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Abstract: Conventional subspace learning approaches based on image gradient orientations only
employ first-order gradient information, which may ignore second-order or higher-order gradient
information. Moreover, recent researches on the human vision system (HVS) have uncovered that the
neural image is a landscape or a surface whose geometric properties can be captured through second-
order gradient information. The second-order image gradient orientations (SOIGO) can mitigate the
adverse effect of noise in face images. To reduce the redundancy of SOIGO, we propose compact
SOIGO (CSOIGO) by applying linear complex principal component analysis (PCA) in SOIGO. To
be more specific, the SOIGO of training data are firstly obtained. Then, linear complex PCA is
applied to obtain features of reduced dimensionality. Combined with collaborative-representation-
based classification (CRC) algorithm, the classification performance of CSOIGO is further enhanced.
CSOIGO is evaluated under real-world disguise, synthesized occlusion, and mixed variations. Under
the real disguise scenario, CSOIGO makes 2.67% and 1.09% improvement regarding accuracy when
one and two neutral face images per subject are used as training samples, respectively. For the mixed
variations, CSOIGO achieves a 0.86% improvement in terms of accuracy. These results indicate that
the proposed method is superior to its competing approaches with few training samples, and even
outperforms some prevailing deep-neural-network-based approaches.

Keywords: face recognition; second-order gradient; image gradient orientations; collaborative-
representation-based classification

MSC: 68T10

1. Introduction

As one of the most active research topics, face recognition (FR) has aroused great
attention in the domain of pattern recognition and computer vision. Considerable progress
has been made during the past decades and many successful methods have been proposed.
Nevertheless, complicated variations in face images (e.g., occlusion, illumination, and
expression) bring a great challenge for FR systems. To increase the robustness to occlu-
sion, researchers have developed a variety of approaches. Sparse representation-based
classification (SRC) [1] was developed for FR and shows robustness to occlusion and cor-
ruption in the test images when combined with the block partition technique. Naseem
et al. [2] proposed a modular linear regression classification (Modular LRC) approach with
a distance-based evidence fusion (DEF) algorithm to tackle the problem of contiguous
occlusion. Dividing an image into different blocks is an effective way for feature extrac-
tion. Adjabi et al. [3] developed the multiblock color-binarized statistical image features
(MB-C-BSIF) method for single-sample face recognition. Abdulhussain et al. [4] presented
a method for fast calculation of features of overlapping image blocks. To further enhance
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the performance of SRC, Li et al. [5] proposed a sparsity augmented weighted CRC ap-
proach for image recognition. Dong et al. [6] designed a low-rank Laplacian-uniform mixed
(LR-LUM) model, which characterizes complex errors as a combination of continuous
structured noises and random noises. Yang et al. [7] presented nuclear norm-based matrix
regression (NMR), which employs two dimensional image-matrix-based error model rather
than the one-dimensional pixel-based error model. The representation vector in NMR is
imposed by the `2 norm, to make use of the discriminative property of sparsity, Chen et al.
[8] proposed a sparse regularized NMR (SR-NMR) by replacing the `2 norm constraint on
the representation vector with the `1 norm. However, the above approaches need uncor-
rupted training images. When providing corrupted training data, their performance will
be deteriorated. To tackle the situation that both the training and test data are corrupted,
low-rank matrix recovery (LRMR) can be applied. Chen et al. [9] proposed a discriminative
low-rank representation (DLRR) method, which introduces the structural incoherence
into the framework of low-rank representation (LRR) [10]. Gao et al. [11] proposed to
learn robust and discriminative low-rank representation (RDLRR) by introducing low-rank
constraint to simultaneously model the representation and each error term. Hu et al. [12]
presented a robust FR method, which employs dual nuclear norm low-rank representation
and a self-representation induced classifier. Yang et al. [13] developed a sparse low-rank
component-based representation (SLCR) method for FR with low-quality images. Recently,
Yang et al. [14] extended SLCR and proposed a FR technique named sparse individual
low-rank component representation (SILR) for IoT-based systems. Inspired by LRR and
deep learning techniques, Xia et al. [15] developed an embedded conformal deep low-rank
autoencoder (ECLAE) neural network architecture for matrix recovery.

Recently, image gradient orientation (IGO) has attracted much attention due to its
impressive results in occluded FR. Wu et al. [16] presented a gradient direction-based hier-
archical adaptive sparse and low-rank (GD-HASLR) model, which performs in the image
gradient direction domain rather than the image intensity domain. Li et al. [17] incorpo-
rated IGO into robust error coding and proposed an IGO-embedded structural error coding
(IGO-SEC) model for FR with occlusion. Apart from the above two works, Zhang et al. [18]
designed Gradientfaces for FR under varying illumination conditions. In essence, Gradient-
faces is the IGO. Tzimiropoulos et al. [19] introduced the notion of subspace learning from
IGO and developed approaches such as IGO-PCA and IGO-LDA. Vu [20] proposed a face
representation approach called patterns of orientation difference (POD), which explores
the relations of both gradient orientations and magnitudes. Zheng et al. [21] presented an
online image alignment method via subspace learning from IGO. Qian et al. [22] presented
a method called ID-NMR, in which the local gradient distribution is exploited to decompose
the image into several gradient images. Wu et al. [23] proposed a new feature descriptor
called the histogram of maximum gradient and edge orientation (HGEO) for the purpose
of multispectral image matching.

The above IGO-based approaches only take the first-order gradient information into
account, thus neglecting the second-order or higher-order gradient information. Latest
researches on human vision have discovered that the neural image is a landscape or a
surface whose geometric properties can be described by local curvatures of differential
geometry through second-order gradient information [24,25]. Based on the second-order
gradient, Huang et al. [24] presented a new local image descriptor called histograms of
second-order gradient (HSOG). Li et al. [26] proposed a patterned fabric defect detection
method based on the second-order, orientation-aware descriptor. Zhang et al. [27] designed
a blind image quality assessment (IQA) method based on multiorder gradient statistics.
Bastian et al. [28] developed a pedestrian detector utilizing both the first-order and the
second-order gradient information in the image. Nevertheless, the above second-order-
gradient-based approaches do not involve a dimensionality reduction technique, which
results in redundant information. To alleviate this problem, we introduce PCA into the
framework of SOIGO to extract more compact features. Moreover, we employ CRC as the
final classifier due to its effectiveness and efficiency. Experimental results show that our
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proposed method (CSOIGO) is robust to real disguise, synthesized occlusion, and mixed
variations and is superior to some popular deep-neural-network-based approaches.

Our main contributions are outlined as follows:

1. We find that SOIGO is more robust to variations in face images compared with the first-
order IGO. After extracting the SOIGO features of training samples, linear complex
PCA is applied to reduce the redundancy of SOIGO.

2. The classic CRC algorithm is utilized to predict the identity of test samples, and it can
further enhance the classification performance of CSOIGO.

3. Experiments on different scenarios demonstrate the efficacy and robustness of CSOIGO
compared with other approaches.

The remainder of this paper is arranged as follows. Section 2 reviews some related
work. In Section 3, we present our proposed approach. Section 4 conducts several experi-
ments to demonstrate the efficacy of our proposed method. Finally, conclusions are drawn
in Section 5.

2. Related Work
2.1. IGO-PCA

Given a set of images {Zi} (i = 1, 2, . . . , N), where N denotes the number of training
images and Zi ∈ Rm×n. Suppose that I(x, y) is the image intensities at pixel coordinates
(x, y) of sample Zi, the horizontal and vertical gradient can be obtained by the following
formulations:

Gi,x = hx ∗ I(x, y)

Gi,y = hy ∗ I(x, y),
(1)

where ∗ expresses convolution, and hx and hy are filters employed to approximate the ideal
differentiation operator along the image horizontal and vertical directions, respectively [29].
Image gradient contains edge information and is used to characterize the structure of
an image. In [30], gradient feature map is extracted from the input image and exploited
as a structural prior to guide the process of image reconstruction. However, the image
data mostly distribute discretely in real-world scenarios; so, we usually use differences to
compute the gradients, i.e., achieving the gradients through the difference between adjacent
pixels’ gray values. Thus, horizontal and vertical gradients can be reformulated as

Gi,x = I(x + 1, y)− I(x, y)

Gi,y = I(x, y + 1)− I(x, y).
(2)

Then, the gradient orientation of the pixel location (x, y) is

Φi(x, y) = arctan
Gi,y
Gi,x

, i = 1, 2, ..., N. (3)

For each image Zi whose size is m × n, we can obtain a corresponding gradient
orientation matrix Φi ∈ [0, 2π)m×n. Then, we can obtain the corresponding sample vectors
by converting 2D images Φi into 1D vectors φi. Referring to [19], we also define the
mapping from [0, 2π)K(K = m× n) onto a subset of complex sphere with radius

√
K,

ti(φi) = ejφi , (4)

where ejφi = [ejφ1 , ejφ2 , ..., ejφK ]T and ejθ is Euler form, i.e., ejθ = cosθ + jsinθ. Then, we
can apply complex linear PCA to the transformed ti—that is, we seek for a set of d < K
orthonormal bases U = [u1, u2, ..., ud] ∈ CK×d by solving the following problem:

ε(U) =
∥∥∥X−UUHX

∥∥∥2

F
, (5)
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where X = [t1, t2, ..., tN ] ∈ CK×N , UH is the conjugate transpose of U, and ‖.‖F denotes the
Frobenius norm. Equation (5) can be reformulated as

Uo = arg max
U

tr(UHXXHU), s.t. UHU = I. (6)

The solution is given by the d eigenvectors of XXH corresponding to the d largest
eigenvalues. Then, the d-dimensional embedding Y ∈ Cd×N of X is produced by Y = UHX.

2.2. Collaborative-Representation-Based Classification

During the past few years, the representation-based classification method (RBCM) has
attracted lots of attention in the community of pattern recognition. The pioneering work
is SRC [1]. In SRC, the `1 norm constraint is employed to attain the sparse coefficient of
test data. Zhang et al. [31] argued that it is the collaborative representation mechanism
rather than the `1 norm constraint that makes SRC successful for FR. Therefore, they
developed the CRC method, which replaces the `1 norm constraint with the `2 norm.
Afterwards, many improved methods were proposed to further boost the classification
performance of CRC. Gou et al. [32] developed a class-specific mean vector-based weighted
competitive and collaborative representation (CMWCCR) method, which fully employs the
discrimination information in different ways. Motivated by the idea of linear representation,
Gou et al. [33] proposed a representation coefficient-based k-nearest centroid neighbor
(RCKNCN) method. Recently, Gou et al. [34] presented a hierarchical graph augmented
deep collaborative dictionary learning (HGDCDL) model, which applies collaborative
representation to the deepest-level representation learning. For simplicity, in this paper, we
employ the original CRC as the classifier, and the objective function of CRC is formulated
as follows:

min
α

{
‖y−Dα‖2

2 + λ‖α‖2
2

}
, (7)

where y is the test sample, D is the dictionary that contains all the training data from C
classes, and λ is a balancing parameter. Equation (7) has the following closed-form solution,

α = (DTD + λI)−1DTy. (8)

In the classification stage, apart from the class-specific reconstruction error
∥∥y−Djαj

∥∥
2,

j = 1, 2, . . . , C, where αj is the coefficient vector corresponding to the jth class, Zhang et al. [31]
found that

∥∥αj
∥∥

2 also contains some discriminative information for classification. Thus, they
presented the following regularized residuals for classification,

identity(y) = arg min
j

∥∥y−Djαj
∥∥

2∥∥αj
∥∥

2

. (9)

3. Proposed Method

Previous studies revealed that gradient information at different orders characterize
different structural features of natural scenes. The first-order gradient information is re-
lated to the slope and elasticity of a surface, while the second-order gradient delivers the
curvature-related geometric properties. Figure 1 depicts two images and their correspond-
ing landscapes plotted as surfaces; one can see that these landscapes contain a variety of
local shapes, such as cliffs, ridges, summits, valleys, and basins. Inspired by the above
results, we propose a new FR method that exploits the SOIGO. The second-order gradient
is obtained based on the first-order gradient information defined in Equation (2),

G2
i,x = Gi,x(x + 1, y)−Gi,x(x, y)

G2
i,y = Gi,y(x, y + 1)−Gi,y(x, y),

(10)
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where G2
i,x and G2

i,y are the second-order gradient along the horizontal and vertical direc-
tions, respectively. Therefore, the SOIGO is computed as follows:

Φ2
i (x, y) = arctan

G2
i,y

G2
i,x

. (11)

Figure 1. Original images (left part) and their surface plots (right part).

Figure 2 presents an original face image and its gradient orientations of the first and
second orders; one can see that, compared with the first-order IGO, the SOIGO significantly
depresses the noise in the orientation domain. Moreover, the SOIGO contains more fine
information than the first-order IGO, e.g., areas around the eyes, nose, and mouth.

Figure 2. Original face image and its gradient orientations of the first and second orders, respectively.

To further illustrate the effectiveness of using the SOIGO, we visualize the original
data, the first-order IGO, and the SOIGO on the AR database by employing the t-SNE
algorithm [35] in Figure 3. These data are selected from the first ten subjects on the AR
database; for each person, seven nonoccluded face images in Session 1 are used. Then,
these images are occluded by a square baboon image with a percentage of 30%. For detailed
experimental settings, please refer to Section 4.3. As can be seen from Figure 3, though the
first-order IGO looks better compared with the original data, clusters of different classes
are mixed together. In Figure 3c, the cluster of the same class is more compact than that of
Figure 3b, which is beneficial for subsequent classification.
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Figure 3. t-SNE visualization of (a) original data, (b) the first-order IGO with the mapping defined in
Equation (4), and (c) the SOIGO with the mapping defined in Equation (4); each color represents a
class. For better visualization, please refer to the electronic version of this paper.

The procedures of obtaining the projection matrix U is the same as in IGO-PCA. Then,
for a test image Zt, we first compute its SOIGO and obtain t after the mapping defined by
Equation (4). Embeddings of training and test images are derived as follows:

Y = UHX, z = UHt, (12)

where Y ∈ Cd×N and z ∈ Cd×1. To make the embeddings of training and test images
suitable for CRC, we employ both the real and imaginary parts of Y and z as the input of
CRC; let

D =

[
real(Y)

imag(Y)

]
, y =

[
real(z)

imag(z),

]
(13)

where real(·) and imag(·) are the real part and imaginary part of complex number, re-
spectively. Then, we compute the representation coefficient vector of y over D; this is
followed by checking which class results in the least regularized residual. The pipeline of
our proposed CSOIGO is illustrated in Figure 4, and the complete process of CSOIGO is
outlined in Algorithm 1.

When assessing the performance of an algorithm, we should take its computational
complexity into account. The major consumption of CSOIGO lies in the linear complex
PCA and CRC, and they both involve the operation of matrix. It takes O(K2N) to compute
the covariance matrix and O(K3) for eigen-decomposition in the process of PCA, where
K = m× n and N denote the dimensionality and total number of training images. From
Equation (8), one can see that CRC contains matrix multiplication and matrix inversion,
and it takes O(N2d) to compute DTD and O(N3) for the inverse operation of matrix,
where d is the reduced dimensionality. Suppose there are p test samples, CRC takes
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O(N2d + N3 + Ndp) to completely classify them. Therefore, the total computational
complexity of CSOIGO is O(K2N + K3 + N2d + N3 + Ndp).

X

Test data y

………

Calculate the SOIGO

Training 
images

A test image

Calculate 
the SOIGO

CRC

Identity of y

……… SOIGO

Vectorization

PCA

Training 
data D

Dimensionality 
reduction

Vectorization

SOIGO
t

Training stage

Test stage

Figure 4. The pipeline of our proposed CSOIGO.

Algorithm 1 CSOIGO

Input: A set of N training images {Zi}(i = 1, 2, . . . , N) from C classes, test image Zt, the
number of principal components d, and the regularization parameter λ for CRC.

1. Obtain the SOIGO Φ2
i of training images and convert it to 1D vector φ2

i .
2. Compute ti(φ

2
i ) = ejφ2

i ; all the SOIGO of training images form the matrix X =
[t1, t2, ..., tN ].

3. Obtain the projection matrix U via Equation (6).
4. For the test image Zt, obtain its SOIGO Φ2

t and convert it to 1D vector φ2
t ; then,

compute t = ejφ2
t .

5. Obtain the embeddings of training and test images via Equation (12).
6. Obtain D and y by Equation (13).
7. Code y over D by Equation (8).

8. Compute the regularized residuals r j =
‖y−Djαj‖2
‖αj‖2

, j = 1, 2, . . . , C.

Output: identity(Zt) = arg min
j

r j.

4. Experimental Results and Analysis

In this section, experiments are conducted under different scenarios to validate the
effectiveness of the proposed method. For reproduction, the source code of CSOIGO is
available at https://github.com/yinhefeng/SOIGO.

https://github.com/yinhefeng/SOIGO
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4.1. Recognition with Real Disguise

The AR database contains over 4000 images of 126 subjects. For each individual, 26
images are taken in two separate sessions. There are 13 images for each session, in which
three images with sunglasses, another three with scarves, and the remaining seven have
different illumination and expression changes; the 13 images of one subject from Session
1 are shown in Figure 5. Each image is 165 × 120 pixels. For fair comparison, we use the
same subset as in [16], which consists of 50 men and 50 women, and all images are resized
to 42 × 30 pixels. The neutral face image of each subject is used as training data, and
the sunglasses/scarf occluded images in each session for testing. The proposed method
is compared with other state-of-the-art approaches, including HQPAMI [36], NR [37],
ProCRC [38], F-LR-IRNNLS [39], EGSNR [40], LDMR [41], and GD-HASLR [16]. To better
illustrate the superiority of CSOIGO, we also present the results of IGO-PCA-NNC [19],
IGO-PCA-CRC, and SOIGO-PCA-NNC. Table 1 summarizes the experimental results; one
can see that CSOIGO achieves the highest recognition accuracy under all cases except
for the sunglasses scenario of session 1. Since the test images are partially occluded by
sunglasses or scarf, HQPAMI, NR, ProCRC, and LDMR seem not very robust to contiguous
occlusion. Due to the preprocessing step that separates outlier pixels and corruptions from
the training samples, the overall classification accuracy of F-LR-IRNNLS is higher than
that of EGSNR. IGO-PCA-CRC ranks second over all methods and achieves 5.66% higher
accuracy than IGO-PCA-NNC, which validates the efficacy of CRC when coping with IGO
features. GD-HASLR has competitive performance with SOIGO-PCA-NNC. However, the
overall accuracy gain of CSOIGO over GD-HASLR and IGO-PCA-CRC is 4.5% and 2.67%,
respectively. The above experimental results indicate that our proposed CSOIGO is robust
to real disguise even when a single training sample per person is available.

(a) (b)

(c)

Figure 5. Some example face images from the AR database: (a) the neutral image of a subject
from Session 1; (b) face images with illumination and expression variations; (c) images occluded by
sunglasses/scarf.



Mathematics 2022, 10, 2587 9 of 16

Table 1. Recognition accuracy (%) of competing approaches on a subset of the AR database (test
samples contain sunglasses occlusion or scarf occlusion) when only one neutral face image per subject
from Session 1 is used as training sample. The dimension that leads to the best result for IGO- and
SOIGO-based approaches is given in parentheses.

Methods
Sunglasses Scarf

Overall
Session 1 Session 2 Session 1 Session 2

HQPAMI [36] 56.67 38.00 38.00 22.33 38.75
NR [37] 28.33 16.67 29.67 17.33 23.00

ProCRC [38] 53.07 31.00 18.67 7.33 27.52
F-LR-IRNNLS [39] 88.67 60.33 67.00 49.67 66.42

EGSNR [40] 84.00 54.00 70.33 48.33 64.16
LDMR [41] 68.33 45.67 59.67 34.00 51.92

GD-HASLR [16] 92.00 66.67 82.67 58.67 75.00
IGO-PCA-NNC [19] 89.00 (99) 69.00 (99) 73.33 (97) 53.33 (96) 71.17

IGO-PCA-CRC 93.00 (85) 74.33 (92) 81.67 (88) 58.33 (95) 76.83
SOIGO-PCA-NNC 88.67 (92) 73.33 (96) 80.33 (99) 61.00 (88) 75.83

CSOIGO 92.67 (89) 76.67 (93) 83.33 (75) 65.33 (99) 79.50
Bold values indicate the best recognition accuracy.

Next, we utilize two neutral face images per subject from Sessions 1 and 2 for training,
and the test sets are identical with the first experiment. The results are reported in Table 2.
As can be seen from Table 2, CSOIGO yields the best overall recognition accuracy and
outperforms GD-HASLR by 2.92%. Again, IGO-PCA-CRC ranks second in all methods.
SOIGO-PCA-NNC outperforms IGO-PCA-NNC, and CSOIGO achieves higher accuracy
than IGO-PCA-CRC, which indicates that SOIGO is more robust to occlusion than IGO.

Table 2. Recognition accuracy (%) of competing approaches on a subset of the AR database (test
samples contain sunglasses occlusion or scarf occlusion) when two neutral face images (from Sessions
1 and 2) per subject are used as training samples, the dimension that leads to the best result for IGO-
and SOIGO-based approaches is given in parentheses.

Methods
Sunglasses Scarf

Overall
Session 1 Session 2 Session 1 Session 2

HQPAMI [36] 61.33 59.33 44.67 48.00 53.33
NR [37] 34.00 33.33 33.00 35.67 34.00

ProCRC [38] 53.00 54.67 18.00 17.67 35.84
F-LR-IRNNLS [39] 90.33 87.67 78.67 76.00 83.17

EGSNR [40] 88.00 89.33 80.00 73.00 82.58
LDMR [41] 71.00 63.67 64.00 61.00 64.92

GD-HASLR [16] 93.00 93.33 82.67 84.00 88.25
IGO-PCA-NNC [19] 93.00 (182) 91.67 (191) 78.00 (199) 74.00 (193) 84.17

IGO-PCA-CRC 96.00 (128) 95.33 (116) 85.00 (190) 84.00 (160) 90.08
SOIGO-PCA-NNC 96.33 (187) 92.67 (197) 86.33 (166) 83.67 (189) 89.75

CSOIGO 97.33 (144) 95.67 (124) 86.00 (119) 85.67 (198) 91.17
Bold values indicate the best recognition accuracy.

4.2. Comparison with CNN-Based Approaches

In this subsection, we compare our proposed method with prevailing deep-learning-
based approaches. The first one is VGGFace [42], which is based on the VGGNet [43] and
has 16 convolutional layers, five max-pooling layers, three fully-connected layers, and a
final linear layer with softmax layer. In our experiments, we employ FC6 and FC7 for
feature extraction. The second one is Lightened CNN [44], which has a low computational
complexity. Lightened CNN consists of two different models, i.e., Model A and Model B.
Model A is based on the AlexNet [45], which contains four convolution layers using the
max feature map (MFM) activation functions, four max-pooling layers, two fully-connected
layers, and a linear layer with softmax activation in the output. Model B is based on
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the Network in Network model [46] and consists of five convolution layers using the
MFM activation functions, four convolutional layers for dimensionality reduction, five
max-pooling layers, two fully-connected layers, and a linear layer with softmax activation
in the output. For Lightened CNN, FC1 is used for feature extraction. All the features
extracted by VGGFace and Lightened CNN are classified using the nearest neighbor
classifier with cosine distance. When training VGGFace, the size of input image is 224×224,
and the preprocessing operation involves subtracting the mean RGB value, computed on
the training set, from each pixel. The batch size, number of epochs, and optimizer are 256,
74, and sgdm, respectively. The learning rate is initially set to 1 × 10−2 and then decreased
by a factor of 10. For training Lightened CNN, the size of input image is 144 × 144, and the
input image is cropped into 128 × 128 and mirrored. The batch size, number of epochs,
and optimizer are 20, 150, and rmsprop, respectively. The learning rate is set to 1 × 10−3

initially and reduced to 5 × 10−5 gradually.
As in Section 4.1, the first experiment is one neutral face of each subject for training

on the AR database, and the experimental results are summarized in Table 3. Table 4
lists the results when two neutral faces are used for training. From Tables 3 and 4, we can
see that VGGFace performs better in the scarf scenario than in the sunglasses scenario.
This indicates that VGGFace has difficulty tackling the upper face occlusion, and this
phenomenon is also observed in [47]. Moreover, when using more training samples, the
performance of VGGFace does not improve. Hence, to increase robustness to upper face
occlusion, VGGFace may need much more training data. By comparison, our proposed
CSOIGO can achieve better results even with few training samples. In practical applications,
training data may be insufficient. In this situation, CSOIGO is more appropriate to realize
robust face recognition than VGGFace.

Similar to the results of VGGFace, Lightened CNN performs worse in the sunglasses
scenario than in the scarf scenario. Additionally, Model A outperforms Model B, and Model
A also achieves higher accuracy than VGGFace. However, whether one or two neutral face
images per subject are used for training, our proposed CSOIGO achieves the best overall
recognition accuracy.

Table 3. Comparison with CNN-based approaches on a subset of the AR database (test samples
contain sunglasses occlusion or scarf occlusion) when only one neutral face image per subject from
Session 1 is used as training samples. The dimension that leads to the best result for IGO- and
SOIGO-based approaches is given in parentheses.

Methods
Sunglasses Scarf

Overall
Session 1 Session 2 Session 1 Session 2

VGGFace FC6 [42] 54.00 45.00 91.67 88.00 69.67
VGGFace FC7 [42] 45.67 40.00 88.67 84.00 64.59

Lightened CNN (A) [44] 67.33 56.00 87.00 82.33 73.17
Lightened CNN (B) [44] 36.33 31.33 80.67 73.67 55.50

GD-HASLR [16] 92.00 66.67 82.67 58.67 75.00
IGO-PCA-NNC [19] 89.00 (99) 69.00 (99) 73.33 (97) 53.33 (96) 71.17

IGO-PCA-CRC 93.00 (85) 74.33 (92) 81.67 (88) 58.33 (95) 76.83
SOIGO-PCA-NNC 88.67 (92) 73.33 (96) 80.33 (99) 61.00 (88) 75.83

CSOIGO 92.67 (89) 76.67 (93) 83.33 (75) 65.33 (99) 79.50
Bold values indicate the best recognition accuracy.
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Table 4. Comparison with CNN-based approaches on a subset of the AR database (test samples
contain sunglasses occlusion or scarf occlusion) when two neutral face images (from Sessions 1 and 2)
per subject are used as training samples. The dimension that leads to the best result for IGO- and
SOIGO-based approaches is given in parentheses.

Methods
Sunglasses Scarf

Overall
Session 1 Session 2 Session 1 Session 2

VGGFace FC6 [42] 44.67 51.00 91.67 93.33 70.17
VGGFace FC7 [42] 41.67 44.67 88.67 89.33 66.08

Lightened CNN (A) [44] 64.67 58.33 86.67 85.33 73.75
Lightened CNN (B) [44] 38.67 38.00 81.67 79.33 59.42

GD-HASLR [16] 93.00 93.33 82.67 84.00 88.25
IGO-PCA-NNC [19] 93.00 (182) 91.67 (191) 78.00 (199) 74.00 (193) 84.17

IGO-PCA-CRC 96.00 (128) 95.33 (116) 85.00 (190) 84.00 (160) 90.08
SOIGO-PCA-NNC 96.33 (187) 92.67 (197) 86.33 (166) 83.67 (189) 89.75

CSOIGO 97.33 (144) 95.67 (124) 86.00 (119) 85.67 (198) 91.17
Bold values indicate the best recognition accuracy.

4.3. Random Block Occlusion

Here, we conduct other experiments using synthesized occluded face data as testing
data. For each subject, seven nonoccluded face images in the AR dataset in Session 1 are
used for training and the other seven nonoccluded images in Session 2 for testing, the
image size is 42 × 30 pixels. Block occlusion is tested by placing the square baboon image
on each test image. The location of the occlusion is randomly chosen and is unknown
during training. We consider different sizes of the object such that the face is covered with
the occluded object from 30% to 50% of its area; some occluded face images are shown
in Figure 6. The above experimental results indicate that GD-HASLR is superior to other
competing approaches; therefore, in this subsection and the following subsection, we
report the result of GD-HASLR for comparison. Recognition results for different levels
of occlusion are shown in Table 5. One can see that CSOIGO outperforms GD-HASLR
by a large margin, and the performance gain is significant with the increasing percentage
of occlusion. Moreover, SOIGO-PCA-NNC outperforms IGO-PCA-NNC and CSOIGO
performs better than IGO-PCA-CRC, which demonstrates that SOIGO is more robust than
IGO when dealing with artificial occlusion.

Figure 6. Original face image and its occluded images with different occlusion percentages; from the
second to the last, the percentage is 30%, 40%, and 50%, respectively.
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Table 5. Recognition accuracy (%) of competing methods under different percentages of occlusion
on a subset of the AR database (original training and test samples have no sunglasses occlusion or
scarf occlusion). The dimension that leads to the best result for IGO- and SOIGO-based approaches is
given in parentheses.

Occlusion Percentage 30% 40% 50%

GD-HASLR [16] 81.29 71.14 56.14
IGO-PCA-NNC [19] 86.14 (588) 80.57 (606) 66.29 (321)

IGO-PCA-CRC 89.14 (205) 80.14 (185) 71.29 (569)
SOIGO-PCA-NNC 88.86 (458) 84.57 (575) 73.29 (693)

CSOIGO 93.57 (423) 87.00 (533) 76.57 (698)
Bold values indicate the best recognition accuracy.

To vividly show the performance of IGO- and SOIGO-based approaches under differ-
ent numbers of features, in Figure 7 we plot the recognition accuracy against the number
of features when the percentage of occlusion is 30%. We can clearly see that with the
increasing number of features, CSOIGO consistently outperforms the other three compet-
ing approaches.
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Figure 7. Recognition accuracy versus different numbers of features when the percentage of occlusion
is 30%.

4.4. Recognition with Mixed Variations

In this subsection, we evaluate our proposed CSOIGO and other compared approaches
under the mixed variations. As shown in Figure 5a,b, the first seven images per subject in
Session 1 have variations of expression and illumination; thus, seven nonoccluded images
from Session 1 of the AR database are selected for training and another seven undisguised
images from Session 2 are used for testing. Recognition accuracy and testing time of
compared methods are shown in Table 6. It should be noted that the testing time refers
to the time that classifies all the test samples. All experiments are performed on a laptop
with Windows 10, an Intel Core i9-8950HK CPU at 2.90 GHz, and 32.00 GB RAM. The
implementation software is MATLAB R2022a. From Table 6, we can see that CSOIGO has
the best classification performance. Specifically, it makes 1.86% and 0.86% improvement in
terms of accuracy over GD-HASLR and IGO-PCA-CRC, respectively. Due to the complex
optimization process, GD-HASLR consumes much more time than the other approaches.
The testing time is almost the same for both IGO-PCA-NNC and SOIGO-PCA-NNC. NNC
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is a simple and efficient classifier, while CRC involves the computations of coefficient vector
and classwise residual. As a result, CSOIGO takes a little longer than SOIGO-PCA-NNC.
However, CSOIGO is much faster than GD-HASLR.

Table 6. Recognition accuracy (%) and testing time (s) of compared approaches with mixed variations
on a subset of the AR database (training and test samples have expression and illumination changes).
The dimension that leads to the best result for IGO- and SOIGO-based approaches is given in
parentheses.

Methods Accuracy (%) Testing Time (s)

GD-HASLR [16] 96.71 414.29
IGO-PCA-NNC [19] 93.14 (478) 0.50

IGO-PCA-CRC 97.71 (100) 1.92
SOIGO-PCA-NNC 94.71 (371) 0.45

CSOIGO 98.57 (171) 2.43
Bold values indicate the best recognition accuracy.

As in the previous subsection, we show the recognition accuracy against the number
of features in Figure 8. It can be seen that as the number of features increases, the recog-
nition accuracies of IGO-PCA-NNC, SOIGO-PCA-NNC, and CSOIGO also increase. The
recognition accuracy of IGO-PCA-CRC firstly increases, then decreases to some extent, and
then it increases again. When the number of features exceeds 108, CSOIGO always achieves
higher accuracy than its competing methods. This again demonstrates that CSOIGO is
robust to mixed variations in face images.
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Figure 8. Recognition accuracy versus different number of features under mixed variations.

5. Conclusions

In this paper, we present a new method for occluded face recognition, namely, CSOIGO,
by exploiting the second-order gradient information. SOIGO is robust to real disguise,
synthesized occlusion, and mixed variations. By employing CRC as the final classifier, our
proposed method achieves impressive results in various scenarios and even outperforms
some deep-neural-network-based approaches. Taking the real disguise experiment as an
example, when one and two neutral face images per subject are used as training samples,
CSOIGO attains an overall accuracy of 79.50% and 91.17%, respectively. Therefore, our
proposed CSOIGO is superior to its competing approaches.
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The limitation of CSOIGO is that it needs registered images for training and testing,
i.e., when classifying face images with pose changes, its recognition performance will
be degraded. Consequently, CSOIGO can be applied to applications of access control,
automatic teller machines, or other security facilities. In these circumstances, we can obtain
controlled training images in advance and the test images will be collected under similar
scenarios. However, if registered face images cannot be collected during either the training
or test stage, one can employ image registration methods to remedy the above limitation to
some extent.

In future work, we will introduce SOIGO into other popular subspace learning ap-
proaches, e.g., linear discriminant analysis (LDA), to extract more discriminative features.
Moreover, other variants of CRC will also be investigated to further enhance the perfor-
mance of recognition.
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