same modal samples [25]. As shown in Figure 4a, samples that belong to
different categories may have a small distance, which may lead to incorrect retrieval results.
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To solve the above problem, we designed the intra-modal triplet similarity preserving
function as in Equation (2). It ensures that the distances among similar samples are smaller
than those among dissimilar samples in the image- or text- modality, respectively.

Lv = ∑
V

[
d
(
Va, Vp

)
− d(Va, Vn) + α

]
+

Lt = ∑
T

[
d
(
Ta, Tp

)
− d(Ta, Tn) + α

]
+

(2)

In Equation (2), Lv is the image-modal triplet similarity preserving function, and Lt is
the text-modal triplet similarity preserving function.

In this paper, we aimed to preserve both the inter- and intra-modal triplet simi-
larity relationship and to define the triplet similarity preserving objective function as
in Equation (3).

LRet = Lo + Lv + Lt (3)

By simultaneously minimizing the value of Lo, Lv, and Lt, we ensured the distance
between the same category samples is small and between the different categories samples
it is large, as shown in Figure 4b. As a result, the proposed method is robust to noise.

3.3. The Minimal Semantic Information Loss

The proposed method utilizes the floating-point feature representing the sample
content in the triplet similarity preserving function. Therefore, to guarantee the cross-
modal search performance, the sample features should have the same semantic information
as its labels.

In this paper, we learned the samples’ features using a deep neural network. Due
to information loss, the deep learning features may not accurately preserve the original
semantic information.

To solve the above problem, we employed a linear projection function to classify the
deep feature, and required that the predicted label be identical to the sample label, as
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shown in Figure 5. We formulate the above procedure as in Equation (4), which minimizes
the difference between the features’ classification results and the samples’ semantic labels.

LDis =
1
n
‖PTV −Y‖F +

1
n
‖PTT −Y‖F (4)
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In Equation (4), ‖·‖F is the Frobenius norm. P is the matrix of the linear projection function.

3.4. The Cross-Modal Adversarial Learning

To directly compute the similarity relationship between the different modal samples,
different modal features should have the same distribution in the common space.

As generative adversarial networks (GANs) have a strong ability for modeling data
distribution and learning discriminative representation [26], we used the GANs to align the
distribution between the different modal features. Figure 6 shows the adversarial learning
procedure. We regarded the fully connected layers of the image modal network as the
image generator GV and the fully connected layers of the text modal network as the text
generator GT. Initially, the discriminator DM regards the image features generated by GV as
the real samples, and considered the text features generated by GT as the fake samples. In
Equation (5), adversarial loss is defined as the difference between different modal feature
distributions. Both the generator and discriminator utilize Equation (5) as the objective
function. During the training procedure, we employed the min−max mechanism. The
discriminator tries to maximize the objective value and the generators aims to minimize
the objective value. When the algorithm converges, DM can only randomly distinguish the
sample’s modal information. Finally, the image and text features have the same distribution.
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LAdv = Ev∼Pimage [log DM(GV(v))]

+Et∼Ptext [log(1− DM(GT(t)))]
(5)

In this paper, we define the final objective function L as in Equation (6), which can
achieve the following three tasks: (1) preserve the inter- and intra-modal relative similarity
relationship, (2) minimize the semantic loss during learning the deep features, and (3) align
the different modal features’ distribution.

L = LDis + λLRet + ηLAdv (6)

In Equation (6), λ and η are the weight parameters. We optimized the objective
function L using the stochastic gradient descent algorithm [27].

4. The Comparative Experiments

In this paper, we conducted comparative experiments on widely used datasets, namely
the Pascal Sentence dataset [28] and the Wikipedia dataset [29]. These two datasets are
publicly available. The retrieval tasks included image retrieving text and text retrieving im-
age. To verify the effectiveness of our proposed methods, we employed five state-of-the-art
methods, namely, CCA [11], JRL [13], CMDN [30], Deep-SM [19], and DSCMR [7], as the
comparative methods. We implemented the model development and data analysis using
the PyTorch deep learning framework.

4.1. The Datasets and Settings

The Pascal Sentence dataset [28] includes 1000 image–text pairs and a total of
20 categories. Each image is described by five sentences in a document. We divided the
Pascal Sentence dataset into three parts, namely, the training, test, and validation sets. We
randomly selected 800 image–text pairs as the training set and 100 image–text pairs as the
test set. The proposed method generated the 4096-dimensional vector as the image feature,
and the text feature had 300-dimensions.

The Wikipedia dataset [29] includes 2866 image–text pairs that can be divided into
10 categories. Each pair consists of an image and several text paragraphs. We randomly
selected 2173 pairs as the training set, and considered the remaining 693 pairs as the test
set. The dimension of the image feature was 4096, and the text feature had 300-dimensions.

The proposed algorithm employed the deep adversarial network to learn different
modal features in the common space. Both GV and GT had two fully connected layers, and
utilized tanh(·) as the activate function. At the end, GV and GT had a fully connected layer
that shared the weight values. The discriminator DM consisted of three fully connected
layers and employed the sigmoid function at the activation layer. For the triplet similarity
preserving function in the common space, the value of α was set as 0.3. For the objective
function L, λ = 0.001, η = 0.1.

4.2. Evaluation Metric

In this paper, we used mAP (mean average precision) and PR (precision−recall) curves
to measure the cross-modal retrieval performance.

MAP [31] is the mean value of the average precision of all of the query sample retrieval
results, and its definition is shown in Equation (7).

mAP =
1
Q

Q

∑
i=1

1
Ki

Ki

∑
j=1

j
rank(j)

(7)

Q represents the number of query samples. Ki represents the number of the i-th query
sample’s ground truth. j is the numerical order of the j-th ground truth. rank (j) returns the
ranking order of the j-th true positive data in the retrieval result.
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4.3. The Parameters Values

In this paper, we set the parameters λ and η to balance the effect between the triplet
similarity preserving the loss and adversarial loss during the training process. We compared
the cross-modal retrieval performances with different values of λ and η on both the Pascal
Sentence and Wikipedia datasets. The experimental results are shown in Figures 7 and 8.
In Figure 7, the value of λ is fixed and the value of η gradually increases from 0.04 to 0.16.
The best cross-modal retrieval performance occurs when η = 0.1. In Figure 8, η is fixed
and the value of λ changes from 0.0004 to 0.0016. When λ = 0.001, we achieved the best
cross-modal retrieval performance. As described above, we set the value of η as 0.1 and λ
as 0.001 in this paper.
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4.4. Experimental Results and Analysis

The comparison algorithms include CCA [11], JRL [13], CMDN [30], Deep-SM [19] and
DSCMR [7]. CCA [11] learns the common space which maximizes the pairwise interrela-
tionships between two sets of heterogeneous data. JRL [13] learns different modal features
by multi-metric learning. CCA and JRL belong to the traditional methods. CMDN [30]
employs both the intra- and inter-modal information, and utilizes the hierarchical learning
to correlate the connections between different modalities. Deep-SM [19] uses deep semantic
matching to retrieve different modalities with multi-labels. The supervised DSCMR [7]
learns the features by minimizing the discriminative loss between the label and common
spaces. CMDN, Deep-SM and DSCMR are deep learning based methods.

Tables 1 and 2 show the mAP values on the Wikipedia and Pascal Sentence datasets,
respectively. Correspondingly, Figures 9 and 10 show the PR curves. The experimental
results verify that our method outperforms the best-of-the-art methods.

Table 1. The mAP values of the cross-modal retrieval performance on the Wikipedia dataset.

Method
Task

Image to Text Text to Image Average

CCA 0.176 0.178 0.177
JRL 0.344 0.277 0.311

CMDN 0.393 0.325 0.359
Deep-SM 0.458 0.345 0.402
DSCMR 0.487 0.429 0.458

Ours 0.494 0.437 0.466

Table 2. The mAP values of the cross-modal retrieval performance on the Pascal Sentence dataset.

Method
Task

Image to Text Text to Image Average

CCA 0.110 0.116 0.113
JRL 0.300 0.286 0.293

CMDN 0.334 0.333 0.334
Deep-SM 0.440 0.414 0.427
DSCMR 0.688 0.704 0.696

Ours 0.698 0.710 0.704
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CCA only uses the mutual relationship to study the correlation between two groups,
so it cannot understand the class labels’ high-level semantic information. As a result, CCA
has a weak ability to discriminate the samples in the common space. JRL learns different
modal sparse projection matrices and utilizes unlabeled data to improve the diversity
of the training data. CCA and JRL use traditional methods to correlate different modal
connections, which cannot make full use of samples’ semantic information. To solve the
above-mentioned problem, the deep learning mechanism is employed to further improve
cross-modal retrieval performance. CMDN hierarchically combines the intra- and inter-
modal features, and uses a two-level network strategy to learn the cross-modal correlations.
However, the different modal distributions are diverse, and CMDN does not align the
generated features’ distribution. Deep-SM extracts visual features by a pre-trained network,
and adopts a deep semantic matching method to achieve the cross-modal retrieval of the
samples with multiple labels. However, Deep-SM does not take the same modal correlation
into account. The supervised DSCMR learns the discriminative features and minimizes the
discriminative loss between the label and common spaces. Moreover, DSCMR adopts a
weight-sharing strategy to reduce the differences between different the modal high-level
semantic information. However, DSCMR does not consider the intra-modal correlation
during the training procedure. In this paper, the proposed method uses the adversarial
network to jointly model the heterogeneous data and generate their feature representations
in the common space, which can reduce the differences between the different modalities’
feature distributions. Furthermore, it preserves both the inter- and intra-modal triplet
similarity relationship. This measure can avoid retrieving negative samples, which may
have similar intra-modal feature representations, and boost robustness to noise. In each
modal space, a linear projection function is built to classify the generated feature, and the
feature’s prediction label is required to be consistent with the sample’s label. As a result,
the generated feature can correctly represent the sample’s semantic information. Thanks
to the above measures, the cross-modal retrieval task can be achieved directly based on
different modal features’ similarity relationship. Finally, the experimental results show that
the proposed method is better than the state-of-the-art algorithms.
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4.5. The Ablation Study on Constraints

In this paper, to guarantee the cross-modal retrieval performance, we designed three
loss functions: (1) the cross-modal learning loss (LRet), which simultaneously preserved
the inter- and intra-modal similarity relationship; (2) the discrimination loss (LDis), which
aimed to preserve the semantic information and improve the intra-modal discriminative
ability during generating features; and (3) the cross-modal adversarial loss (LAdv), which
aligned different modalities’ feature distributions in the common space. To verify the effect
of the above loss functions in the cross-modal retrieval task, we conducted the ablation
study on the Wikipedia and Pascal Sentence datasets, and the comparison algorithms
are shown in Table 3. The final experimental results are shown in Tables 4 and 5, and in
Figures 11 and 12.

Table 3. Comparative algorithms in the ablation experiments.

The Ablation Algorithms The Objective Functions

NoLDis No Discrimination loss LDis
NoLRet No Cross-modal learning loss LRet
NoLAdv No Cross-modal adversarial loss LAdv
OnlyLDis Only Discrimination loss LDis
OnlyLRet Only Cross-modal learning loss LRet
OnlyLAdv Only Cross-modal adversarial loss LAdv

Table 4. The mAP scores of the cross-modal retrieval performance on the Wikipedia dataset.

Method
Task

Image to Text Text to Image Average

NoLDis 0.279 0.270 0.274
NoLRet 0.441 0.405 0.423
NoLAdv 0.441 0.400 0.421
OnlyLDis 0.439 0.405 0.422
OnlyLRet 0.357 0.337 0.347
OnlyLAdv 0.120 0.123 0.122

Full 0.494 0.437 0.466

Table 5. The mAP scores of the cross-modal retrieval performance on the Pascal Sentence dataset.

Method
Task

Image to Text Text to Image Average

NoLDis 0.101 0.328 0.215
NoLRet 0.595 0.690 0.642
NoLAdv 0.662 0.670 0.666
OnlyLDis 0.665 0.678 0.672
OnlyLRet 0.649 0.649 0.649
OnlyLAdv 0.115 0.091 0.103

Full 0.698 0.710 0.704

The experimental results show that the deep adversarial triplet similarity preserving
cross-modal retrieval algorithm achieved the best performance on both datasets. This
means all three loss functions played important roles in achieving the cross-modal retrieval
task. When we generated the feature using the end to end network, LDis could preserve the
semantic information. Moreover, LDis ensured the model could discriminate the samples
belonging to different categories in the common space. Thus, the performance of OnlyLDis
was better than NoLDis. OnlyLAdv had a poor performance, because it only aligned different
modal feature distributions, while ignoring preserving the similarity relationship among the
intra-modal samples. In the common space, the cross-modal learning module minimized
the distance between the same category samples and maximized the distance between
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the different categories’ samples. Assisted by the cross-modal learning module, we could
return the samples similar to the query sample as the retrieval results.
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4.6. The Ablation Study on Triplet Similarity Preserving Constraint

In this paper, to preserve the similarity relationship among samples, we designed the
triplet similarity preserving objective function LRet, which included three parts, the inter-
modal triplet similarity preserving constraint LO, the image intra-modal triplet similarity
preserving constraint Lv, and the text intra-modal triplet similarity preserving constraint Lt.
During the training process, we learned different modal features by simultaneously mini-
mizing the values of LO, Lv, and Lt in the common space.

To further illustrate the importance of LO, Lv, and Lt, we separately conducted the
ablation experiments on the Pascal Sentence and Wikipedia datasets. Table 6 shows the
final experimental results, which included the image to text and the text to image.
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Table 6. The mAP values of the cross-modal retrieval results with minimal LO or LRet.

Datasets Task Minimal LO Minimal LRet

Pascal Sentence
Image to Text 0.688 0.698
Text to Image 0.701 0.710

Average 0.694 0.704

Wikipedia
Image to Text 0.488 0.494
Text to Image 0.417 0.437

Average 0.453 0.466

The experimental results show that the cross-modal retrieval performance with mini-
mal LRet was better than that with minimal LO. By minimizing LO, we could only guarantee
the triplet similarity relationship among the different modal samples. Unfortunately,
the intra-modal samples that belonged to the different categories may have similar fea-
tures without preserving the intra-modal triplet similarity relationship. As a result, the
cross-modal retrieval task may return the negative samples as the nearest neighbors. In
contrast, by minimizing the value of LRet, we could simultaneously preserve the inter- and
intra-modal triplet similarity relationship. This could guarantee that the distances among
the inter- and intra-modal similar samples were smaller than those among the dissimilar
samples. Thus, the inter- and intra-modal nearest neighbors were assigned similar features.
Finally, we could improve the cross-modal retrieval performance assisted by LRet.

4.7. The Noise Robustness Experiments

In this section, we aimed to verify that the proposed triplet similarity relationship pre-
serving constraint could boost the algorithm’s robustness to noise. We randomly generate
uniform noise, and separately put them into the Pascal Sentence and Wikipedia datasets.
The cross-modal retrieval experiments are shown in Table 7 and Figure 13. We removed the
triplet similarity relationship constraint (LRet) from the comparative algorithm. The final
experimental results showed that the proposed triplet similarity preserving constraint LRet
could effectively boost the algorithm’s robustness to noise.
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Table 7. The mAP values of the cross-modal retrieval performance on the Pascal Sentence and
Wikipedia datasets, which contain 100 and 300 noise samples, respectively.

Datasets Tasks Without LRet The Proposed Algorithm

Pascal Sentence
(100 noise samples)

Image to Text 0.669 0.690
Text to Image 0.668 0.707

Average 0.669 0.699

Wikipedia
(300 noise samples)

Image to Text 0.437 0.481
Text to Image 0.380 0.419

Average 0.409 0.450

5. Conclusions

The existing cross-modal algorithms do not align different modal feature distributions
in the common space. Moreover, they do not take the similarity relationship preserving
among the intra-modal samples into consideration. To solve these problems, we propose
a novel cross-modal retrieval algorithm. We use the adversarial networks to generate
different modal features and to align their distributions in the common space. To pre-
serve the similarity relationship among the intra-modal samples, we establish the triplet
similarity relationship preserving function to minimize the distance between the same
category samples and to maximize the distance between the different categories’ sam-
ples. This measure can avoid retrieving negative samples caused by noise interference
and improves the robustness of the algorithm. During the training process, we utilize
the linear function to project the generated features into different classes, and require the
prediction label of the generated feature be as the same as the sample’s label. Thus, it
can minimize the semantic information loss while learning the features. To verify the
cross-modal performance of the proposed method, we conduct comparative experiments
on two widely used benchmark datasets—the Wikipedia and Pascal Sentence datasets.
The final experimental results demonstrate that our proposed method achieves the best
cross-modal retrieval performance.
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