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Abstract: This study focuses on tensor Z-eigenvalue localization and its application in the geometric
measure of entanglement for multipartite quantum states. A new Z-eigenvalue localization theorem
and the bounds for the Z-spectral radius are derived, which are more precise than some of the
existing results. On the other hand, we present theoretical bounds of the geometric measure of
entanglement for a weakly symmetric multipartite quantum state with non-negative amplitudes by
virtue of different distance measures. Numerical examples show that these conclusions are superior
to the existing results in quantum physics in some cases.
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1. Introduction

Tensors, namely multidimensional arrays, have become more and more important in
many different fields of applied mathematics and computational mathematics, and they
have promoted the development of numerical multilinear algebra. They have a very rich
diversity in practical applications, especially in the positive definiteness of even-order
multivariate forms in automatical control [1], higher-order statistics [2,3] and multiple
dimensional data analysis [4,5].

Tensor eigenvalues are widely used in a large amount of scientific and engineering
problems. However, the calculation of the Z-eigenvalue of a higher-order tensor is usually
NP hard, which is different from the case of matrices. Nevertheless, there are some
algorithms for calculating one or more eigenvalues of tensors, such as [6–12]. Unfortunately,
these methods do not work well in larger-sized tensors, even on a medium scale. In this
situation, the eigenvalue localization methods can capture all eigenvalues of a high-order
tensor in a certain interval. For example, Geršgorin and Brauer-type tensor eigenvalue
inclusion sets are introduced in [13]. Therefore, eigenvalue localization is one of the
important methods to investigate the spectral radius of higher-order tensors.

Entanglements in composite systems are a basic and important feature of quantum
physics and the core resource of the field of quantum information science [14], but it has
been proved difficult to quantify. It makes all the difference that we know whether a quan-
tum state is entangled or not in many practical applications [15]. There are many elegant
entanglement criteria, such as the Bell inequality [16], entanglement witness [17] and the
positive partial transposition (PPT) criterion [18,19]. However, in the case of multipartite
systems, the situation is substantially more complicated. The geometric measure of entan-
glement has become the most basic method for measuring the entanglement of multipartite
systems, which is proposed to Shimony [20] for bipartite systems and extended to multi-
partite systems by Wei and Goldbart [21]. Despite its significance, the explicit value of the
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geometric measures of entanglement can be derived for only a few entangled states, such
as generalized W states [22], Dicke states and m-qubit GHZ states [21]. Since the definition
involves the optimization process of all separable state sets, it is still impossible to obtain
geometric measures for most of the multipartite states, which represents a formidable task
in the general case even with numerical approaches.

The geometric measure of entanglement can be attributed to the spectral radius
of the normalized tensors [11] from a mathematical perspective. Recently, the authors
in [23] indicate that the maximal overlap of the state Ψ with a pure separable state is
equivalent to the Z-spectral radius of symmetric nonnegative tensor AΨ; that is, the
geometric measure of entanglement is derived. Moreover, these conclusions are generalized
to the weakly symmetric non-negative tensor case [24]. On the other hand, based on Bures
distance, the authors in [25] propose an upper bound for a maximally geometric measure of
entanglement for an m-partite system composed of subsystems of dimensions d1, · · · , dm.

Highly entangled multipartite states are very important in the fields of quantum infor-
mation processing, quantum error correction and quantum communication, especially in
the exponential acceleration of quantum algorithms; for details, see [26–28]. However, the
authors in [29] argue that the entanglement in symmetric case is much smaller than in the
general case, and most symmetric quantum states are close to being maximally entangled.
They also present the upper bound of the maximal possible geometric measure of entan-
glement for Boson quantum states. On this basis, an upper bound for the entanglement is
derived in [27].

In this literature, we focus on the Z-eigenvalue localization set for a tensor and its
application in the geometric measure of entanglement for multipartite quantum states,
which is beneficial to the cross development of tensor theory and quantum information. A
new Z-eigenvalue localization theorem and the bounds for the Z-spectral radius are derived,
which is more precise than some of the existing results. As applications, we are devoted
to the geometric measure of entanglement on the ground of tensor Z-eigenvalue theory.
Based on different distance measures, we present theoretical bounds of the geometric
measure of entanglement for a weakly symmetric pure state with non-negative amplitudes.
Numerical examples show that our bounds are more precise than some existing conclusions
in quantum physics.

2. Preliminaries
2.1. Preliminaries for Tensors

For a positive integer n ∈ N, we denote [n] by the set of positive integers {1, · · · , n}.
An mth-order n-dimensional real tensor denoted by

A :=
(
ai1 ...im

)
∈ Rn1×···×nm

is a multidimensional array consisting of nm numbers ai1 ...im ∈ R for all ij ∈
[
nj
]

and j ∈ [m].
A symmetric tensor is a square tensor, that is ik = n, k = 1, . . . , m, if its entries ai1 ...im are
invariant under any permutation of m indices (i1, i2, · · · , im), which are denoted as Sm(Rn).
We use R[m×n](C[m×n]) to represent the set of all m-order n-dimensional real (complex)
tensors. For a tensor A ∈ R[m×n], A is non-negative (positive) if every entry ai1i2···im ≥ (>)0.
A = (ti1i2···im) ∈ R[m×n] is weakly symmetric [30] if the associated homogeneous polynomial

Axm =
n

∑
i1,i2,··· ,im=1

ai1i2···im xi1 xi2 · · · xim

satisfies ∇Axm = mAxm−1, where ∇ denotes the gradient of the associated multivariable
function and x = (x1, x2, · · · , xn)> ∈ Rn, where Axm−1 is an n dimension vector in Cn,
whose ith component is
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(Axm−1)i =
n

∑
i2,i3,··· ,im=1

aii2···im xi2 · · · xim .

It is worth noting that a symmetric tensor must be a weakly symmetric tensor but not
vice versa. In a word, some conclusions for weakly symmetric tensors are applicable for
symmetric tensors.

Definition 1 ([31,32]). Let A = (ai1i2···im) be an m-order n-dimensional real tensor. If there is a
real number λ and a nonzero real vector x such that

Axm−1 = λx, x>x = 1,

where Axm−1 is an n-dimension vector in Rn, whose ith component is(
Axm−1

)
i

:= ∑
i2,...,im∈[n]

aii2 ...im xi2 · · · xim , ∀i ∈ [n].

Then, we say that λ is an Z-eigenvalue of A and x is an Z-eigenvector of A associated with λ.

We denote the Z-spectrum of tensor A by σ(A): that is the set of all Z-eigenvalues of
A. The Z-spectrum radius of A is defined as

ρ(A) = max{|λ|; λ ∈ σ(A)}.

For non-negative tensor A, the authors in [30] imply that the Z-spectrum radius ρ(A) is a
Z-eigenvalue of A if A is weakly symmetric.

Geršgorin and Brauer-type tensor eigenvalues inclusion sets are introduced in [13].

Theorem 1 ([13]). LetA = (ai1i2···im) ∈ C[m×n] be anm-order n-dimension tensor. It follows that

σ(A) ⊆ K(A) =
⋃

i∈N
Ki(A),

where Ki(A) = {z ∈ C : |z| ≤ Ri(A)}, Ri(A) = ∑
i2,··· ,im

|aii2···im |.

Theorem 2 ([13]). Let A = (ai1i2···im) ∈ C[m×n] be an m-order n-dimension tensor. It follows
that

σ(A) ⊆ N (A) =
⋃

i,j∈N,i 6=j

Ni,j(A),

where

Ni,j(A) = {z ∈ C : [|z|− (Ri(A)− Pi
i (A))]|z| ≤ Pi

i (A)Rj(A), Pi
i (A) = ∑

i2···im∈N,
i/∈{i2,··· ,im}

|aii2···im |.

2.2. Tensor Representation of Quantum States

For a composite m-partite quantum system, an m-partite pure state |Ψ〉 can be inter-
preted as a normalized element in a tensor product Hilbert spaceH = ⊗m

k=1Hk = ⊗m
k=1R

nk ,

where the dimension of Hk is nk. We suppose that
{∣∣∣e(k)ik

〉
: ik ∈ [nk]

}
is an orthogonal

basis of Rnk , which yields{∣∣∣e(1)i1
e(2)i2
· · · e(m)

im

〉
: ik ∈ [nk]; k ∈ [m]

}
,

that is also an orthogonal basis of ⊗m
k=1R

nk . In this expression, |Ψ〉 can be regarded as
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|Ψ〉 :=
n1,...,nm

∑
i1,...,im=1

ai1···im

∣∣∣e(1)i1
e(2)i2
· · · e(m)

im

〉
,

where ai1 ...im ∈ R. Under the orthogonal basis, the quantum state |Ψ〉 has a corresponding
tensor representation denoted by

A|Ψ〉 :=
(
ai1···im

)
.

In this sense, a weakly symmetric pure state always has a corresponding weakly
symmetric tensor. A separable m-partite pure state can be considered as a product state

|φ〉 := ⊗m
k=1

∣∣∣φ(k)
〉

, |φ(k)〉 = ∑ u(k)
ik
|e(k)ik
〉 ∈ Hk, |||φ(k)〉|| = 1, k = 1, · · · , m.

We denote the set of all separable pure states in H by Separ(H). We call the state an
entangled state if it is inseparable.

The Hilbert–Schmidt distance is the Hilbert–Schmidt norm, such as trace operators
and Hilbert–Schmidt operators (|| · ||2). Based on Hilbert–Schmidt distance, the geometric
measure of entanglement for multipartite pure states |Ψ〉 is defined as

GMEΨ , min{|||Ψ〉 − |Φ〉|| : |Φ〉 = ⊗m
k=1|φ

(k)〉 ∈ Separ(H)}. (1)

The minimization of GMEΨ always has a solution because the minimization in (1) is taken
with a continuous function on a compact set Separ(H) in a finite dimensional spaceH. It is
evident that the nearest separable state |ΦΨ〉 can be chosen as a symmetric one.

Based on Bures distance, the authors in [25] propose an upper bound for a maximally
geometric measure of entanglement for an m-partite system composed of subsystems of
dimensions d1, · · · , dm.

Theorem 3 ([25]). For any normalized pure state |Ψ〉 ∈ H, we have

GMEΨ ≤
√

2− 2/
√

d1 · · · dm−1.

On the basis of von Neumann entropy, a commonly used entropy form of geometric
measure [27] can be defined as:

EG(|Ψ〉) = − log2 max
|Φ〉=⊗m

k=1|φ(k)〉∈H
|〈Ψ|Φ〉|2 = − log2 G2

Ψ. (2)

The following upper bound for the entanglement is derived in [27].

Theorem 4 ([27]). For all unit length tensors AΨ ∈ R[m×n], one has

EG(|Ψ〉) ≤ (m− 1) log2(n).

3. New Z-Eigenvalue Localization Set and the Bounds for Z-Spectral Radius

In this section, we present a new Z-eigenvalue inclusion theorem of tensors and show
that our localization set is tighter than some existing localization sets. On this basis, lower
and upper bounds for the Z-spectral radius of weakly symmetric non-negative tensors are
available.

For a tensor A = (ai1i2···im) ∈ C[m×n], we denote

Pi
i (A) = ∑

i2···im∈N,
i/∈{i2,··· ,im}

|aii2···im |, ri(A) = ∑
i2,··· ,im∈N

|aii2···im |.
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Theorem 5. Let A = (ai1i2···im) ∈ C[m×n], n ≥ 2, there is the following Z-eigenvalue localiza-
tion sets.

σ(A) ⊆ Υ(A) =
( ⋃

i,j∈N,i 6=j

Υ̂i,j(A)
)⋃ ( ⋃

i,j∈N,i 6=j

Υ̃i,j(A)
⋂
Ki(A)

)
,

where
Υ̂i,j(A) = {z ∈ C : |z| ≤ ri(A)− Pi

i (A), |z| ≤ rj(A)− |aji···i|},

Υ̃i,j(A) = {z ∈ C :
(
|z| −

(
ri(A)− Pi

i (A)
))(
|z| − (rj(A)− |aji···i|)

)
≤ Pi

i (A)|aji···i|}.

Proof. Let λ be a Z-eigenvalue of A with the corresponding eigenvector x, then

Axm−1 = λx, x>x = 1. (3)

We assume that |xp| ≥ |xq| ≥ max
i∈N,i 6=p,q

|xi|, then 0 < |xp|m ≤ |xp| ≤ 1. Based on (3), it

follows that

λxp = ∑
i2···im∈N,

p∈{i2,··· ,im}

api2···im xi2 · · · xim + ∑
i2···im∈N,

p/∈{i2,··· ,im}

api2···im xi2 · · · xim .

There are the following inequalities by virtue of the absolute value and the triangle
inequality:

|λ| ≤ ∑
i2···im∈N,

p∈{i2,··· ,im}

|api2···im |+ ∑
i2···im∈N,

p/∈{i2,··· ,im}

|api2···im |
|xq|
|xp|

,

which is equivalent to

|λ| ≤
(
rp(A)− Pp

p (A)
)
+ Pp

p (A)
|xq|
|xp|

. (4)

From inequalities (4), it is obvious that λ ∈ Kp(A).
If |xq| = 0, it yields |λ| −

(
rp(A) − Pp

p (A)
)
≤ 0 on the ground of |xp| > 0. If

|λ| ≥ rq(A)− |aqp···p|, there is(
|λ| −

(
rp(A)− Pp

p (A)
))(
|λ| −

(
rq(A)− |aqp···p|

))
≤ 0 ≤ Pp

p (A)|aqp···p|,

which indicates λ ∈ Υ̃p,q(A). Otherwise, |λ| < rq(A)− |aqp···p|, we have λ ∈ Υ̂p,q(A) ⊆
Υ(A).

If |xq| > 0, we can derive the following inequalities in a similar way

|λ| ≤ (rq(A)− |aqp···p|) + |aqp···p|
|xp|
|xq|

. (5)

Multiplying (4) and (5) yields(
|λ| −

(
rp(A)− Pp

p (A)
))(
|λ| −

(
rq(A)− |aqp···p|

))
≤ Pp

p (A)|aqp···p|,

which indicates that λ ∈ Υ̃p,q(A) ⊆ Υ(A).
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If |λ| ≤ rp(A)− Pp
p (A) and |z| ≤ rq(A)− |aqp···p|, then λ ∈ Υ̂p,q(A) ⊆ Υ(A). There-

fore, the conclusion is proved.

In order to further compare Theorems 2 and 5, we introduce the following Lemma.

Lemma 1 ([33]). Let a, b, c ≥ 0 and d > 0. If a
b+c+d ≥ 1, then

a− (b + c)
d

≥ a− b
c + d

≥ a
b + c + d

.

Theorem 6. Let A = (ai1i2···im) ∈ C[m×n], it follows that

σ(A) ⊆ Υ(A) ⊆ N (A) ⊆ K(A).

Proof. The authors in reference [13] have shown that N (A) ⊆ K(A). Therefore, the proof
of Υ(A) ⊆ N (A) is only needed. For any z ∈ Υ(A), there are i, j ∈ N, j 6= i such that
z ∈ Υ̂i,j(A) or z ∈

(
Υ̃i,j(A)

⋂Ki(A)
)
. In this situation, we prove our result from two cases.

In the case of z ∈ Υ̂i,j(A), there are

|z| ≤ Ri(A)− Pi
i (A), |z| ≤ rj(A)− |aji···i|,

These indicate that z ∈ Ni,j(A).
In the case of z ∈

(
Υ̃i,j(A)

⋂Ki(A)
)
, there are |z| ≤ Ri(A)[

|z| −
(

Ri(A)− Pi
i (A)

)][
|z| −

(
Rj(A)− |aji···i|

)]
≤ Pi

i (A)|aji···i|. (6)

If Pi
i (A)|aji···i| = 0, it yields

Ri(A)− Pi
i (A) ≤ |z| ≤ Rj(A)− |aji···i|, (7)

or
Rj(A)− |aji···i| ≤ |z| ≤ Ri(A)− Pi

i (A). (8)

When inequalities (7) hold, there are

Ri(A)− Pi
i (A) ≤ |z| ≤ Ri(A), |z| ≤ Rj(A).

This implies z ∈ Ni,j(A).
When inequalities (8) hold, it follows that[

|z| −
(

Ri(A)− Pi
i (A)

)]
|z| ≤ 0 ≤ Pi

i (A)Rj(A),

which also implies z ∈ Ni,j(A).
If Pi

i (A)|aji···i| > 0, then inequalities (6) show

|z| −
(

Ri(A)− Pi
i (A)

)
Pi

i (A)
|z| −

(
Rj(A)− |aji···i|

)
|aji···i|

≤ 1.

When
|z|−
(

Rj(A)−|aji···i |
)

|aji···i |
≤ 1, there is |z| ≤ Rj(A), that is to say, z ∈ Ni,j(A).

When
|z|−
(

Rj(A)−|aji···i |
)

|aji···i |
≥ 1, according to Lemma 1, one has

|z| −
(

Ri(A)− Pi
i (A)

)
Pi

i (A)
|z|

Rj(A)
≤
|z| −

(
Ri(A)− Pi

i (A)
)

Pi
i (A)

|z| −
(

Rj(A)− |aji···i|
)

|aji···i|
≤ 1.
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This indicates that z ∈ Ni,j(A). In summary, we have completed the proof that Υ(A) ⊆
N (A) ⊆ K(A).

The following simple numerical example can verify the superiority of our conclusion
in the bounds of the tensor spectrum.

Example 1. Let A = (aijk) ∈ R[3,3] with 10 nonzero elements defined as follows;

A(:, :, 1) =

 1 0 1
−1 0 0
1 0 0

, A(:, :, 2) =

−1 0 0
0 2 1
0 0 0

, A(:, :, 3) =

0 0 −1
0 0 0
0 1 3

.

It follows from Theorem 1 that

K = (A) =
⋃

i∈N
Ki(A) = {z ∈ C : |z| ≤ 5}.

It follows from Theorem 2 that

N (A) =
⋃

i,j∈N,i 6=j

Ni,j(A) = {z ∈ C : |z| ≤ 2 + 2
√

2 .
= 4.8184}.

However, it follows from Theorem 5 that

σ(A) ⊆ Υ(A) =
⋃

i,j∈N,j 6=i

(
Υ̂i,j(A)

⋃ (
Υ̃i,j(A)

⋂
Ki(A)

))
= {z ∈ C:|z| ≤ 7 +

√
5

2
.
= 4.618}.

Lemma 2 ([30]). For a weakly symmetric non-negative tensor A, there is

ρ(A) = λ∗,

where λ∗ denotes the largest Z-eigenvalue of tensor A.

Theorem 7 ([13]). Let A = (ai1i2···im) ∈ C[m×n] be a weakly symmetric non-negative tensor, it
follows that

ρ(A) ≤ ω = max
i,j∈N,i 6=j

1
2

{
Ri(A)− Pi

i (A) +
√(

Ri(A)− Pi
i (A)

)2
+ 4Pi

i (A)Rj(A)
}

.

In a similar manner, based on Theorem 5 and Lemma 2, we derive the following
low and upper bounds for a weakly symmetric non-negative tensor, which is tighter than
bound in Theorem 7.

Theorem 8. Let A = (ai1i2···im) ∈ C[m×n] be a weakly symmetric non-negative tensor; it fol-
lows that

min
i,j∈N,j 6=i

ϕ
i,j
(A) = ϕ ≤ ρ(A) ≤ ϕ = max

i,j∈N,j 6=i
ϕi,j(A), (9)

where

ϕ
i,j
(A) = max

{
1
2
[Ri(A)− Pi

i (A) + Rj(A)− |aji···i| − ϕ̂i,j(A)], 0
}

,

ϕi,j(A) = max
{

max
{

Ri(A)− Pi
i (A), Rj(A)− |aji···i|

}
,

min
{

Ri(A),
1
2
[Ri(A)− Pi

i (A) + Rj(A)− |aji···i|+ ϕ̂i,j(A)]
}}

,
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and
ϕ̂i,j(A) =

√(
Ri(A)− Pi

i (A)− Rj(A) + |aji···i|
)2

+ 4Pi
i (A)|aji···i|.

Moreover, it follows that

0 ≤ ϕ ≤ ρ(A) ≤ ϕ ≤ ω ≤ max
i∈N

Ri(A).

4. The Geometric Measure of Entanglement of Multipartite Pure States

This section is devoted to the geometric measure of entanglement on the ground of
tensor Z-eigenvalue localization theory. Theoretical bounds of the geometric measure
of entanglement for a weakly symmetric pure state with non-negative amplitudes are
proposed. It is worth noting that the geometric measures derived based on different distance
measures will be slightly different, such as Hilbert–Schmidt distance, Bures distance and
trace distance.

As we know, a multipartite quantum state |Ψ〉 has a corresponding tensor representa-
tion A|Ψ〉 :=

(
ai1···im

)
under the orthogonal basis. We define the product of the tensor and

vector as follows:
AΨu(1) · · · u(m) , ∑ ai1i2···im u(1)

i1
· · · u(m)

im .

In other words, the inner product between the entangled state |Ψ〉 and separable states |Φ〉
can be regarded as

〈Ψ|Φ〉 = AΨu(1) · · · u(m).

In this situation, the spectral radius of the tensor AΨ is denoted as

ρ(AΨ) , max
|||φ(k)〉||=1,k=1,··· ,m.

|AΨu(1) · · · u(m)|.

In general, we consider as follows instead of solving (1) directly:

GME2
Ψ , min{|||Ψ〉 − |Φ〉||2 : |Φ〉 ∈ Separ(H)},

which yields
|||Ψ〉 − |Φ〉||2 = 2− 〈Ψ|Φ〉 − 〈Φ|Ψ〉.

In other words, the minimization problem in (1) transforms into the maximization problem
as follows:

max
|||φ(k)〉||=1,k=1,··· ,m

{〈Ψ| ⊗m
j=1 |φ(j)〉+⊗m

j=1〈φ(j)|Ψ〉}. (10)

By introducing Lagrange multipliers λ and applying complex differentiation, we show
that the maximization problem in (10) is regarded as the largest entanglement eigenvalue
λ, satisfying 

〈Ψ|
(
⊗j 6=k |φ(j)〉

)
= λ〈φ(k)|,(

⊗j 6=k 〈φ(j)|
)

Ψ〉 = λ|φ(k)〉,

|||φ(k)〉|| = 1, k = 1, · · · , m.

(11)

According to (11), it follows that

λ = 〈Ψ|Φ〉 = 〈Φ|Ψ〉,

is a real number in the interval [−1, 1]. For an m-partite pure state |Ψ〉 ∈ H, we denote the
maximal overlap by

GΨ , max
|Φ〉=⊗m

k=1|φ(k)〉∈H
|〈Ψ|Φ〉|. (12)

where |Φ〉 = ⊗m
k=1|φ

(k)〉 is the closest separable state to |Ψ〉.
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Based on Bures distance, the geometric measure of entanglement for a multipartite
pure state |Ψ〉 is defined as

GMEΨ =
√

2− 2GΨ. (13)

In other words, the geometric measure of entanglement for a multipartite pure state
|Ψ〉, expressed in (13), becomes

GMEΨ =
√

2− 2ρ(AΨ). (14)

In a similar way, (2) can be regarded as:

EG(|Ψ〉) = −2 log2 ρ(AΨ). (15)

WhenH1 = · · · = Hm, AΨ is symmetric if and only if |Ψ〉 is permutation symmetric.
The geometric measure of symmetric states attracted much attention recently [23,34–37].
When |Ψ〉 is symmetric, (12) becomes

GΨ = max
|Φ〉=|φ〉⊗m∈H

|〈Ψ|Φ〉|.

Therefore, the nearest separable state can be chosen as a symmetric one; for details, see
[34,35].

In [24], the authors show that the maximal overlap for the geometric measure of
entanglement for |Ψ〉 ∈ H is equivalent to the Z-spectral radius of the corresponding
tensor AΨ in a weakly symmetric non-negative case.

We know that a weakly symmetric m-partite pure state |Ψ〉 ∈ H with non-negative
amplitude corresponding always has a corresponding m-order weakly symmetric non-
negative tensor A|Ψ〉 :=

(
ai1···im

)
. Thus, we consider the lower and upper bounds for the

geometric measure of entanglement for |Ψ〉 by virtue of Bures distance. It follows from
Theorem 8 and (14) that the desired lower and upper bounds can be obtained.

Theorem 9. For a weakly symmetric pure state with non-negative amplitudes |Ψ〉 ∈ H, there are
the following lower and upper bounds for the geometric measure of entanglement for |Ψ〉:√

2− 2ϕ ≤ GMEΨ ≤
√

2− 2ϕ,

where ϕ and ϕ are as in Equation (9).

On the other side, we consider the bounds for the geometric measure of entanglement
for |Ψ〉 on the grounds of von Neumann entropy; there are the following conclusions on
the basis of Theorem 8 and (15).

Theorem 10. For a weakly symmetric pure state with non-negative amplitudes |Ψ〉 ∈ H, according
to von Neumann entropy, there are the following bounds for the geometric measure of entanglement
for |Ψ〉:

−2 log2 ϕ ≤ EG(|Ψ〉) ≤ −2 log2 ϕ,

where ϕ and ϕ are as in Equation (9).

On the one hand, an m-order n-dimensional real tensor A has nm independent entries,
and a symmetric m-order n-dimensional real tensor A has

Cm
m+n−1 = (m+n−1

m )

independent entries [38]. However, a weakly symmetric tensor has at least

nm − n(m+n−2
m ) + n
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independent entries [39], and the number of independent elements still increases exponentially.
It is worth noting that our conclusion in Theorems 9 and 10 depends on the char-

acteristics of elements of the tensor AΨ corresponding to the m-partite quantum state
|Ψ〉 ∈ H, while Theorems 3 and 4 only depending on the dimension and order of the tensor.
Therefore, we have numerical advantages in most cases, regardless of the size of the tensor.

Example 2. We consider a simple three-partite state with a three-level system, such as 3-qutrit
GHZ state (3-qutrit system), as follows:

|Ψ〉 = 1√
3
(|000〉+ |111〉+ |222〉).

From Theorem 3, the upper bound is

GMEΨ ≤
√

2− 2/
√

d1 · · · dm−1 = 1.1547.

However, by virtue of Theorem 9, the lower and upper bounds are

0.9194 =
√

2− 2ϕ ≤ GMEΨ ≤
√

2− 2ϕ = 0.9194.

In fact, the GMEΨ of the 3-qutrit GHZ state is 0.9194 with the closest product state
|φΨ〉 = |000〉.

In addition, it follows from Theorem 4 that

EG(|Ψ〉) ≤ (m− 1) log2(n) = 3.1699.

However, based on Theorem 10, the lower and upper bounds are

1.5850 = −2 log2 ϕ ≤ EG(|Ψ〉) ≤ −2 log2 ϕ = 1.5850.

which is less than the upper bound in Theorem 4.

Example 3. We consider the following more general 3-qutrit weakly symmetric state in a three-level
with non-negative amplitudes

|Ψ〉 = 0.6805|000〉+ 0.4990|111〉+ 0.4768|222〉
+0.0500(|001〉+ |010〉+ |100〉+ |200〉+ |020〉+ |002〉
+|022〉+ |202〉+ |220〉+ |011〉+ |101〉+ |110〉)
+0.0150(|122〉+ |212〉+ |221〉)
+0.1000(|112〉+ |121〉+ |211〉).

It is easy to verify

||AΨ||F = 1.0000, ρ(AΨ) = 0.6940 GMEΨ =
√

2− 2ρ(AΨ) = 0.7823.

According to Theorem 3 in [25], there is

GMEΨ ≤
√

2− 2/3 = 1.1547.

However, it follows from Theorem 9 that

0.3728 =
√

2− 2ϕ ≤ GMEΨ ≤
√

2− 2ϕ = 0.8713.
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On the other side, the upper bound from Theorem 4 is

EG(|Ψ〉) ≤ (m− 1) log2(n) = 3.1699.

It follows from Theorem 10 that

0.4156 = −2 log2 ϕ ≤ EG(|Ψ〉) ≤ −2 log2 ϕ = 2.7550.

In fact, we can verify that

EG(|Ψ〉) = − log2 ρ(AΨ) = 1.4168.

Therefore, it is evident that Theorem 10 not only obtains a smaller upper bound
compared with Theorem 4 but also a lower bound. This lower bound plays a significant
role in the geometric measure of entanglement and other quantum information topic.

5. Conclusions

In this paper, we concentrate on the tensor Z-eigenvalue inclusion theorem and its
application in the geometric measure of entanglement for multipartite quantum states.
Firstly, we propose a new Z-eigenvalue localization theorem and bounds for the Z-spectral
radius of non-negative tensors, which prove to be tighter than existing results. As applica-
tions, on the basis of the connection between the geometric measure of entanglement and
the Z-spectral radius for a weakly symmetric non-negative tensor, we present theoretical
bounds of the geometric measure of entanglement for a weakly symmetric multipartite
quantum state with non-negative amplitudes by virtue of different distance measures.
Numerical examples show that our bounds are tighter than the existing results in quantum
physics in some cases. We believe that our results may be beneficial to the development of
the intersection between tensor theory and quantum information.
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