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Abstract: This numerical investigation effectively establishes a unique computing exploration for
steady magnetohydrodynamic convective streams of tangent hyperbolic nanofluid traveling across a
nonlinearly elongating elastic surface with a variable thickness. In addition, the importance of an
externally imposed magnetic field of tangent hyperbolic nanofluid is comprehensively analyzed by
considering the substantial impact of thermal conductivity and thermal radiation consequences. The
governing PDEs (partial differential equations) are transmuted into a nonlinear differential structure
of coupled ODEs (ordinary differential equations) using a series of variable similarity transformations.
Furthermore, these generated ODEs (ordinary differential equations) are numerically set using a novel
revolutionary Runge-Kutta algorithm with a shooting approach constructed in a MATLAB script. In
this regard, extensive comparison studies are carried out to validate the acquired numerical results.
The interactions between the associated profiles and the relevant parameters are rationally explored
and shown using graphs and tabular forms. The velocity distribution declined with improving
Weissengberg number We and power-law index m, while the reverse performance can be observed
for temperature. As enhancement in Brownian motion, Thermophoretic and radiation parameters
significantly rise in temperature distribution. The use of many different technological and industrial
systems, including nano-bioconvective systems, nano-droplet evaporation, nano-ink jet printing, and
microbial fuel cells, would benefit this research study.

Keywords: tangent hyperbolic nanofluid; bioconvection; magnetohydrodynamic; slender elastic
sheet

MSC: 76D05; 35Q30

1. Introduction

Nanofluids are nanoparticles with diameters ranging from 1–100 nm (such as car-
bon nanotube CNT, iron oxide, silver, copper, titanium oxide, alumina oxide, and oxide)
dispersed in base fluids (such as industry oil, alcohol, carboxymethyl cellulose CMC and
water) [1,2]. Researchers have shown a great deal of interest in nanofluid throughout
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the years, which has resulted in an avalanche of discoveries and inquiries into its unique
features and potential applications. Recent technological advancement demonstrates that
nanofluids have the potential to be used in the manufacture of automobiles, aero-planes,
microreactors, and other things. Choi et al. [3] presented the concept of nanofluids for
the first time in 1995, with the purpose of boosting heat transport rates. Waqas et al. [4]
investigated the aspects of stratified mixed radiative-convective nanofluid stream incor-
porating motile microbes that are affected by the activation energy and magnetic field.
This work addressed the impacts of the thermosolutal convection of solid particles. Aly
et al. [5] deliberated the influence of a magnetic field on nanofluid propagating inside a
finned cavity. Danial et al. [6] explored the impacts of the nanofluid on both the rate of
concentration transportation (Sherwood number) and the rate of heat transference (Nusselt
number). Across an infinite horizontal surface, Jamshed et al. [7] presented the formation
of entropy in the magnetohydrodynamic stream of Maxwell nanofluid numerically. In this
model, external factors such as viscous dissipation are also taken. The effect of employing
passive approaches on the thermal transport and pressure drop efficiency of nanofluid heat
transfer devices has been elaborated by Awais et al. [8]. The molecular dynamics model
is used to depict the atomic behavior of nanofluid in a microchannel by Shang et al. [9]
numerically. In this work, the atomic mobility of H2O/CuO nanofluid particles increases as
microchannel walls thicken and nanoparticle aggregation occurs. Dawar et al. [10] explored
the impacts of a binary chemical reaction and Arrhenius activation energy on nanofluid thin
film in the existence of solar radiation across a spinning disk. Sabu et al. [11] investigated
the flow of alumina-water nanofluid by considering varied nanoparticles form across a
rotating disk.

Bioconvection is observed when microbes migrate randomly in a single-celled and
even sometimes colony-like configuration. It causes a significant rise in the buoyancy of
fluid due to upstream gyrotactic microbes. Thus, it has attracted researchers’ attention
due to its widespread use in engineering, biological and chemical fields such as biofuels,
enzymes, biotechnological applications, cancer treatment, manufacturing and produc-
tion, industrial level, and others. Imran et al. [12] deliberated the physical aspects of
bioconvection in a nanofluid flow comprising motile microorganisms via a parabolize
horizontal surface. Waqas et al. [13] numerically studied the 2-D bioconvection tan-
gent hyperbolic nanofluid stream along a Riga plate having gyrotactic microorganisms.
Zhang et al. [14] discussed the rheological behavior of bioconvective nano liquid flow
immerse in Darcy-Forchheimer medium. This article covers mixed convection, motile mi-
croorganisms, solutal boundary conditions, and activation energy. Across an exponentially
stretched surface, the impacts of heat radiation and bioconvection of microbes discussed by
Asjad et al. [15]. Narsimulu et al. [16] consulted the numerical technique on MHD Carreau
fluid stream for increased mass transportation of bioconvection over a non-linear extending
surface. This model discussed and determined the effect of controlling parameters on con-
certation, temperature, motile microbes and velocity, heat transmission, and skin friction.
Habib et al. [17] investigated the bioconvection and radiation effects on the time-dependent
magnetohydrodynamics nanofluids across an expanding sheet. Very recently, many re-
searchers work on bioconvection using various types of geometries [18–21].

Because of its many uses in the food, polymer sectors, and paint, the viscous non-
Newtonian fluid is becoming useful to researchers. The quest for a solution to the motion
of a non-Newtonian fluid regulating the physical model piques intellectual curiosity. Non-
Newtonian fluids include food, some oils, polymer melts, drilling muds, coatings, etc.
Calculating the shearing stress and rate of strain numerically for any non-Newtonian
fluid is challenging. That is why, in recent years, the tangent hyperbolic fluid model has
gained popularity among scholars. Hassan et al. [22] deliberated the transportation of
heat energy with structure of non-Newtonian mass under two different flow conditions.
In this model, the speed and thermal profiles, including the Nusselt number and the skin
friction coefficient, are glanced at under two different flow rates. In a chaotic channel,
Selimefendigil et al. [23] explored the capability characteristics of the thermoelectric



Mathematics 2022, 10, 2592 3 of 17

system with non-newtonian fluid utilizing the FEM (finite element method) numerically.
Li et al. [24] investigated the mixed convective non-newtonian fluid numerically over
cylindrical shape battery with various outlet positions. Khader et al. [25] studied a 2D MHD
(Magnetohydrodynamic) Casson fluid model across an extending sheet in the presence
of a mixed convection heat transference method. The coupled impacts of heat radiation
and magnetic fields are taken into account in this scenario. Pandey et al. [26] investigated
shear-thinning non-newtonian fluids’ thermal and flow properties within the heated square
cavity by doing experiments and using numerical simulations. By applying the fixed
point technique, Boukrouche et al. [27] discussed the unsteady non-newtonian fluid by
considering shear thickening fluids with friction type boundary conditions. Colak et al. [28]
deliberated the bioconvective flow of Maxwell nanofluid and the temperature-dependent
viscosity with Arrhenius activation energy on it by utilizing the artificial intelligence
technique. Khashi’ie et al. [29] presented the upshot of viscous dissipation and MHD
(Magnetohydrodynamic) on heat transportation of non-Newtonian fluid across a shrinking
surface. This model shows the similarity solutions for thermal distribution and the skin
friction coefficient and temperature and velocity profiles in this model.

In the production of petroleum and the metallurgical process, magnetohydrodynamic
(MHD) flow is critical. It’s worth mentioning that the pace at which these processes cool
influences the final output. This field of magnetism is used to distinguish metallic ele-
ments from nonmetallic components in molten metals. MHD (Magnetohydrodynamic)
has applications in medicine, astronomy, advanced aircraft design, and successfully deal-
ing with thermal transportation rates in cylinders, various machines, turbulent pumps,
and energy producers. Bhatti et al. [30] elaborated on MHD Williamson nanofluid im-
mersed in porous media via circular rotational plates in the existence of swimming gy-
rotactic microbes. In this work, fluid flow through circular plates is vital because they
contain numerous physical mechanisms. Farhany et al. [31] deliberated the effect of
MHD (Magnetohydrodynamic) on natural convection with a nano liquid porous me-
dia, including an inclined magnetic field utilizing finite element technique numerically.
Bejawada et al. [32] probed the impact of chemical reactions, heat radiation, and sources on
MHD Casson fluid stream across nonlinear extending surface via Forchheimer permeable
media. Hossain et al. [33] explored the unsteady mixed convective time-dependent ther-
mophysical properties of CNT (carbon nanotube) nanofluid through MHD and heat flux.
Kouz et al. [34] explored a stable 2-D MHD fluid stream caused by the stretching sheet
of porous media by taking into consideration heat and mass transportation. By utilizing
perturbation methodology, Nazeer et al. [35] elaborated on the MHD (Magnetohydro-
dynamic) electro-osmatic stream of non-Newtonian MHD flow and its influence on the
third-grade fluid within a micro-channel. Ramana et al. [36] analyzed the flow of MHD
Oldroyd-B liquid across the stretched surface by the Cattaneo-Christov model. The thermal
conductivity and heat generation effects are taken into account in this model. The stream
of electrically conducting MHD nano liquid, Famakinwa et al. [37] explored numerically
across a convectively thermal surface, including gyrotactic microbes. In the existence of
a heat source, Fetecau et al. [38] investigated the hydromagnetic free convective flow
comprising mass, chemical reaction, and Newtonian heating across a vertical plate.

We intend to simulate and investigate the steady magnetohydrodynamic flow of tan-
gent hyperbolic nanofluid across a slender elastic surface of irregular thickness with heat
radiation, inspired by the previous work. The modest diffusion of gyrotactic microorgan-
isms is thought to be unaffected by nanoparticles. Nanoparticles are uniformly distributed
throughout the base fluid. The Runge-Kutta technique is used to get numerical solutions for
nonlinear coupled differential equations. Thermal transport is used in various industries,
including business and engineering, microelectronics, electronic device cooling, trans-
portation, and fuel cells. Nanofluids are a new energy transmission fluid with nanoscale
particles floating in a base fluid. Nanofluids have a variety of applications, including
electrical devices, manufacture of thermal exchangers, biomedicine, and engine cooling.
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2. Mathematical Formulation

The present study for nanofluid flow arrangement may be seen in Figure 1 geometri-
cally. A steady 2-D magnetohydrodynamic flow of a tangent hyperbolic nanofluid with
temperature-dependent thermal conductivity across a slender elastic surface of irregular
thickness ε(x) = 2c(x + b)

1−n
2 . The thin sheet is stretched upwards by a homogeneous

gravitational field of strength g. The stretched sheet is heated in an unbalanced pattern due
to the varying wall temperature Tw. The variable magnetic field is B(x) = B0(x + b)

n−1
2

in y-direction. Furthermore, the temperature in the free-stream zone is kept constant at
Tin f ty, implying that the nanofluid is in a quasi-rest condition. According to physical
assumptions, the Tangent hyperbolic nanofluid has a poor electrical performance, with
a negligible magnetic Reynolds number in its MHD convective motion. The origin O is
located at layer transverse section center top edge—the x-axis horizontally down the elastic
sheet’s symmetry axis as well as the y-axis perpendicular to the streamwise direction. We
assume that the inclusion of nanoparticles does not affect the swimming velocity of the
microorganisms floating in the fluid. The continuous model of Hillesdon and Pedley [39]
is used to simulate bioconvective transport with oxytactic bacteria. The boundary layer
theory’s set of equations is represented as [40–42].

∂û
∂x

+
∂v̂
∂y

= 0, (1)

(
û

∂û
∂x

+ v̂
∂û
∂y

)
= ν(1−m)

(
∂2û
∂y2

)
+
√

2Γνm
(

∂û
∂y

)(
∂2û
∂y2

)
− σB2(x)

ρ

+g[βρ f (1− C∞)(T − T∞)− (ρp − ρ f )(C− C∞)− γ(ρm − ρ f )(n− n∞)], (2)

(ρCp) f

(
û

∂T
∂x

+ v̂
∂T
∂y

)
= kT

∂2T
∂y2 +

(
∂kT
∂T

)(
∂T
∂y

)2

+ τ

[
DB

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2
]
+

∂qr
∂y

, (3)

û
∂C
∂x

+ v̂
∂C
∂y

=
DT
T∞

∂2T
∂y2 + DB

∂2C
∂y2 , (4)

û
∂n
∂x

+ v̂
∂n
∂y
− Dn

(
∂2n
∂y2

)
=

dwc

Cw − C∞

∂

∂y

(
n .

∂C̃
∂y

)
, (5)

û, v̂ are the fluid velocity components, g represent gravitational accelration, m delebrate
power law index, σ show the electrical conductivity, ν symbolize the kinematic viscosity,
ρ f deliberate the fluid density, ρp elaborate the nanoparticles mass density, ρm present
the density of microorganisms particles, β indicate the thermal expansion volumetric
coefficient, DB, signifies the coefficient of Brownian diffusion, DT , deliberate the coefficient
of thermophoresis diffusion, Dn present the diffusivity of microorganisms, Cp indicate
specific heat, kT present thermal conductivity, τ is the nanoparticles capcities ratio, qr is
the radiative heat flux, C present nanoparticle concentration, Cw indicate the concentration
at wall, C∞ symbolize ambient concentration, T, Tw, T∞ signifies the fluid temperature,
wall temperature, and ambient temperature respectively, Wc elaborate the constant speed
of cell swimming, n, nw, n∞, represent motile microorganisms density, microorganisms
concentration at surface, and ambient motile microorganisms respectively.
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Figure 1. Physical representation of problem.

We get by assuming that the thermophysical variables κT have a linear temperature
dependence are

kT = k
(

1 + Λk

(
T − T∞

Tw − T∞

))
, (6)

using the Rosseland approximation for radiation [43], the radiative heat flux is simplified as

qr = −
4σe

3βR

∂T4

∂y
, (7)

where, βR is the coefficient of mean absorption, σe is the Stefan-Boltzmann constant. T4

may be identified by extending in a Taylor series around T∞ while neglecting higher order
expressions given as

T4 ≈ 4T4
∞T − 3T4

∞. (8)

In view of Equations (7) and (8), we obtain

∂qr

∂y
=

16σeT3
∞

3βR

(
∂2T̃
∂y2

)
, (9)

subject to the boundary conditions

û = Uw = U0(b + x)n, v̂ = 0, T = Tw, C = Cw, n = nw, at y =
ε(x)

2
,

lim
y→∞

û = 0, lim
y→∞

T = lim
y→∞

C = lim
y→∞

n = ∞.

 (10)

The following similarity transformations [40] are used to simplify the given problem
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û = Uw(x + b)n F′(ξ), v̂ =

√
−
(
(n + 1)ν∞U0(x + b)n−1

2

)(
F(ξ) +

n− 1
n + 1

ξF′(ξ)
)

,

ξ =

(
(n + 1)U0(x + b)n−1

2ν∞

)1/2

y, ψ =

(
2ν∞U0(x + b)n+1

(n + 1)

)
F(ξ), G(ξ) =

T − T∞

Tw − T∞
,

H(ξ) =
C− C∞

Cw − C∞
, ϑ(ξ) =

n− n∞

nw − n∞
.


(11)

Equation (1) is satisfied in view of Equation (11), and Equations (2)–(5) become:

((1−m) + mWe f
′′
) f
′′′ − 2n

n + 1
F′2 + FF′′ − 2M

n + 1
F′ + ω[G− NrH − Rbϑ] = 0 (12)

(1 + Rd)G′′ + PrFG′ + ΛkGG′′ + ΛkG′2 + NbG′H′ + NtG′2 = 0, (13)

H′′ + LePrFH′ +
Nt
Nb

G′′ = 0, (14)

ϑ′′ + PrLbFϑ′ − Pe[ϑ′H′ + ΩH′′ + H′′ϑ] = 0. (15)

The associative boundary constraints become

lim
ξ→χ

F(ξ) =
1−m
1 + m

χ, lim
ξ→χ

F′(ξ) = lim
ξ→χ

G(ξ) = lim
ξ→χ

H(ξ) = lim
ξ→χ

ϑ(ξ) = 1,

lim
ξ→∞

F′(ξ) = lim
ξ→∞

G(ξ) = lim
ξ→∞

H(ξ) = lim
ξ→∞

ϑ(ξ) = 0.

 (16)

Set the following possible change for additional simplifications,

ξ = η + χ,

F(ζ) = F(η + χ) = f (η),

G(ξ) = G(η + χ) = g(η),

H(ξ) = H(η + χ) = h(η),

ϑ(ξ) = ϑ(η + χ) = ζ(η).

(17)

As a result, the nonlinear differential equations (12)–(15) are changed to

((1−m) + mWe f
′′
) f
′′′
+ f

′′
f − 2n

n + 1
f
′2 −M f

′
+ λ[g− Nrh− Rbζ] = 0, (18)

(1 + Rd)g′′ + Pr f g′ + Λkgg′′ + Λkg′2 + Nbg′h′ + Ntg′2 = 0, (19)

h′′ + LePr f h′ +
Nt
Nb

g′′ = 0, (20)

ζ ′′ + PrLb f ζ ′ − Pe[ζ ′h′ + Ωh′′ + h′′ζ] = 0, (21)

along modified boundary constraints:

lim
η→0

f (η) =
1− n
1 + n

χ, lim
η→0

fη(η) = lim
η→0

g(η) = lim
η→0

h(η) = lim
η→0

ζ(η) = 1,

lim
η→∞

f ′(η) = lim
η→∞

g(η) = lim
η→∞

h(η) = lim
η→∞

ζ(η) = 0,

 (22)

where We =

√
Γ2(n+1)U3

w
ν indicate the Weissenberg number, M =

σB2
0

U0ρ indicates the mag-

netic parameter, Le = k
DB

delegate Lewis number, Rb =
(ρm−ρ f )(nw−n∞)

βρ(1−C∞)(Tw−T∞)
represents

the bioconvection Rayleigh number, Nb = τDB(Cw−C∞)
k indicates the Brownian motion,
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λ = 2gβ(1−C∞)(Tw−T∞)

U2
w(m+1)

delegates the mixed convection, Nr =
(ρp−ρ f )(Cw−C∞)

βρ(1−C∞)(Tw−T∞)
deliberate

the buoyancy parameter, Pr =
(ρCp)ν

k is the prandtle number, Nt = τDT(Tw−T∞)
T∞k denotes

the thermophoresis parameter, χ = c
(

Uo(m+1)
2ν∞

) 1
2

represent the wall thickness parameter,

Lb = k
DN

delegates the Lewis number,Pe = dWc
DN

indicates the Peclet number, Rd = 16σeT3
∞

3βRk
elaborates the radiation parameter, Ω = n∞

(nw−n∞)
indicates the density ratio of the motile

microorganisms.

3. Physical Quantities

The influence of the significant engineering parameters may be adequately investi-
gated in this physical problem by calculating the localized magnitude of drag forces and the
rate of thermal transport at the slender sheet. In terms of C f x(skin friction) , Nux (Nusselt
number), Shx (Sherwood number), and Nnx (density of microorganisms) are as follows:

C f x =
2τw

ρ f U2
w(x)

, (23)

Nux =
(x + b)qw

k(Tw − T∞)
, (24)

Shx =
(x + b)qm

DB(Cw − C∞)
, (25)

Nnx =
(x + b)qn

Dn(nw − n∞)
, (26)

τw, qw,qm, and qn, respectively,

τw = µ(1−m)

(
∂ũ
∂y

)
y= ε(x)

2

+ µ
mΓ√

2

(
∂ũ
∂y

)3

y= ε(x)
2

, (27)

qw = −
(

kT +
16σeT3

∞
3βR

)(
∂T
∂y

)
ε(x)

2

, (28)

qm = −DB

(
∂C
∂y

)
y= ε(x)

2

, (29)

qn = −Dn

(
∂n
∂y

)
y= ε(x)

2

. (30)

The following expressions are derived by utilizing Equations (10), (11) and (17),

Re
1
2
x C f x = −

(√
n + 1

2

)(
(1−m) f ′′(0)− mWe

2
f ′′(0)3

)
, (31)

Re
−1
2

x Nux = −
(√

n + 1
2

)
(Λkg(0) + (1 + Rd))(g′(0)), (32)

Re
−1
2

x Shx =

(√
n + 1

2

)
(−h′(0)), (33)

Re
−1
2

x Nnx =

(√
n + 1

2

)
(−ζ ′(0)). (34)

4. Solution Procedure

The system of coupled nonlinear differential Equations (8)–(11) along with the bound-
ary conditions (Equation (12)) is solved numerically using the shooting technique together
with fourth-order Runge–Kutta integration scheme by converting it into an initial value
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problem. The higher order derivatives involved in the finally governing equations are
reduced to construct first order differential systems as below: Refs. [44,45]
s′1 = s2,
s′2 = s3,
s′3 = (−1)

((1−m)+mWes3)
[s1s3 − 2n

n+1 s2
2 −Ms2 + λ(s4 − Nrs6 − Rbs8)],

s′4 = s5,

s′5 = (−1)
(1+Rd)+Λks4

[Prs1s5 + Λks2
5 + Nbs5s7 − Nts2

5],
s′6 = s7,
s′7 = (−1)[LePrs1s7 +

Nt
Nb s′5],

s′8 = s9
s′9 = (−1)[LbPrs1s9 − Pe(Ωs′7 + s′7s8 + s7s9)].

The corresponding boundary conditions are as follows:

s1 =
1− n
1 + n

χ, s2 = 1, s4 = 1, s7 = 1, s9 = 1, at η = 0,

s2 → 0, s4 → 0, s7 → 0, s9 → 0, as η → ∞.

5. Results and Discussion

The precise analytical formulations of the velocity, energy, concentration, and microor-
ganisms boundary layer are complicated to discover in the ensuing nonlinear differen-
tial set of coupled ordinary differential equations. A numerical approach based on the
Runge–Kutta method along shooting technique was employed here to yield the solution
to this problem. First of all, the validity of the numerical scheme was established in the
limiting case to compare with the existing studies on skin friction [40,46] (see Table 1) and
Nusselt number [40,47,48] (see Table 2). A close agreement of the two sets (present and
previous) of the result provided confidence in the numerical procedure.

Table 1. Comparative of C f xRe
1
2
x for various values of m by ignoring other parameters.

n Fang [46] Wakif [40] (Our Results)
χ = 0.5 χ = 0.25 χ = 0.5 χ = 0.25 χ = 0.5 χ = 0.25

10 1.1433 1.0603 1.143320620 1.060324666 1.143329 1.060330
9.0 1.1404 1.0589 1.140392519 1.058915794 1.140397 1.058925
7.0 1.1323 1.0550 1.132285178 1.055044823 1.132299 1.055048
5.0 1.1186 1.0486 1.118590381 1.048611306 1.118582 1.048608
3 1.0905 1.0359 1.090492254 1.035868282 1.090510 1.035864

2.0 1.0614 1.0234 1.061402505 1.023407744 1.061410 1.023410

Table 2. Comparing the current numerical findings for Pr when and all others parameter are zero.

Pr Mabood [47] Wang [48] Wakif [40] (Our Results)

0.70 0.4539 0.4539 0.45391 0.4544
2.00 0.9114 0.9114 0.91135 0.9113
7.00 1.8954 1.8954 1.89540 1.8954
20 3.3539 3.3539 3.35390 3.3539
70 6.4622 6.4622 6.46219 6.4621

Table 3 deliberated for skin friction coefficient − f
′′
(0), it is observed that local index

number m, Weissenberg number We, magnetic parameter M, Nr and Rb erected the skin
friction and it reduced when mixed convection λ enhanced, and opposite behavior can
be observed for Nusselt number −g′(0) in Table 4. While thermophoretic parameter Nt
diminished for −θ′(0). Sherwood’s number improved for Le and Nb, while lowered for Nt
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represented in Table 5. The density of motile microorganisms enhanced for bioconvection
parameter Pe, Lb, Ω (see Table 6).

Table 3. Numerical outcomes for Re
1
2
x C f x = −

(√
n+1

2

)(
(1−m) f ′′(0)− mWe

2 f ′′(0)3
)

.

m We M λ Nr Rb − f ′′(0)

0.1 0.3 1.0 0.3 0.3 1.8 1.3351
0.2 1.3593
0.3 1.4441

0.3 1.3351
0.4 1.3579
0.5 1.3815

1.0 1.3351
2.0 1.4904
3.0 1.6352

0.1 1.4080
0.2 1.3709
0.3 1.3351

0.3 1.3351
0.4 1.3391
0.5 1.3431

1.6 1.3274
1.7 1.3312
1.8 1.3351

Table 4. Numerical outcomes for Re
−1
2

x Nux = −
(√

n+1
2

)
(Λkg(0) + (1 + Rd))(g′(0)).

m We M λ Nr Rb Nb Nt Λk Rd −g′(0)

0.1 0.3 1.0 0.3 0.3 1.8 0.1 0.1 0.3 0.1 0.6895
0.2 0.6726
0.3 0.6506

0.3 0.6895
0.4 0.6888
0.5 0.6880

1.0 0.6895
2.0 0.6634
3.0 0.6400

0.1 0.6768
0.2 0.6835
0.3 0.6895

0.3 0.6895
0.4 0.6889
0.5 0.6882

1.6 0.6908
1.7 0.6902
1.8 0.6895

0.1 0.6895
0.2 0.5690
0.3 0.4659

0.1 0.6895
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Table 4. Cont.

m We M λ Nr Rb Nb Nt Λk Rd −g′(0)

0.2 0.6928
0.3 0.6956

0.1 0.6895
0.2 0.5986
0.3 0.5302

0.1 0.9229
0.2 0.7902
0.3 0.6895

Table 5. Numerical outcomes for Re
−1
2

x Nnx =

(√
n+1

2

)
(−h′(0)).

Le Nt Nb −φ′(0)

1.0 0.1 0.1 1.1542
2.0 1.8501
3.0 2.3063

0.1 1.1542
0.2 0.8741
0.3 0.5779

0.1 1.1542
0.2 1.3317
0.3 1.3859

Table 6. Numerical outcomes for Re
−1
2

x Nnx =

(√
n+1

2

)
(−ζ ′(0)).

Pe Lb Ω −χ′(0)

0.1 0.3 0.1 0.7897
0.2 0.8911
0.3 0.9937

0.1 0.3855
0.2 0.6133
0.3 0.7897

0.1 0.7897
0.2 0.7983
0.3 0.8069

The decelerated flow in the face of improving the strength of magnetic field M is
caused due to the Lorentz force shown in Figure 2a. This reactive force comes to play its
role when the magnetic field interacts with an electric field. This decreasing flow helps
the conservation of loss of kinetic energy to heat energy and, hence, the improvement in
temperature is shown in Figure 2b. Figure 3a delineates the impact of power-law index
m on f ′(η) (velocity distribution). The velocity of higher inputs of m is lowered for rising
inputs of m, while energy is upsurged. Physically it is due to the stretched surface being
heated. As a result, the fluid loses additional heat, and the fluid temperature g(η) rises
depicted in Figure 3b. Figure 4a show the impact of the Weissenberg number We on
momentum f ′(η). For maximum inputs of the We, the momentum boundary layer of
tangent hyperbolic nanofluid is lowered. The temperature boundary layer of the nanofluid
is valued for gradually increasing Weissenberg number We values. Physically, it is the ratio
between relaxation time and processing time. Improving the We means it enhances the
relaxation time, which causes improvement of g(η) portrayed in Figure 4b.
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Figure 2. Effect of M to influence the momentum and thermal profile.
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Figure 3. Effect of m to influence the momentum and thermal profile.
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Figure 4. Effect of We to influence the momentum and thermal profile.

The role of mixed convection parameter λ on velocity is depicted in Figure 5a. It
is observed that enhanced in λ intensified the momentum curve f ′(η) and lessened the
temperature profile g(η) portraits in Figure 5b. Physically, an increase in λ strong the
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buoyancy influence. The effect of bioconvection Rayleigh number Rb on momentum is
portrayed in Figure 6a. The increment in Rb lowered the velocity curve f ′(η) and promoted
the energy curve g(η). Because it is reciprocal to (Tw − T∞). Thus, the buoyancy impacts
reduced the boundary flow and raised the temperature delineated in Figure 6b. The impact
of Nb on the energy boundary layer is delineated in Figure 7a. The higher inputs of Nb on
energy curve g(η) boosted and hindered the concentration boundary layer h(η) portraits
in Figure 7b. Physically, the faster motion of nanoparticles gained the heat conduction.
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Figure 7. Effect of Nb to influence the thermal and concentration profile.

The role of the Thermophoretic parameter Nt on the temperature of nanoparticles is
deliberated in Figure 8a. The higher inputs of Nt improved the thermal distribution g(η)
and concentration distribution h(η) delineated in Figure 8b. Physically, the thermophoresis
effect refers to the movement of nanoparticles from a higher to a lower temperature,
consequently increasing temperature and concentration. The impact of radiation Rd on
thermal distribution g(η). It is observed that higher values of Rd improved the thermal
boundary layer. Physically, it is due to higher inputs of Rd mean larger heat diffusion, which
causes the thermal boundary layer can be seen in Figure 9a. The larger inputs of Lb can
be seen. It is observed that lowered the microorganism boundary layer ζ(η) is portrayed
in Figure 9b. The influence of Peclet number Pe on microorganisms boundary layer ζ(η)
is depicted in Figure 10a. The bioconvection flow is diminished with the higher Peclet
number. This occurs physically because the advection transport rate is greater than the
diffusive transport rate. The influence of microorganisms density ratio Ω on bioconvection
boundary layer ζ(η) can be portrayed in Figure 10b. The higher values of Ω reduced the
bioconvection curve ζ(η).
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Figure 8. Effect of Nt to influence the thermal and concentration profile.
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Figure 9. Effect of Rd and Lb to influence the concentration and bioconvection profile.
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Figure 10. Effect of Pe and Ω to influence the biconvection profile.

6. Conclusions

The numerical investigation of tangent hyperbolic nanofluid flow across a slender
elastic sheet of irregular thickness under the impact of a magnetic field is discussed in this
study. The Buongiorno model of nanofluids is investigated using the temperature and
concentration constitutive equations. The thermophoresis and Brownian motion effects are
accounted for in the tangent hyperbolic nanofluid model. The flow phenomena also have
gyrotactic bioconvection characteristics. The results are obtained using the Runge-Kutta
method approach in the MATLAB platform, and the present results are compared with
the past literature to validate the results. The following are the major implications of this
problem:

• The fluid velocity f ′(η) enhance with larger values of the mixed convection (λ), and it
reduced with enhance in magnetic number M, Weissenberg number We, bioconvection
Rayleigh number Rb, power law index m, because these parameters are responsible to
decelerate the flow.

• The temperature profile enhance with Nb (Brownian motion), Rd (Radiation parame-
ter) and Nt (thermophoretic parameter).

• The growing value of thermophoresis responsible to enhance the nanoparticles concen-
tration, but opposite trend is reported against growing value of Bronian motion (Nb).

• The microorganism density is depreciated when the parameters bioconvection Lewis
number (Lb), Peclet number (Pe), and density ratio (Ω) are given higher inputs.
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• The Skin friction is improved with improving magnetic (M), power index (m), Weis-
senberg number (We), bioconvection Rayleigh number (Rb), and buoyancy ratio (Nr),
and it is decreased with mixed convection (λ) due to the accelerated flow.

• Nusselt number is reduced with higher inputs of power index (m), magnetic (M),
Weissenberg number (We), bioconvection Rayleigh number (Rb), Bronian motion
(Nb), thermophoresis (Nt), thermal buoyancy (λ), and radiation (Rd), as these pa-
rameters enhanced the temperature distribution to reduced Nusselt number.

• Sherwood number is increase with increasing Le, and Nb, but reverse behaviour can
be observed in thermophoresis parameter Nt.

• Bioconvection profile for the density of motile microorganisms Ω Peclet number Pe
and bioconvection Lewis number Lb dimished for enhanced concentration difference
parameter.

• The present results are compared with the past literature to validate the results.
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