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Abstract: In this article, we propose a new methodology to construct and study generalized three-step
numerical methods for solving nonlinear equations in Banach spaces. These methods are very general
and include other methods already in the literature as special cases. The convergence analysis of the
specialized methods is been given by assuming the existence of high-order derivatives which are
not shown in these methods. Therefore, these constraints limit the applicability of the methods to
equations involving operators that are sufficiently many times differentiable although the methods
may converge. Moreover, the convergence is shown under a different set of conditions. Motivated by
the optimization considerations and the above concerns, we present a unified convergence analysis
for the generalized numerical methods relying on conditions involving only the operators appearing
in the method. This is the novelty of the article. Special cases and examples are presented to conclude
this article.
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1. Introduction

A plethora of applications from diverse disciplines of computational sciences are
converted to nonlinear equations such as

F(x) = 0 (1)

using modeling (mathematical) [1–4]. The nonlinear operator F is defined on an open and
convex subset Ω of a Banach space X with values in X. The solution of the equation is
denoted by x∗. Numerical methods are mainly used to find x∗. This is the case since the
analytic form of the solution x∗ is obtained in special cases.

Researchers, as well as practitioners, have proposed numerous numerical methods
under a different set of convergence conditions using high-order derivatives, which are not
present in the methods.

Let us consider an example.

Example 1. Define the function F on X = [−0.5, 1.5] by

F(t) =
{

t3 ln t2 + t5 − t4, t 6= 0
0, t = 0
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Clearly, the point t∗ = 1 solves the equation F(t) = 0. It follows that

F′′′(t) = 6 ln t2 + 60t2 − 24t + 22.

Then, the function F does not have a bounded third derivative in X.
Hence, many high convergence methods (although they may converge) cannot apply

to show convergence. In order to address these concerns, we propose a unified approach
for dealing with the convergence of these numerical methods that take into account only
the operators appearing on them. Hence, the usage of these methods becomes possible and
under weaker conditions.

Let x0 ∈ Ω be a starting point. Define the generalized numerical method ∀n = 0, 1, 2, . . .
by

yn = an = a(xn)

zn = bn = b(xn, yn) (2)

xn+1 = cn = c(xn, yn, zn),

where a : Ω −→ X, b : Ω×Ω −→ X and c : Ω×Ω×Ω −→ X are given operators chosen
so that limn−→∞ xn = x∗.

The specialization of (2) is

yn = xn + αnF(xn)

zn = un + βnF(xn) + γnF(yn) (3)

xn+1 = vn + δnF(xn) + εnF(yn) + θnF(zn),

where un = xn or un = yn, vn = xn or vn = yn or vn = zn, and αn, βn, γn, δn, εn, θn are linear
operators on Ω, Ω×Ω and Ω×Ω×Ω, with values in X, respectively. By choosing some
of the linear operators equal to the O linear operators in (3), we obtain the methods studied
in [5]. Moreover, if X = Rk, then we obtain the methods studied in [6,7]. In particular, the
methods in [5] are of the special form

yn = xn −O−1
1,n F(xn)

zn = yn −O−1
2,n F(yn) (4)

xn+1 = zn −O−1
3,n F(zn),

yn = xn − sF′(xn)
−1F(xn)

zn = xn −O4,nF(xn) (5)

xn+1 = zn −O5,nF(zn),

where they, as the methods in [7,8], are of the form

yn = xn − F′(xn)
−1F(xn)

zn = yn −O6,nF′(xn)
−1F(yn) (6)

xn+1 = zn −O7,nF′(xn)
−1F(zn),

where s ∈ R is a given parameter, and Ok,n, k = 1, 2, . . . , 7 are linear operators acting
between Ω and X. In particular, operators must have a special form to obtain the fourth,
seventh or eighth order of convergence.

Further specifications of operators “O“ lead to well-studied methods, a few of which
are listed below (other choices can be found in [6,7,9,10]):
Newton method (second order) [1,4,11,12]:

yn = xn − F′(xn)
−1F(xn). (7)
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Jarrat method (second order) [13]:

yn = xn −
2
3

F′(xn)
−1F(xn). (8)

Traub-type method (fifth order) [14]:

yn = xn − F′(xn)
−1F(xn)

zn = xn − F′(xn)
−1F(yn) (9)

xn+1 = xn − F′(xn)
−1F(zn).

Homeir method (third order) [15]:

yn = xn −
1
2

F′(xn)
−1F(xn)

xn+1 = yn − F′(xn)
−1F(yn). (10)

Cordero–Torregrosa (third Order) [2]:

yn = xn − F′(xn)
−1F(xn)

xn+1 = xn − 6
(

F′(xn) + 4F′(
xn + yn

2
)

)
F′(yn)

−1F(xn). (11)

or

yn = xn − F′(xn)
−1F(xn) (12)

xn+1 = xn − 2
[

2F′(
3xn + yn

4
)− F′(

xn + yn

2
) + 2F′(

xn + 3yn

4
)

]−1
F(xn).

Noor–Wasseem method (third order) [3]:

yn = xn − F′(xn)
−1F(xn)

xn+1 = xn − 4
[

3F′(
2xn + yn

3
) + F′(yn)

]−1
F(xn). (13)

Xiao–Yin method (third order) [16]:

yn = xn − F′(xn)
−1F(xn)

xn+1 = xn −
2
3

[
(3F′(yn)− F′(xn))

−1 + F′(xn)
−1
]

F(xn). (14)

Corder–Torregrosa method (fifth order) [2]:

yn = xn −
2
3

F′(xn)
−1F(xn)

zn = xn −
1
2
(3F′(yn)− F′(xn))

−1(3F′(yn) + F′(xn))F′(xn)
−1F(xn) (15)

xn+1 = zn − (
1
2

F′(yn) +
1
2

F′(xn))
−1F(zn).

or

yn = xn − F′(xn)
−1F(xn)

zn = xn − 2(F′(yn) + F′(xn))
−1F(xn) (16)

xn+1 = zn − F′(yn)
−1F(zn).
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Sharma–Arora method (fifth order) [17,18]:

yn = xn − F′(xn)
−1F(xn)

xn+1 = xn − (2F′(yn)
−1 − F′(xn)

−1)F(xn). (17)

Xiao–Yin method (fifth order) [16]:

yn = xn −
2
3

F′(xn)
−1F(xn)

zn = xn −
1
4
(3F′(yn)

−1 + F′(xn)
−1)F(xn) (18)

xn+1 = xn −
1
3

[
(3F′(yn)− F′(xn))

−1
]

F(xn).

Traub-type method (second order) [14]:

yn = xn − [wn, xn; F]−1F(xn)

wn = xn + dF(xn), (19)

where [., .; F] : Ω×Ω −→ L(X, X) is a divided difference of order one.
Moccari–Lofti method (fourth order) [19]:

yn = xn − [xn, wn; F]−1F(xn)

xn+1 = yn − ([yn, wn; F] + [yn, xn; F]− [xn, wn; F])−1F(yn). (20)

Wang–Zang method (seventh order) [8,16,20]:

yn = xn − [wn, xn; F]−1F(xn)

zn = M8(xn, yn) (21)

xn+1 = zn − ([zn, xn; F] + [zn, yn; F]− [yn, xn; F])−1F(zn),

where M8 is any fourth-order Steffensen-type iteration method.
Sharma–Arora method (seventh order) [17]:

yn = xn − [wn, xn; F]−1F(xn)

zn = yn − (3I − [wn, xn; F]([yn, xn; F] + [yn, wn; F])) (22)

[wn, xn; F]−1)F(yn)

xn+1 = zn − [zn, yn; F]−1([wn, xn; F]

+[yn, xn; F]− [zn, xn; F])[wn, xn; F]−1F(zn).

The local, as well as the semi-local, convergence for methods (4) and (5), were pre-
sented in [17], respectively, using hypotheses relating only to the operators on these meth-
ods. However, the local convergence analysis of method (6) requires the usage of derivatives
or divided differences of higher than two orders, which do not appear in method (6). These
high-order derivatives restrict the applicability of method (6) to equations whose operator
F has high-order derivatives, although method (6) may converge (see Example 1).

Similar restrictions exist for the convergence of the aforementioned methods of order
three or above.

It is also worth noticing that the fifth convergence order method by Sharma [18]

yn = xn − F′(xn)
−1F(xn)

zn = yn − 5F′(xn)
−1F(yn) (23)

xn+1 = yn −
1
5
[9F′(xn)

−1F(yn) + F′(xn)
−1F(zn)]
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cannot be handled with the analyses given previously [5–7] for method (4), method (5), or
method (6).

Based on all of the above, clearly, it is important to study the convergence of method (2)
and its specialization method (3) with the approach employed for method (4) or (5). This
way, the resulting unified convergence criteria can apply to their specialized methods listed
or not listed previously. Hence, this is the motivation as well as the novelty of the article.

There are two important types of convergence: the semi-local and the local. The
semi-local uses information involving the initial point to provide criteria, assuring the
convergence of the numerical method, while the local one is based on the information
about the solution to find the radii of the convergence balls.

The local convergence results are vital, although the solution is unknown in general
since the convergence order of the numerical method can be found. This kind of result also
demonstrates the degree of difficulty in selecting starting points. There are cases when the
radius of convergence of the numerical method can be determined without the knowledge
of the solution.

As an example, let X = R. Suppose function F satisfies an autonomous differen-
tial [5,21] equation of the form

H(F(t)) = F′(t),

where H is a continuous function. Notice that H(F(t∗)) = F′(t∗) or F′(t∗) = H(0). In the
case of F(t) = et − 1, we can choose H(t) = t + 1 (see also the numerical section).

Moreover, the local results can apply to projection numerical methods, such as
Arnoldi’s, the generalized minimum residual numerical method (GMRES), the generalized
conjugate numerical method (GCS) for combined Newton/finite projection numerical
methods, and in relation to the mesh independence principle to develop the cheapest and
most efficient mesh refinement techniques [1,5,11,21].

In this article, we introduce a majorant sequence and use our idea of recurrent functions
to extend the applicability of the numerical method (2). Our analysis includes error bounds
and results on the uniqueness of x∗ based on computable Lipschitz constants not given
before in [5,13,21–24] and in other similar studies using the Taylor series. This idea is very
general. Hence, it applies also to other numerical methods [10,14,22,25].

The convergence analysis of method (2) and method (3) is given in Section 2. Moreover,
the special choices of operators appear in the method in Section 3 and Section 4. Concluding
remarks, open problems, and future work complete this article.

2. Convergence Analysis of Method

The local is followed by the semi-local convergence analysis. Let S = [0, ∞) and
S0 = [0, ρ0) for some ρ0 > 0. Consider functions h1 : S0 −→ R, h2 : S0 × S0 −→ R and
h3 : S0 × S0 × S0 −→ R be continuous and nondecreasing in each variable.

Suppose that equations
hi(t)− 1 = 0, i = 1, 2, 3 (24)

have the smallest solutions, ρi ∈ S− {0}. The parameter ρ defined by

ρ = min{ρi} (25)

shall be shown to be a radius of convergence for method (2). Let S1 = [0, ρ). It follows by
the definition of radius ρ that for all t ∈ S1

0 ≤ hi(t) < 1. (26)

The notation U(x, ς) denotes an open ball with center x ∈ X and of radius ς > 0. By
U[x, ς], we denote the closure of U(x, ς).

The following conditions are used in the local convergence analysis of the method (2).
Suppose the following:
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(H1) Equation F(x) = 0 has a solution x∗ ∈ Ω.
(H2) ‖a(x)− x∗‖ ≤ h1(‖x− x∗‖)‖x− x∗‖,

‖b(x, y)− x∗‖ ≤ h2(‖x− x∗‖, ‖y− x∗‖)‖x− x∗‖

and
‖c(x, y, z)− x∗‖ ≤ h3(‖x− x∗‖, ‖y− x∗‖, ‖z− x∗‖)‖x− x∗‖

for all x, y, z ∈ Ω0 = Ω ∩U(x∗, ρ0).
(H3) Equations (24) have smallest solutions ρi ∈ S0 − {0};
(H4) U[x∗, ρ] ⊂ Ω, where the radius ρ is given by Formula (25).

Next, the main local convergence analysis is presented for method (2).

Theorem 1. Suppose that the conditions (H1)–(H4) hold and x0 ∈ U(x∗, r)− {x∗}. Then, the
sequence {xn} generated by method (2) is well defined and converges to x∗. Moreover, the following
estimates hold ∀ n = 0, 1, 2, . . .

‖yn − x∗‖ ≤ h1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ (27)

‖zn − x∗‖ ≤ h2(‖xn − x∗‖, ‖yn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (28)

and

‖xn+1 − x∗‖ ≤ h3(‖xn − x∗‖, ‖yn − x∗‖, ‖zn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖. (29)

Proof. Let x0 ∈ U(x∗, ρ0). Then, it follows from the first condition in (H1) the definition of
ρ, (26) (for i = 1) and the first substep of method (2) for n = 0 that

‖y0 − x∗‖ ≤ h1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ, (30)

showing estimate (27) for n = 0 and the iterate y0 ∈ U(x∗, ρ). Similarly,

‖z0 − x∗‖ ≤ h2(‖x0 − x∗‖, ‖y0 − x∗‖)‖x0 − x∗‖
≤ h2(‖x0 − x∗‖, ‖y0 − x∗‖)
≤ h2(‖x0 − x∗‖, ‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ (31)

and

‖x1 − x∗‖ ≤ h3(‖x0 − x∗‖, ‖y0 − x∗‖, ‖z0 − x∗‖)‖x0 − x∗‖
≤ h3(‖x0 − x∗‖, ‖x0 − x∗‖, ‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖,

showing estimates (28), (29), respectively and the iterates z0, x1 ∈ U(x∗, ρ). By simply
replacing x0, y0, z0, x1 by xk, yk, zk, xk+1 in the preceding calculations, the induction for
estimates (27)–(29) is terminated. Then, from the estimate

‖xk+1 − x∗‖ ≤ d‖xk − x∗‖ < ρ,

where
d = h3(‖x0 − x∗‖, ‖x0 − x∗‖, ‖x0 − x∗‖) ∈ [0, 1) (32)

we conclude xk+1 ∈ U[x∗, ρ] and limk−→∞ xk = x∗.

Remark 1. It follows from the proof of Theorem 1 that y, z can be chosen in particular as yn = a(xn)
and zn = b(xn, yn). Thus, the condition (H2) should hold for all x, a(x), b(x, y) ∈ Ω0 and not
x, y, z ∈ Ω0. Clearly, in this case, the resulting functions hi are at least as tight as the functions hi,
leading to an at least as large radius of convergence ρ̄ as ρ (see the numerical section).
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Concerning the semi-local convergence of method (2), let us introduce scalar sequences
{tn}, {sn} and {un} defined for t0 = 0, s0 = η ≥ 0 and the rest of the iterates, depending
on operators a, b, c and F (see how in the next section). These sequences shall be shown to
be majorizing for method (2). However, first, a convergence result for these sequence is
needed.

Lemma 1. Suppose that ∀ n = 0, 1, 2, . . .

tn ≤ sn ≤ un ≤ tn+1 (33)

and
tn ≤ λ (34)

for some λ ≥ 0. Then, the sequence {tn} is convergent to its unique least upper bound t∗ ∈ [0, λ].

Proof. It follows from conditions (33) and (34) that sequence {tn} is nondecreasing and
bounded from above by λ, and as such, it converges to t∗.

Theorem 2. Suppose the following:
(H5) Iterates {xn}, {yn}, {zn} generated by method (2) exist, belong in U(x0, t∗) and satisfy the
conditions of Lemma 1 for all n = 0, 1, 2, . . .
(H6) ‖a(xn)− xn‖ ≤ sn − tn,

‖b(xn, yn)− yn‖ ≤ un − sn

and
‖c(xn, yn, zn)− zn‖ ≤ tn+1 − un

for all n = 0, 1, 2, . . . and
(H7) U[x0, t∗] ⊂ Ω.

Then, there exists x∗ ∈ U[x0, t∗] such that limn−→∞ xn = x∗.

Proof. It follows by condition (H5) that sequence {tn} is complete as convergent. Thus,
by condition (H6), sequence {xn} is also complete in a Banach space X, and as such, it
converges to some x∗ ∈ U[x0, t∗] (since U[x0, t∗] is a closed set).

Remark 2. (i) Additional conditions are needed to show F(x∗) = 0. The same is true for the results
on the uniqueness of the solution.
(ii) The limit point t∗ is not given in the closed form. So, it can be replaced by λ in Theorem 2.

3. Special Cases I

The iterates of method (3) are assumed to exist, and operator F has a divided difference
of order one.
Local Convergence

Three possibilities are presented for the local cases based on different estimates for the
determination of the functions hi. It follows by method (3) that

(P1) yn − x∗ = xn − x∗ + αnF(xn) = (I + αn[xn, x∗; F])(xn − x∗),

zn − x∗ = (I + γn[yn, x∗; F])(yn − x∗) + βn[xn, x∗; F](xn − x∗)

= [(I + γn[yn, x∗; F])(I + αn[xn, x∗; F]) + βn[xn, x∗; F]](xn − x∗)
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and

xn+1 − x∗ = (I + θn[zn, x∗; F])(zn − x∗) + δn[xn, x∗; F](xn − x∗)

+εn[yn, x∗; F](yn − x∗)

= [(I + θn[zn, x∗; F])(I + γn[yn, x∗; F])(I + βn[xn, x∗; F])

+δn[xn, x∗; F] + εn[yn, x∗; F](I + αn[xn, x∗; F])](xn − x∗)

Hence, the functions hi are selected to satisfy ∀xn, yn, zn ∈ Ω

‖I + αn[xn, x∗; F]‖ ≤ h1(‖xn − x∗‖),

‖(I + γn[yn, x∗; F])(I + αn[xn, x∗; F]) + βn[xn, x∗; F]‖ ≤ h2(‖xn − x∗‖, ‖yn − x∗‖)

‖(I + θn[zn, x∗; F])(I + γn[yn, x∗; F])(I + βn[xn, x∗; F])

+δn[xn, x∗; F] + εn[yn, x∗; F](I + αn[xn, x∗; F])‖
≤ h3(‖xn − x∗‖, ‖yn − x∗‖, ‖zn − x∗‖).

A practical non-discrete choice for the function h1 is given by

‖I + α(x)[x, x∗; F]‖ ≤ h1(‖x− x∗‖) ∀x ∈ Ω.

Another choice is given by

h1(t) = sup
x∈Ω,‖x−x∗‖≤t

‖I + α(x)[x, x∗; F]‖.

The choices of functions h2 and h3 can follow similarly.
(P2) Let Mi : Ω −→ X be a linear operator. By Mi

n we denote Mi(xn) ∀n = 0, 1, 2, . . . .
Then, it follows from method (3)

yn − x∗ = xn − x∗ −M1
nF(xn) + (αn + Mn)F(xn)

= (I −M2
n[xn, x∗; F]) + (αn + M2

n)[xn, x∗; F])(xn − x∗),

zn − x∗ = ((I −M2
n[yn, x∗; F]) + (γn + M2

n)[yn, x∗; F])(yn − x∗)

and
xn+1 − x∗ = ((I −M3

n[zn, x∗; F]) + (θn + M3
n)[zn, x∗; F])(zn − x∗).

Thus, the functions hi must satisfy

‖I + αn‖ ≤ h1(‖xn − x∗‖),

(I + γn)(I + αn)‖ ≤ h2(‖xn − x∗‖, ‖yn − x∗‖)

and

‖xn+1 − x∗‖ ≤ ‖(I + θn)(I + γn)(I + αn)‖ ≤ h3(‖xn − x∗‖, ‖yn − x∗‖, ‖zn − x∗‖).

Clearly, the function h1 can be chosen again as in case (P1). The functions h2 and h3
can be defined similarly.

(P3) Assume ∃ function ϕ0 : [0, ∞) −→ R continuous and non-decreasing such that

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ ϕ0(‖x− x∗‖) ∀x ∈ Ω.

Then, we can write

F(xn) = F(xn)− F(x∗) =
∫ 1

0
F′(x∗ + θ(xn − x∗))dθ(xn − x∗)
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leading to

‖F′(x∗)−1F(xn)‖ ≤
∫ 1

0
ϕ0(θ‖xn − x∗‖)dθ‖xn − x∗‖.

Then, by method (3) we obtain, in turn, that

yn − x∗ = [I + αnF′(x∗)F′(x∗)−1

×
(∫ 1

0
F′(x∗ + θ(xn − x∗))dθ − F′(x∗) + F′(x∗)

)
](xn − x∗),

so, the function h1 must satisfy

‖I + αn

∫ 1

0
F′(x∗ + θ(xn − x∗))dθ‖ ≤ h1(‖xn − x∗‖)

or

‖h1(t)‖ = sup
‖x−x∗‖≤t, x∈Ω

‖I + α(x)
∫ 1

0
F′(x∗ + θ(xn − x∗))dθ‖

or

‖I + αnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖xn − x∗‖)dθ) ≤ h1(‖xn − x∗‖)

or

h1(t) = sup
‖x−x∗‖≤t, x∈Ω

‖I + α(x)F′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖xn − x∗‖)dθ).

Similarly, for the other two steps, we obtain in the last choice

‖zn − x∗‖ ≤ ‖I + γnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖yn − x∗‖)dθ)‖yn − x∗‖

+‖βnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖xn − x∗‖)dθ)‖xn − x∗‖

and

‖xn+1 − x∗‖ ≤ ‖I + θnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖zn − x∗‖)dθ)‖zn − x∗‖

+‖δnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖xn − x∗‖)dθ)‖xn − x∗‖

+‖εnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖yn − x∗‖)dθ)‖yn − x∗‖.

Thus, the function h2 satisfies

‖I + γnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖yn − x∗‖)dθ)‖yn − x∗‖

+‖βnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖xn − x∗‖)dθ)

≤ h2(‖xn − x∗‖, ‖yn − x∗‖)

or

h2(s, t) = sup
‖x−x∗‖≤s, ‖y−x∗‖≤t

[‖I + γ(x)F′(x∗)‖

×(1 +
∫ 1

0
ϕ0(θt)dθ)t)

+‖β(x)F′(x∗)‖(1 +
∫ 1

0
ϕ0(θs)dθ)].
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Finally, concerning the choice of the function h3, by the third substep of method (3)

‖xn+1 − x∗‖ ≤ ‖I + θnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖zn − x∗‖)dθ)‖zn − x∗‖

+‖δnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖xn − x∗‖)dθ)‖xn − x∗‖

+‖εnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖yn − x∗‖)dθ)‖yn − x∗‖,

so the function h3 must satisfy

‖I + θnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖yn − x∗‖)dθ)h2(‖xn − x∗‖, ‖yn − x∗‖)

+‖δnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖xn − x∗‖)dθ)

+‖εnF′(x∗)‖(1 +
∫ 1

0
ϕ0(θ‖yn − x∗‖)dθ)h1(‖xn − x∗‖)

≤ h3(‖xn − x∗‖, ‖yn − x∗‖, ‖zn − x∗‖)

or

h(x, s, t, u) = sup
‖x−x∗‖≤s, ‖y−x∗‖≤t, ‖z−x∗‖≤u

µ(x, s, t, u),

where

µ(x, s, t, u) = ‖I + θ(x)F′(x∗)‖

×(1 +
∫ 1

0
ϕ0(θu)dθ)h2(t, s)

+‖δ(x)F′(x∗)‖(1 +
∫ 1

0
ϕ0(θs)dθ)

+‖ε(x)F′(x∗)‖(1 +
∫ 1

0
ϕ0((θt)dθ)h1(s)].

The functions h2 and h3 can also be defined with the other two choices as those of
function h1 given previously.
Semi-local Convergence

Concerning this case, we can have instead of the conditions of Theorem 2 (see (H6))
but for method (3)

‖αnF(xn)‖ ≤ sn − tn,

‖βnF(xn) + γnF(yn)‖ ≤ un − sn

and
‖δnF(xn) + εnF(yn) + θnF(zn)‖ ≤ tn+1 − un ∀n = 0, 1, 2, . . . .

Notice that under these choices,

‖yn − xn‖ ≤ sn − tn

‖zn − yn‖ ≤ un − sn

and
‖xn+1 − zn‖ ≤ tn+1 − un.

Then, the conclusions of Theorem 2 hold for method (3). Even more specialized choices
of linear operators appearing on these methods as well as function hi can be found in the
Introduction, the next section, or in [1,2,11,21] and the references therein.
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4. Special Cases II

The section contains even more specialized cases of method (2) and method (3). In
particular, we study the local and semi-local convergence first of method (22) and second
of method (20). Notice that to obtain method (22), we set in method (3)

αn = −F′(xn)
−1, un = yn, βn = O, γn = −5F′(xn)

−1,

vn = yn, δn = O, εn = −9
5

F′(xn)
−1 and θn = −1

5
F′(xn). (35)

Moreover, for method (20), we let

αn = −[xn, wn; F]−1, un = yn, βn = O, zn = xn+1,

γn = ([yn, wn; F] + [yn, xn; F]− [xn, wn; F])−1, δn = εn = θn = O (36)

and vn = zn.

5. Local Convergence of Method

The local convergence analysis of method (23) utilizes some functions parameters. Let
S = [0, ∞).

Suppose the following:
(i) ∃ function w0 : S −→ R continuous and non-decreasing such that equation

w0(t)− 1 = 0

has a smallest solution ρ0 ∈ S− {0}. Let S0 = [0, ρ0).
(ii) ∃ function w : S0 −→ R continuous and non-decreasing such that equation

h1(t)− 1 = 0

has a smallest solution ρ1 ∈ S0 − {0}, where the function h1 : S0 −→ R defined by

h1(t) =

∫ 1
0 w((1− θ)t)dθ

1− w0(t)
.

(iii) Equation
w0(h1(t)t)− 1 = 0

has a smallest solution ρ̄1 ∈ S0 − {0}. Let

¯̄ρ0 = min{ρ0, ρ̄1}

and S̃1 = [0, ¯̄ρ0).
(iv) Equation

h2(t)− 1 = 0

has a smallest solution ρ2 ∈ S̃1 − {0}, where the function h2 : S̃1 −→ R is defined as

h2(t) =

[∫ 1
0 w((1− θ)h1(t)t)dθ

1− w0(h1(t)t)

+
w((1 + h1(t))t)(1 +

∫ 1
0 w0(θh1(t)t)dθ)

(1− w0(t))(1− w0(h1(t)t))

+
4(1 +

∫ 1
0 w0(θh1(t)t)dθ

1− w0(t)

]
h1(t).
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(v) Equation
h3(t)− 1 = 0

has a smallest solution ρ3 ∈ S̃1 − {0}, where the function h3 : S̃1 −→ R is defined by

h3(t) = h1(t) +
1
5
[
9(1 +

∫ 1
0 w0(θh1(t)t)dθ)h1(t)

1− w0(t)

(1 +
∫ 1

0
w0(θh2(t)t)dθ)h2(t)].

The parameter ρ defined by

ρ = min{ρj} j = 1, 2, 3 (37)

is proven to be a radius of convergence for method (2) in Theorem 3. Let S1 = [0, ρ). Then,
it follows by these definitions that ∀ t ∈ S2

0 ≤ w0(t) < 1 (38)

0 ≤ w0(h1(t)t) < 1 (39)

and
0 ≤ hi(t) < 1. (40)

The conditions required are as follows:
(C1) Equation F(x) = 0 has a simple solution x∗ ∈ Ω.
(C2) ‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ w0(‖x− x∗‖) ∀ x ∈ Ω.
Set Ω1 = U(x∗, ρ0) ∩Ω.
(C3) ‖F′(x∗)−1(F′(y)− F′(x))‖ ≤ w(‖y− x‖) ∀ x, y ∈ Ω1
and
(C4) U[x0, ρ] ⊂ Ω.

Next, the main local convergence result follows for method (23).

Theorem 3. Suppose that conditions (C1)-(C4) hold and x0 ∈ U(x∗, ρ)− {x∗}. Then, the se-
quence {xn} generated by method (23) is well defined in U(x∗, ρ), remains in U(x∗, ρ) ∀n =
0, 1, 2, . . . and is convergent to x∗. Moreover, the following assertions hold:

‖yn − x∗‖ ≤ h1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ, (41)

‖zn − x∗‖ ≤ h2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (42)

and
‖xn+1 − x∗‖ ≤ h3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (43)

where functions hi are defined previously and the radius ρ is given by formula (37).

Proof. Let u ∈ U(x∗, ρ)− {x∗}. By using conditions (C1), (C2) and (37), we have that

‖F′(x∗)−1(F′(u)− F′(x∗))‖ ≤ w0(‖x0 − x∗‖) ≤ w0(r) < 1. (44)

It follows by (44) and the Banach lemma on invertible operators [11,15] that F′(u)−1 ∈
L(X, X) and

‖F′(u)−1F′(x∗)‖ ≤
1

1− w0(‖x0 − x∗‖)
. (45)

If u = x0, then the iterate y0 is well defined by the first substep of method (23) and we
can write



Mathematics 2022, 10, 2621 13 of 28

y0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0)

= F′(x0)
−1
∫ 1

0
(F′(x∗ + θ(x0 − x∗))dθ − F′(x0))(x0 − x∗). (46)

In view of (C1)–(C3), (45) (for u = x0), (40) (for i = 1) and (46), we obtain in turn that

‖y0 − x∗‖ ≤
∫ 1

0 w((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖
1− w0(‖x0 − x∗‖)

≤ h1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < ρ. (47)

Thus, the iterate y0 ∈ U(x∗, r) and (41) holds for n = 0. The iterate z0 is well defined
by the second substep of method (23), so we can write

z0 − x∗ = y0 − x0 − 5F′(x0)
−1F(y0)

= y0 − x∗ − F′(y0)
−1F(y0)

+F′(y0)
−1(F(x0)− F′(y0))F′(x0)

−1F(y0)

−4F′(x0)
−1F(y0). (48)

Notice that linear operator F′(y0)
−1 exists by (45) (for u = y0). It follows by (37), (40)

(for j = 1), (C3), (45) (for u = x0, y0), in turn that

‖z0 − x∗‖ ≤
[∫ 1

0 w((1− θ)‖y0 − x∗‖)dθ

1− w0(‖y0 − x∗‖)

+
w(‖y0 − x0‖)(1 +

∫ 1
0 w0(θ‖y0 − x∗‖)dθ)

(1− w0(‖x0 − x∗‖))(1− w0(‖y0 − x∗‖))

+
4(1 +

∫ 1
0 w0(θ‖y0 − x∗‖)dθ

1− w0(‖x0 − x∗‖)

]
‖y0 − x∗‖

≤ h2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖. (49)

Thus, the iterate z0 ∈ U(x∗, ρ) and (42) holds for n = 0, where we also used (C1) and
(C2) to obtain the estimate

‖F′(x∗)−1F(y0)‖ = ‖F′(x∗)−1[
∫ 1

0
F′(x∗ + θ(y0 − x∗))dθ − F′(x∗)

+F′(x∗)](y0 − x∗)‖

≤ (1 +
∫ 1

0
w0(θ‖y0 − x∗‖)dθ)‖y0 − x∗‖.

Moreover, the iterate x1 is well defined by the third substep of method (23), so we can
have

x1 − x∗ = y0 − x∗ −
1
5

F′(x0)
−1(9F(y0) + F(z0)),

leading to

‖x1 − x∗‖ ≤ ‖y0 − x∗‖+
1
5

(
9(1 +

∫ 1
0 w0(θ‖y0 − x∗‖)dθ)‖y0 − x∗‖

1− w0(‖y0 − x∗‖)

+(1 +
∫ 1

0
w0(θ‖z0 − x∗‖)dθ)‖z0 − x∗‖

)
≤ h3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ. (50)
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Therefore, the iterate x1 ∈ U(x∗, ρ) and (43) holds for n = 0.
Switch x0, y0, z0, x1 by xm, ym, zm, xm+1 ∀m = 0, 1, 2 . . . in the preceding calculations to

complete the induction for the estimates (41)–(43). Then, by the estimate

‖xm+1 − x∗‖ ≤ d‖xm − x∗‖ < ρ, (51)

where d = h3(‖x0 − x∗‖) ∈ [0, 1), we obtain that xm+1 ∈ U(x∗, ρ) and limm−→∞xm =
x∗.

The uniqueness of the solution result for method (23) follows.

Proposition 1. Suppose the following:
(i) Equation F(x) = 0 has a simple solution x∗ ∈ U(x∗, r) ⊂ Ω for some r > 0.
(ii) Condition (C2) holds.
(iii)There exists r1 ≥ r such that ∫ 1

0
w0(θr1)dθ < 1. (52)

Set Ω2 = U[x∗, r1] ∩Ω. Then, the only solution of equation F(x) = 0 in the set Ω2 is x∗.

Proof. Let y∗ ∈ D2 be such that F(y∗) = 0. Define the linear operator J =
∫ 1

0 h(x∗ + θ(y∗ −
x∗))dθ. It then follows by (ii) and (52) that

‖h(x∗)−1(J − F′(x∗))‖ ≤
∫ 1

0
w0(θ‖y∗ − x∗‖)dθ

≤
∫ 1

0
w0(θr1)dθ < 1.

Hence, we deduce x∗ = y∗ by the invertibility of J and the estimate J(x∗ − y∗) =
F(x∗)− F(y∗) = 0.

Remark 3. Under all conditions of Theorem 3, we can set ρ = r.

Example 2. Consider the motion system

F′1(v1) = ev1 , F′2(v2) = (e− 1)v2 + 1, F′3(v3) = 1

with F1(0) = F2(0) = F3(0) = 0. Let F = (F1, F2, F3)
tr. Let X = R3, Ω = U[0, 1], x∗ =

(0, 0, 0)tr. Let function F on Ω for v = (v1, v2, v3)
tr given as

F(v) = (ev1 − 1,
e− 1

2
v2

2 + v2, v3)
tr.

Using this definition, we obtain the derivative as

F′(v) =

 ev1 0 0
0 (e− 1)v2 + 1 0
0 0 1

.

Hence, F′(x∗) = I. Let v ∈ R3 with v = (v1, v2, v3)
tr. Moreover, the nor for N ∈ R3 ×R3

is

‖N‖ = max
1≤j≤3

3

∑
i=1
‖nj,i‖.

Conditions (C1)–(C3) are verified for w0(t) = (e− 1)t and w(t) = 2(1 + 1
e−1 )t. Then, the

radii are

ρ1 = 0.3030, ρ2 = 0.1033 = ρ and ρ3 = 0.1461.
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Example 3. If X = C[0, 1] is equipped with the max-norm, Ω = U[0, 1], consider G : Ω −→ E1
given as

G(λ)(x) = ϕ(x)− 6
∫ 1

0
xτλ(τ)3dτ. (53)

We obtain

G′(λ(ξ))(x) = ξ(x)− 18
∫ 1

0
xτλ(τ)2ξ(τ)dτ, for each ξ ∈ D.

Clearly, x∗ = 0 and the conditions (C1)-(C3) hold for w0(t) = 9t and w(t) = 18t. Then, the
radii are

ρ1 = 0.0556, ρ2 = 0.0089 = ρ and ρ3 = 0.0206.

6. Semi-Local Convergence of Method

As in the local case, we use some functions and parameters for the method (23).
Suppose:
There exists function v0 : S −→ R that is continuous and non-decreasing such that

equation
v0(t)− 1 = 0

has a smallest solution τ0 ∈ S− {0}. Consider function v : S0 −→ R to be continuous and
non-decreasing. Define the scalar sequences for η ≥ 0 and ∀ n = 0, 1, 2, . . . by

t0 = 0, s0 = η

un = sn +
5
∫ 1

0 v(θ(sn − tn))dθ(sn − tn)

1− v0(tn)
,

tn+1 = un +
1

1− v0(tn)
[(1 +

∫ 1

0
v0(un + θ(un − sn))dθ(un − sn) (54)

+3
∫ 1

0
v(θ(sn − tn))dθ(sn − tn)]

sn+1 = tn+1 +
1

1− v0(tn+1)
[
∫ 1

0
v(θ(tn+1 − tn))dθ(tn+1 − tn)

+(1 +
∫ 1

0
v0(θtn)dθ(tn+1 − sn)].

This sequence is proven to be majorizing for method (23) in Theorem 4. However, first,
we provide a general convergence result for sequence (54).

Lemma 2. Suppose that ∀ n = 0, 1, 2, . . .

v0(tn) < 1 (55)

and there exists τ ∈ [0, τ0) such that
tn ≤ τ. (56)

Then, sequence {tn} converges to some t∗ ∈ [0, τ].

Proof. It follows by (54)–(56) that sequence {tn} is non-decreasing and bounded from
above by τ. Hence, it converges to its unique least upper bound t∗.

Next, the operator F is related to the scalar functions.
Suppose the following:

(h1) There exists x0 ∈ Ω, η ≥ 0 such that F′(x0)
−1L(B2, B1) and ‖F′(x0)

−1F(x0)‖ ≤ η.
(h2) ‖F′(x0)

−1(F′(x)− F′(x0))‖ ≤ v0(‖x− x0‖) for all x ∈ Ω.
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Set Ω3 = Ω ∩U(x0, τ0).
(h3) ‖F′(x0)

−1(F′(y)− F′(x))‖ ≤ v(‖y− x‖) for all x, y ∈ Ω3.
(h4) Conditions of Lemma 2 hold.
and
(h5) U[x0, t∗] ⊂ Ω.

We present the semi-local convergence result for the method (23).

Theorem 4. Suppose that conditions (h1)–(h5) hold. Then, sequence {xn} given by method (23) is
well defined, remains in U[x0, t∗] and converges to a solution x∗ ∈ U[x0, t∗] of equation F(x) = 0.
Moreover, the following assertions hold:

‖yn − xn‖ ≤ sn − tn, (57)

‖zn − yn‖ ≤ un − sn (58)

and
‖xn+1 − zn‖ ≤ tn+1 − un. (59)

Proof. Mathematical induction is utilized to show estimates (57)–(59). Using (h1) and
method (23) for n = 0

‖y0 − x0‖ = ‖F′(x0)
−1F(x0)‖ ≤ η = s0 − t0 ≤ t∗.

Thus, the iterate y0 ∈ U[x0, t∗] and (57) holds for n = 0.
Let u ∈ U[x0, t∗]. Then, as in Theorem 3, we get

‖F′(u)−1F′(x0)‖ ≤
1

1− v0(‖u− x0‖
. (60)

Hence, if we set u = x0, iterates y0, z0 and x1 are well defined by method (23) for n = 0.
Suppose iterates xk, yk, zk, xk+1 also exist for all integer values k smaller than n. Then, we
have the estimates

‖zn − yn‖ = 5‖F′(xn)
−1F(yn)‖

≤
5
∫ 1

0 v(θ‖yn − xn‖)dθ‖yn − xn‖
1− v0(‖xn − x0‖)

≤
5
∫ 1

0 v(θ‖sn − tn))dθ(sn − tn)

1− v0(tn)
= un − sn,

‖xn+1 − zn‖ = ‖1
5

F′(xn)
−1(F(yn)− F(zn)) + 3F′(xn)

−1F(yn)‖

≤ 1
1− v0(‖xn − x0‖)

[(1 +
1
5

∫ 1

0
v0(‖zn − x0‖+ θ‖zn − yn‖)dθ)‖yn − xn‖

+3
∫ 1

0
v(θ‖yn − xn‖dθ‖yn − xn‖]

≤ tn+1 − un
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and

‖yn+1 − xn+1‖ = ‖F′(xn+1)
−1F(xn+1)‖

≤ ‖F′(xn+1)
−1F′(x0)‖‖F′(x0)

−1F(xn+1)‖

≤ 1
1− v0(‖xn+1 − x0‖)

[
∫ 1

0
v(θ‖xn+1 − xn‖)dθ‖xn+1 − xn‖

+(1 +
∫ 1

0
v0(θ‖xn − x0‖)dθ)‖xn+1 − yn‖]

≤ sn+1 − tn+1,

where we also used

F(yn) = F(yn)− F(xn)− F′(xn)(yn − xn)

=
∫ 1

0
[F′(xn + θ(yn − xn))dθ − F′(xn)](yn − xn),

so

‖F′(x0)
−1F(yn)‖ ≤

∫ 1

0
v(θ‖yn − xn‖)dθ‖yn − xn‖

and

F(xn+1) = F(xn+1)− F(xn)− F′(xn)(yn − xn)

−F′(xn)(xn+1 − xn) + F′(xn)(xn+1 − xn)

= F(xn+1)− F(xn)− F′(xn)(xn+1 − xn) + F′(xn)(xn+1 − yn),

so

‖F′(x0)
−1F(xn+1)‖ ≤

∫ 1

0
v(θ‖xn+1 − xn‖)dθ‖xn+1 − xn‖

+(1 + v0(‖xn − x0‖))‖xn+1 − yn‖

≤
∫ 1

0
v(θ(tn+1 − tn))dθ(tn+1 − tn)

+(1 + v0(tn))(tn+1 − sn), (61)

‖zn − x0‖ ≤ ‖zn − yn‖+ ‖yn − x0‖
≤ un − sn + sn − t0 ≤ t∗

and

‖xn+1 − x0‖ ≤ ‖xn+1 − zn‖+ ‖zn − x0‖
≤ tn+1 − un + un − t0 ≤ t∗.

Hence, sequence {tn} is majorizing for method (2) and iterates {xn}, {yn}, {zn} belong
in U[x0, t∗]. The sequence {xn} is complete in Banach space X and as such, it converges to
some x∗ ∈ U[x0, t∗]. By using the continuity of F and letting n −→ ∞ in (61), we deduce
F(x∗) = 0.

Proposition 2. Suppose:
(i) There exists a solution x∗ ∈ U(x0, ρ2) of equation F(x) = 0 for some ρ2 > 0.
(ii) Condition (h2) holds.
(iii) There exists ρ3 ≥ ρ2 such that∫ 1

0
v0((1− θ)ρ2 + θρ3)dθ < 1. (62)

Set Ω4 = Ω ∩U[x0, ρ3]. Then, x∗ is the only solution of equation F(x) = 0 in the region Ω4.
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Proof. Let y∗ ∈ Ω4 with F(y∗) = 0. Define the linear operator Q =
∫ 1

0 F′(x∗ + θ(y∗ −
x∗))dθ. Then, by (h2) and (62), we obtain in turn that

‖F′(x0)
−1(Q− F′(x0))‖ ≤

∫ 1

0
v0((1− θ)‖x0 − y∗‖+ θ‖x0 − x∗‖)dθ

≤
∫ 1

0
v0((1− θ)ρ2 + θρ3)dρ < 1.

Thus, x∗ = y∗.

The next two examples show how to choose the functions v0, v, and the parameter η.

Example 4. Set X = R. Let us consider a scalar function F defined on the set Ω = U[x0, 1− µ]
for µ ∈ (0, 1) by

F(x) = x3 − µ.

Choose x0 = 1. Then, the conditions (h1)–(h3) are verified for η = 1−µ
3 , v0(t) = (3− µ)t

and v(t) = 2(1 + 1
3−µ )t.

Example 5. Consider X = C[0, 1] and Ω = U[0, 1]. Then the problem [5]

Ξ(0) = 0, Ξ(1) = 1,

Ξ′′ = −Ξ− ιΞ2

is also given as integral equation of the form

Ξ(q2) = q2 +
∫ 1

0
Θ(q2, q1)(Ξ3(q1) + ιΞ2(q1))dq1

where ι is a constant and Θ(q2, q1) is the Green’s function

Θ(q2, q1) =

{
q1(1− q2), q1 ≤ q2
q2(1− q1), q2 < q1.

Consider F : Ω −→ X as

[F(x)](q2) = x(q2)− q2 −
∫ 1

0
Θ(q2, q1)(x3(q1) + ιx2(q1))dq1.

Choose Ξ0(q2) = q2 and Ω = U(Ξ0, ε0). Then, clearly U(Ξ0, ε0) ⊂ U(0, ε0 + 1), since
‖Ξ0‖ = 1. If 2ι < 5. Then, conditions (C1)-(C3) are satisfied for

w0(t) =
2ι + 3ρ0 + 6

8
t, w(t) =

ι + 6ρ0 + 3
4

t.

Hence, w0(t) ≤ w(t).

7. Local Convergence of Method

The local analysis is using on certain parameters and real functions. Let L0, L and α be
positive parameters. Set T1 = [0, 1

(2+α)L0
] provided that (2 + α)L0 < 1.

Define the function h1 : T1 −→ R by

h1(t) =
(1 + α)Lt

1− (2 + α)L0t
.
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Notice that parameter ρ

ρ =
1

(1 + α)L + (2 + α)L0

is the only solution of equation
h1(t)− 1 = 0

in the set T1.
Define the parameter ρ0 by

ρ0 =
1

(2 + α)(L0 + L)
.

Notice that ρ0 < ρ. Set T0 = [0, ρ0].
Define the function h2 : T0 −→ R by

h2(t) =
(2 + 2α + h1(t))Lh1(t)t

1− (2 + α)(L0 + L)t
.

The equation
h2(t)− 1 = 0

has a smallest solution ρ ∈ T0− {0} by the intermediate value theorem, since h2(0)− 1 = −1
and h2(t) −→ ∞ as y −→ ρ−0 . It shall be shown that R is a radius of convergence for
method (20). It follows by these definitions that ∀t ∈ T0

0 ≤ (L0 + L)(2 + α)t < 1 (63)

0 ≤ h1(t) < 1 (64)

and
0 ≤ h2(t) < 1. (65)

The following conditions are used:
(C1) There exists a solution x∗ ∈ Ω of equation F(x) = 0 such that F′(x∗)−1 ∈ L(X, X).
(C2) There exist positive parameters L0 and α such that ∀v, z ∈ Ω

‖F′(x∗)−1([v, z; F]− F′(x∗))‖ ≤ L0(‖v− x∗‖+ ‖z− x∗‖)

and
‖F(x)‖ ≤ α‖x− x∗‖.

Set Ω1 = U(x∗, ρ) ∩Ω.
(C3) There exists a positive constant L > 0 such that ∀x, y, v, z ∈ Ω1

‖F′(x∗)−1([x, y; F]− [v, z; F])‖ ≤ L(‖x− v‖+ ‖y− z‖)

and
(C4) U[x0, ρ] ⊂ Ω.

Next, the local convergence of method (20) is presented using the preceding terminol-
ogy and conditions.

Theorem 5. Under conditions (C1)–(C4), further suppose that x0 ∈ U(x∗, ρ). Then, the sequence
{xn} generated by method (20) is well defined in U(x∗, ρ), stays in U(x∗, ρ) ∀n = 0, 1, 2, . . . and
is convergent to x∗ so that

‖yn − x∗‖ ≤ h1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < Ω (66)
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and
‖xn+1 − x∗‖ ≤ h2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (67)

where the functions h1, h2 and the radius ρ are defined previously.

Proof. It follows by method (20), (C1), (C2) and x0 ∈ U(x∗, ρ) in turn that

‖F′(x∗)−1(A0 − F′(x∗))‖ = ‖F′(x∗)−1([x0, x0 + F(x0); F]− F′(x∗))‖
≤ L0(2‖x0 − x∗‖+ ‖F(x0)− F(x∗)‖)
≤ L0(2 + α)‖x0 − x∗‖
< L0(2 + α)ρ. (68)

It follows by (68) and the Banach lemma on invertible operators [24] that A−1
0 ∈

L(X, X) and

‖A−1
0 F′(x∗)‖ ≤

1
1− (2 + α)L0‖x0 − x∗‖

. (69)

Hence, the iterate y0 exists by the first substep of method (20) for n = 0. It follows
from the first substep of method (20), (C2) and (C3), that

‖y0 − x∗‖ ≤ ‖x0 − x∗ − A−1
0 F(x0)

‖A−1
0 F′(x∗)F′(x∗)−1(A0 − (F(x0)− F(x∗)))(x− 0− x∗)‖

≤ ‖A−1
0 F′(x∗)‖‖F′(x∗)−1(A0 − (F(x0)− F(x∗)))‖‖x0 − x∗‖

≤ L(‖x0 − x∗‖+ ‖F(x0)− F(x∗))
1− L0(2 + α)‖x0 − x∗‖

(70)

≤ h1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ.

Thus, the iterate y0 ∈ U(x∗, ρ) and (66) holds for n = 0. Similarly, by the second
substep of method (20), we have

‖F′(x∗)−1(B0 − F′(x∗))‖ = ‖F′(x∗)−1([y0, w0; F]

−[y0, x0; F]− [x0, w0; F]− [x∗, x∗; F])‖
≤ L‖y0 − w0‖+ L0(‖y0 − x∗‖+ ‖w0 − x∗‖)
≤ L(‖y0 − x∗‖+ ‖w0 − x∗‖) + L0(‖y0 − x∗‖+ ‖w0 − x∗‖)

≤ (L + L0)(2 + α)ρ ≤ L + L0

L + L0
= 1. (71)

Hence, B−1
0 ∈ L(X, X) and

‖B−1
0 F′(x∗)‖ ≤

1
1− (L + L0)(2 + α)‖x0 − x∗‖

. (72)
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Thus, the iterate x1 exists by the second sub-step of method (20). Then, as in (70) we
obtain in turn that

‖x1 − x∗‖ ≤ ‖y0 − x∗ − B−1
0 F(y0)‖

≤ ‖B−1
0 F′(x∗)‖‖F′(x∗)−1(B0 − (F(y0)− F(x∗)))‖‖y0 − x∗‖

≤ ‖F′(x∗)−1([y0, w0; F] + [y0, x0; F]− [x0, w0; F]− [y0, x∗ : F])‖
1− (L + L0)(2 + α)‖x0 − x∗‖

‖y0 − x∗‖

≤ L(2 + 2α + h2(‖x0 − x∗‖))‖x0 − x∗‖
1− (L + L0)(2 + α)‖x0 − x∗‖

h1(‖x0 − x∗‖)

‖x0 − x∗‖ (73)

≤ h2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ.

Therefore, the iterate x1 ∈ U(x∗, ρ) and (67) holds for n = 0.
Simply replace x0, y0, x1 by xm, ym, xm+1 ∀m = 0, 1, 2 . . . in the preceding calculations

to complete the induction for (66) and (67). It then follows from the estimate

‖xm+1 − x∗‖ ≤ µ‖xm − x∗‖ < ρ, (74)

where, µ = h2(‖x0 − x∗‖) ∈ [0, 1) leading to xm+1 ∈ U(x∗, ρ) and limm−→∞xm = x∗.

Concerning the uniqueness of the solution x∗ (not given in [9]), we provide the result.

Proposition 3. Suppose:
(i) The point x∗ is a simple solution x∗ ∈ U(x∗, r) ⊂ Ω for some r > 0 of equation F(x) = 0.
(ii) There exists positive parameter L1 such that ∀y ∈ Ω

‖F′(x∗)−1([x∗, y; F]− F′(x∗))‖ ≤ L1‖y− x∗‖ (75)

(iii)There exists r1 ≥ r such that
L1r1 < 1. (76)

Set Ω2 = U[x∗, r1] ∩Ω. Then, x∗ is the only solution of equation F(x) = 0 in the set Ω2.

Proof. Set P = [x∗, y∗; F] for some y∗ ∈ D2 with F(y∗) = 0. It follows by (i), (75) and (76)
that

‖F′(x∗)−1(P− F′(x∗))‖ ≤ L1‖y∗ − x∗‖) < 1.

Thus, we conclude x∗ = y∗ by the invertability of P and identity P(x∗ − y∗) =
F(x∗)− F(y∗) = 0.

Remark 4. (i) Notice that not all conditions of Theorem 5 are used in Proposition 3. If they were,
then we can set r1 = ρ.
(ii) By the definition of set Ω1 we have

Ω1 ⊂ Ω. (77)

Therefore, the parameter
L ≤ L2, (78)

where L2 is the corresponding Lipschitz constant in [1,3,9,19] appearing in the condition ∀x, y, z ∈ Ω

‖F′(x∗)−1([x, y; F]− [v, z; F])‖ ≤ L2(‖x− v‖+ ‖y− z‖). (79)

Thus, the radius of convergence R0 in [1,7,8,20] uses L2 instead of L. That is by (78)

R0 ≤ ρ. (80)
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Examples where (77), (78) and (80) are strict can be found in [2,5,11–13,15,21–24].

8. Majorizing Sequences for Method

Let K0, K, be given positive parameters and δ ∈ [0, 1), K0 ≤ K, η ≥ 0, and T = [0, 1).
Consider recurrent polynomials defined on the interval T for n = 1, 2, . . . by

f (1)n (t) = Kt2nη + Kt2n−1η + 2K0(1 + t + . . . + t2n+1)η

+K0(t2n+1 + 2t2n)t2n+1η + δ− 1,

f (2)n (t) = Kt2n+1η + K(t2n+1 + 2t2n)t2nη

+2K0(1 + t + . . . + t2n+2)η + δ− 1,

g(1)n (t) = Kt3 + Kt2 − Kt− K + 2K0(t3 + t4)

+K0(t2n+3 + 2tn+2)t4η − K0(t2n+1 + 2t2n)t2η,

g(2)n (t) = Kt3 + K(t3 + 2t2)t2n+2η

+2K0(t3 + t4)− Kt− K(t + 2)t2nη,

h(1)n+1(t) = g(1)n+1(t)− g(1)n (t),

h(2)n+1(t) = g(2)n+1(t)− g(2)n (t),

and polynomials

g(1)∞ (t) = g1(t) = Kt3 + Kt2 − Kt− K + 2K0(t3 + t4),

g(2)∞ (t) = g2(t) = Kt3 + 2K0(t3 + t4)− Kt = g3(t)t

and
g(t) = (t− 1)2(t5 + 4t4 + 6t3 + 6t2 + 5t + 2).

Then, the following auxiliary result connecting these polynomials can be shown.

Lemma 3. The following assertions hold:

f (1)n+1(t) = f (1)n (t) + g(1)n (t)t2n−1η, (81)

f (2)n+1(t) = f (2)n (t) + g(2)n (t)t2nη, (82)

h(1)n+1(t) = g(t)K0t2n+2η, (83)

h(2)n+1(t) = g(t)Kt2nη, (84)

polynomials g1 and g2 have smallest zeros in the interval T−{0} denoted by ξ1 and α2, respectively,

h(1)n+1(t) ≥ 0 ∀ t ∈ [0, ξ1) (85)

and
h(2)n+1(t) ≥ 0 ∀ t ∈ [0, ξ2). (86)

Moreover, define functions on the interval T by

g(1)∞ (t) = lim
n−→∞

g(1)n (t) (87)

and
g(2)∞ (t) = lim

n−→∞
g(2)n (t). (88)

Then,
g(1)∞ (t) = g1(t) ∀ t ∈ [0, α1), (89)
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g(2)∞ (t) = g2(t) ∀ t ∈ [0, α2), (90)

f (1)n+1(t) ≤ f (1)n (t) + g1(t)t2n−1η ∀ t ∈ [0, ξ1), (91)

f (2)n+1(t) ≤ f (2)n (t) + g2(t)t2nη ∀ t ∈ [0, ξ2), (92)

f (1)n+1(ξ1) ≤ f (1)n (ξ1), (93)

and
f (2)n+1(ξ2) ≤ f (2)n (ξ2). (94)

Proof. Assertions (81)–(84) hold by the definition of these functions and basic algebra. By
the intermediate value theorem polynomials g1 and g3 have zeros in the interval T − {0},
since g1(0) = −K, g1(1) = 4K0, g2(0) = −K and g2(1) = 4K0. Then, assertions (85) and
(86) follow by the definition of these polynomials and zeros ξ1 and ξ2. Next, assertions (91)
and (94) also follow from (87), (88) and the definition of these polynomials.

The preceding result is connected to the scalar sequence defined ∀ n = 0, 1, 2, . . . by
t0 = 0, s0 = η,

t1 = s0 +
K(η + δ)η

1− K0(2η + δ)
,

sn+1 = tn+1 +
K(tn+1 − tn + sn − tn)(tn+1 − sn)

1− K0(2tn+1 + γn + δ)
(95)

tn+2 = sn+1 +
K(sn+1 − tn+1 + γn)(sn+1 − tn+1)

1− K0(2sn+1 + δ)
,

where γn = K(tn+1 − tn + sn − tn)(tn+1 − sn), δ ≥ γ0.
Moreover, define parameters ξ1 = K(s1−t1+γ0)

1−K0(2s1+δ)
, ξ2 = K(t1+s0)

1−K0(2t1+γ0+δ)
and a = max{ξ1, ξ2},

Then, the first convergence result for sequence {tn} follows.

Lemma 4. Suppose
Kη ≤ 1, 0 < ξ1, 0 < ξ2, a < ξ < 1, (96)

f (1)1 (ξ1) ≤ 0 (97)

and
f (1)2 (ξ2) ≤ 0. (98)

Then, scalar sequence {tn} is non-decreasing, bounded from above by t∗∗ =
η

1−ξ , and con-
verges to its unique least upper bound t∗ ∈ [0, t∗∗]. Moreover, the following error bounds hold

0 < tn+1 − sn ≤ ξ(sn − tn) ≤ ξ2n+1η, (99)

0 < sn − tn ≤ ξ(tn − sn−1) ≤ ξ2nη (100)

and
γn+1 ≤ γn ≤ γ0. (101)

Proof. Assertions (99)–(101) hold if we show using induction that

0 <
K(tn+1 − tn + sn − tn)

1− K0(2tn+1 + γn + δ)
≤ ξ1, (102)

0 <
K(sn+1 − tn+1 + γn)

1− K0(2sn+1 + δ)
≤ ξ2, (103)

and
tn ≤ sn ≤ tn+1. (104)
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By the definition of t1, we obtain

t1

s0
=

1− Kη

1− K0(2η + δ)
> 1,

so s0 < t1, and (103) holds for n = 0. Suppose assertions (101)–(103) hold for each
m = 0, 1, 2, 3, . . . , n. By (99) and (100) we have

sm ≤ tm + ξ2mη ≤ sm−1 + ξ2m−1η + ξ2mη

≤ η + ξη + . . . + ξ2mη

=
1− ξ2m+1

1− ξ
η ≤ t∗∗ (105)

and

tm+1 ≤ sm + ξ2m+1η ≤ tm + ξ2m+1η + ξ2mη

≤ η + ξη + . . . + ξ2m+1η

=
1− ξ2m+2

1− ξ
η ≤ t∗∗. (106)

By the induction hypotheses sequences {tm}, {sm} are increasing. Evidently, estimate
(101) holds if

Kξ2m+1η + Kξ2mη + 2K0ξ
1− ξ2m+2

1− ξ
η

+K0ξδ + ξγmK0 − ξ ≤ 0

or
f (1)m (t) ≤ 0 at t = ξ1, (107)

where γm ≤ K(ξ2m+1 + 2ξ2m)ξ2m+1η2. By (91), (93), and (98) estimate (107) holds.
Similarly, assertion (103) holds if

Kξ2m+2η + K2(ξ2m+1η + 2ξ2mη)ξ2m+1η

+2ξK0(1 + ξ + . . . + ξ2m+2)η + δξ − ξ ≤ 0

or
f (2)m (t) ≤ 0 at t = ξ2. (108)

By (92) and (94), assertion (108) holds. Hence, (100) and (103) also hold. Notice that
γn can be written as γn = K(En + E1

n)E2
n, where En = tn+1 − tn > 0, E1

n = sn − tn, and
E2

n = tn+1 − sn > 0. Hence, we get

En+1 − En = tn+2 − 2tn+1 + tn ≤ ξ2n(ξ2 − 1)(ξ + 1)η < 0,

E1
n+1 − E1

n = sn+1 − tn+1 − (sn − tn) ≤ ξ2n(ξ2 − 1)η < 0,

and
E2

n+1 − E2
n = tn+2 − sn+1 − (tn+1 − sn) ≤ ξ2n+1(ξ2 − 1)η < 0,

so
γn+1 ≤ γn ≤ γ0.

It follows that sequence {tn} is non-decreasing, bounded from above by t∗∗. Thus, it
converges to t∗.

Next, a second convergence result for sequence (95) is presented but the sufficient
criteria are weaker but more difficult to verify than those of Lemma 4.
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Lemma 5. Suppose
K0δ < 1, (109)

K0(2tn+1 + γn + δ) < 1, (110)

and
K0(2sn+1 + δ) < 1 (111)

hold. Then, sequence {tn} is increasing and bounded from above by t∗∗1 = 1−K0δ
2K0

, so it converges to
its unique least upper bound t∗1 ∈ [0, t∗∗1 ].

Proof. It follows from the definition of sequence (95), and conditions (109)–(111).

9. Semi-Local Convergence of Method

The conditions (C) shall be used in the semi-local convergence analysis of method (20).
Suppose

(C1) There exist x0 ∈ Ω, η ≥ 0, δ ∈ [0, 1) such that A−1
0 ∈ L(X, X), ‖A−1

0 F(x0)‖ ≤ η, and
‖F(x0)‖ ≤ δ.
(C2) There exists K0 > 0 such that for all u, v ∈ Ω

‖A−1
0 ([u, v; F]− A0)‖ ≤ K0(‖u− x0‖+ ‖v− w0‖).

Set Ω0 = U(x0, 1−K0δ
2K0

) ∩Ω for K0δ < 1.
(C3) There exists K > 0 such that for all u, v, ū, v̄ ∈ Ω0

‖A−1
0 ([u, v; F]− [ū, v̄; F])‖ ≤ K(‖u− ū‖+ ‖v− v̄‖).

(C4) U[x0, ρ + δ] ⊂ Ω, where ρ =

{
t∗ + γ0 or t∗∗, if conditions of Lemma 4 hold
t∗1 + γ0 or t∗∗1 , if conditions of Lemma 5 hold.

Remark 5. The results in [19] are given in the non-affine form. The benefits of using affine invariant
results over non-affine are well-known [1,5,11,21]. In particular, they assumed ‖A−1

0 ‖ ≤ β and
(C3)’ ‖[x, y; F]− [x̄, ȳ; F]‖ ≤ K̄(‖x− x̄‖+ ‖y− ȳ‖) holds for all x, y, x̄ ȳ ∈ Ω. By the definition
of the set Ω0, we get

Ω0 ⊂ Ω, (112)

ao
K0 ≤ βK̄ (113)

and
K ≤ βK̄. (114)

Hence, K can replace βK̄ in the results in [19]. Notice also that using (C3)’ they estimated

‖B−1
n+1 A0‖ ≤

1
1− βK̄(2s̄n+1 + δ)

(115)

and
‖A−1

0 (An+1 − A0)‖ ≤
1

1− βK̄(t̄n+1 − t̄0) + γ̄n + δ)
, (116)

where {t̄n}, {s̄n} are defined for n = 0, 1, 2, . . . by t̄0 = 0, s̄0 = η,
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t̄1 = s̄0 +
βK̄(η + δ)η

1− βK̄(2s̄0 + δ)
,

s̄n+1 = t̄n+1 +
βγ̄

1− βK̄(2t̄n+1 + γ̄n + δ)
(117)

t̄n+2 = s̄n+1 +
βK̄(s̄n+1 − t̄n+1 + γ̄n)(s̄n+1 − t̄n+1)

1− βK̄(2s̄n+1 + δ)
,

where γ̄n = K̄(t̄n+1 − t̄n + s̄n − t̄n)(t̄n+1 − s̄n), δ ≥ γ̄0. But using the weaker condition (C2) we
obtain respectively,

‖B−1
n+1 A0‖ ≤

1
1− K0(2sn+1 + δ)

(118)

and
‖A−1

0 (An+1 − A0)‖ ≤
1

1− K0(tn+1 − t0 + γn + δ)
(119)

which are tighter estimates than (115) and (116), respectively. Hence, K0, K can replace βK̄, β, K̄
and (118), (119) can replace (115), (116), respectively, in the proof of Theorem 3 in [19]. Examples
where (112)–(114) are strict can be found in [1,5,11,21]. Simple induction shows that

0 < sn − tn ≤ s̄n − t̄n (120)

0 < tn+1 − sn ≤ t̄n+1 − s̄n (121)

and
t∗ ≤ t̄∗ = lim

n−→∞
t̄n. (122)

These estimates justify the claims made at the introduction of this work along the same lines.
The local results in [19] can also be extended using our technique.

Next, we present the semi-local convergence result for the method (20).

Theorem 6. Suppose that conditions (C) hold. Then, iteration {xn} generated by method (20)
exists in U[x0, t∗], remains in U[x0, t∗] and limn−→∞ xn = x∗ ∈ U[x0, t∗] with F(x∗) = 0, so
that

‖xn − x∗‖ ≤ t∗ − tn.

Proof. It follows from the comment above Theorem 6.

Next, we present the uniqueness of the solution result, where conditions (C) are not
necessarily utilized.

Proposition 4. Suppose the following:
(i) There exists a simple solution x∗ ∈ U(x0, r) ⊂ Ω for some r > 0.
(ii) Condition (C2) holds
and
(iii) There exists r∗ ≥ r such that K0(r + r∗ + δ) < 1.

Set Ω1 = U(x0, 1−K0(δ+r)
K0

) ∩ Ω. Then, the element x∗ is the only solution of equation
F(x) = 0 in the region Ω1.

Proof. Let z∗ ∈ Ω1 with F(z∗) = 0. Define Q = [x∗, z∗; F]. Then, in view of (ii) and (iii),

‖A−1
0 (Q− A0)‖ ≤ K0(‖x∗ − x0‖+ ‖z∗ − w0‖≤K0(r + r∗ + δ) < 1.

Therefore, we conclude z∗ = x∗ is a consequence of the invertibility of Q and the
identity Q(x∗ − z∗) = F(x∗)− F(z∗) = 0.
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Remark 6. (i) Notice that r can be chosen to be t∗.
(ii) The results can be extended further as follows. Replace
(C3)”‖A−1

0 ([u, v; F]− [ū, v̄; F])‖ ≤ K̃(‖u− ū‖+ ‖v− v̄‖), ∀ u, ū ∈ Ω0, v = u− A(u)−1F(u)
and v̄ = A(ū)−1F(ū). Then, we have
(iii) K̃ ≤ K.

Another way is if we define the set Ω2 = U(x1, 1−K0(δ+γ0)
2K0

− η) provided that K0(δ + γ0) <
1. Moreover, suppose Ω2 ⊂ Ω. Then, we have Ω2 ⊂ Ω0 if condition (C3)” on Ω2, say, with
constant K̃0. Then, we have that

K̃0 ≤ K

also holds. Hence, tighter K̃ or K̃0 can replace K in Theorem 6.

10. Conclusions

The convergence analysis is developed for generalized three-step numerical methods.
The advantages of the new approach include weaker convergence criteria and a uniform
set of conditions utilizing information on these methods in contrast to earlier works on
special cases of these methods, where the existence of high-order derivatives is assumed to
prove convergence. The methodology is very general and does not depend on the methods.
That is why it can be applied to multi-step and other numerical methods that shall be the
topic of future work.

The weak point of this methodology is the observation that the computation of the
majorant functions “h” at this generality is hard in general. Notice that this is not the
case for the special cases of method (2) or method (3) given below them (see, for example,
Examples 4 and 5). As far as we know, there is no other methodology that can be compared
to the one introduced in this article to handle the semi-local or the local convergence of
method (2) or method (3) at this generality.

Author Contributions: Conceptualization, M.I.A., I.K.A., S.R. and S.G.; methodology, M.I.A., I.K.A.,
S.R. and S.G.; software, M.I.A., I.K.A., S.R. and S.G.; validation, M.I.A., I.K.A., S.R. and S.G.; formal
analysis, M.I.A., I.K.A., S.R. and S.G.; investigation, M.I.A., I.K.A., S.R. and S.G.; resources, M.I.A.,
I.K.A., S.R. and S.G.; data curation, M.I.A., I.K.A., S.R. and S.G.; writing—original draft preparation,
M.I.A., I.K.A., S.R. and S.G.; writing—review and editing, M.I.A., I.K.A., S.R. and S.G.; visualization,
M.I.A., I.K.A., S.R. and S.G.; supervision, M.I.A., I.K.A., S.R. and S.G.; project administration, M.I.A.,
I.K.A., S.R. and S.G.; funding acquisition, M.I.A., I.K.A., S.R. and S.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Appell, J.; DePascale, E.; Lysenko, J.V.; Zabrejko, P.P. New results on Newton-Kantorovich approximations with applications to

nonlinear integral equations. Numer. Funct. Anal. Optim. 1997, 18, 1–17.
2. Ezquerro, J.A.; Hernandez, M.A. Newton’s Method: An Updated Approach of Kantorovich’s Theory; Birkhäuser: Cham Switzerland,

2018.
3. Proinov, P.D. New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems.

J. Complex. 2010, 26, 3–42.
4. Regmi, S.; Argyros, I.K.; George, S.; Argyros, C. Numerical Processes for Approximating Solutions of Nonlinear Equations.

Axioms 2022, 11, 307. https://doi.org/10.3390/axioms11070307
5. Argyros, I.K. The Theory and Applications of Iteration Methods, 2nd ed.; Engineering Series; CRC Press: Boca Raton, FL, USA; Taylor

and Francis Group: Abingdon, UK, 2022.
6. Zhanlav, K.H.; Otgondorj, K.H.; Sauul, L. A unified approach to the construction of higher-order derivative-free iterative methods

for solving systems of nonlinear equations. Int. J. Comput. Math. 2021.



Mathematics 2022, 10, 2621 28 of 28

7. Zhanlav, T.; Chun, C.; Otgondorj, K.H.; Ulziibayar, V. High order iterations for systems of nonlinear equations. Int. J. Comput.
Math. 2020, 97, 1704–1724, https://doi.org/10.1080/00/207160. 2019.1652739.

8. Wang, X. An Ostrowski-type method with memory using a novel self-accelerating parameters. J. Comput. Appl. Math. 2018, 330,
710–720.

9. Moccari, M.; Lofti, T. On a two-step optimal Steffensen-type method: Relaxed local and semi-local convergence analysis and
dynamical stability. J. Math. Anal. Appl. 2018, 468, 240–269.

10. Shakhno, S.M.; Gnatyshyn, O.P. On an iterative Method of order 1.839. . . for solving nonlinear least squares problems. Appl. Math.
Comput. 2005, 161, 253–264.

11. Argyros, I.K. Unified Convergence Criteria for Iterative Banach Space Valued Methods with Applications. Mathematics 2021, 9,
1942; https://doi. org/10.3390/math9161942.

12. Potra, F.-A.; Pták, V. Nondiscrete Induction and Iterative Processes; Pitman Publishing: Boston, MA, USA, 1984.
13. Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190,

686–698.
14. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: Hoboken, NJ, USA, 1964.
15. Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982.
16. Xiao, X.; Yin, H. Achieving higher order of convergence for solving systems of nonlinear equations. Appl. Math. Comput. 2017,

311, 251–261.
17. Sharma, J.R.; Arora, H. Efficient derivative-free numerical methods for solving systems of nonlinear equations. Comput. Appl.

Math. 2016, 35, 269–284.
18. Sharma, J.R.; Guha, R.K. Simple yet efficient Newton-like method for systems of nonlinear equations. Calcolo 2016, 53, 451–473.
19. Noor, M.A.; Waseem, M. Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 2009, 57,

101–106.
20. Wang, X.; Zhang, T. A family of Steffensen type methods with seventh-order convergence. Numer. Algor. 2013, 62, 429–444.
21. Argyros, I.K.; Magréñan, A.A. A Contemporary Study of Iterative Methods; Elsevier: Amsterdam, The Netherlands; Academic Press:

New York, NY, USA, 2018.
22. Grau-Sanchez, M.; Grau, A.; Noguera, M. Ostrowski type methods for solving system of nonlinear equations. Appl. Math. Comput.

2011, 218, 2377–2385.
23. Homeier, H.H.H. A modified Newton method with cubic convergence: the multivariate case. J. Comput. Appl. Math. 2004, 169,

161–169.
24. Kou, J.; Wang, X.; Li, Y. Some eight order root finding three-step methods. Commun. Nonlinear Sci. Numer. Simul. 2010, 15,

536–544.
25. Verma, R. New Trends in Fractional Programming; Nova Science Publisher: New York, NY, USA, 2019.


	Introduction
	Convergence Analysis of Method
	Special Cases I
	Special Cases II
	Local Convergence of Method
	Semi-Local Convergence of Method
	Local Convergence of Method
	Majorizing Sequences for Method
	Semi-Local Convergence of Method
	Conclusions
	References

