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Abstract: Despite advancements in smart grid (SG) technology, effective load forecasting utilizing 

big data or large-scale datasets remains a complex task for energy management, planning, and con-

trol. The Saudi SGs, in alignment with the Saudi Vision 2030, have been envisioned as future elec-

trical grids with a bidirectional flow of power and data. To that end, data analysis and predictive 

models can enhance Saudi SG planning and control via artificial intelligence (AI). Recently, many 

AI methods including deep learning (DL) algorithms for SG applications have been published in 

the literature and have shown superior time series predictions compared with conventional predic-

tion models. Current load-prediction research for the Saudi grid focuses on identifying anticipated 

loads and consumptions, on utilizing limited historical data and the behavior of the load’s consump-

tion, and on conducting shallow forecasting models. However, little scientific proof on complex DL 

models or real-life application has been conducted by researchers; few articles have studied sophis-

ticated large-scale prediction models for Saudi grids. This paper proposes hybrid DL methods to 

enhance the outcomes in Saudi SG load forecasting, to improve problem-relevant features, and to 

accurately predict complicated power consumption, with the goal of developing reliable forecasting 

models and of obtaining knowledge of the relationships between the various features and attributes 

in the Saudi SGs. The model in this paper utilizes a real dataset from the Jeddah and Medinah grids 

in Saudi Arabia for a full year, 2021, with a one-hour time resolution. A benchmark strategy using 

different conventional DL methods including artificial neural network, recurrent neural network 

(RNN), conventional neural networks (CNN), long short-term memory (LSTM), gated recurrent 

unit (GRU), and different real datasets is used to verify the proposed models. The prediction results 

demonstrate the effectiveness of the proposed hybrid DL models, with CNN–GRU and CNN–RNN with 

NRMSE obtaining 1.4673% and 1.222% improvements, respectively, in load forecasting accuracy. 
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1. Introduction 

For over a century, the Saudi electrical infrastructure has remained unaltered. The 

hierarchical grid's components are nearing their end of life. Saudi demand for power has 

progressively grown as the electrical system has deteriorated. The Saudi electric power 

distribution network is extremely complicated and unsuitable for 21st-century demands. 

A lack of automated analysis, limited visibility, the use of mechanical switches that cause 

delayed response times, and a lack of situational awareness are just a few of the flaws that 

are raised in the current electrical system [1,2]. Furthermore, the power and transportation 

industries have been major sources of greenhouse gas emissions on the planet [3]. As a 

result, to solve these issues, a new grid infrastructure in Saudi is required immediately. 
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The SG paradigm is a modern method of electricity transmission, and when it is 

checked, updated, and integrated with a bidirectional flow of energy and data, it can be 

employed. The conventional power system has emerged with the development of the SGs 

due to the rise of smart sensors, and information and communication technology [1]. Ac-

cording to the Saudi Vision 2030, new technologies have been used to create and improve 

the infrastructure of today's power systems in many ways. SGs are a novel idea in power 

system grids that attempts to construct durable, dependable, and efficient grids while 

lowering production costs. SGs may be made more efficient, reliable, and safe by enhanc-

ing them with renewable energy resources, automated control, and communication tech-

nology. By investing in the bidirectional flow of electricity and data, SGs aim to signifi-

cantly enhance the use of technology and communication. The smart grid infrastructure 

is made up of enhanced sensing, communication, and computing capabilities that operate 

together in diverse sections of the power system, generating, and distribution [4]. Saudi 

Arabia is one of the few countries working on an ambitious plan to shift from traditional 

to smart power networks. The Saudi Arabian government's efforts in and goals of inte-

grating SGs into the energy framework are reflected in the ambitious Vision 2030 plan. By 

the end of the next decade, it is expected that Saudi Arabia will have established itself as 

a global hub for smart energy technology. 

Load forecasting is a critical activity that predicts future energy consumption for SGs 

to fulfill their principal functions at any given moment. Forecasting is a critical and fun-

damental factor in defining a future distribution system’s capabilities needed to plan, op-

erate, and manage the power system. Saudi utility companies have always relied on load 

prediction for planning and operational decisions. Future load prediction is much more 

critical in Saudi Arabia now that the energy sectors have been deregulated. A load esti-

mate is critical for utilities since supply and demand fluctuate, and weather conditions 

and energy prices can increase by a factor of ten or more during peak periods. Short-term 

load forecasting can assist in estimating load flows and in making decisions to avoid over-

loading. Implementing such decisions in a timely manner improves network reliability 

and reduces the frequency of equipment failures and blackouts in Saudi Arabia. Load 

prediction is also crucial in terms of Saudi electrical systems for contract assessments and 

for evaluating the market's numerous sophisticated financial instruments on energy 

prices. Capital expenditure decisions based on long-term forecasting are also more essen-

tial in a deregulated economy than in a non-deregulated environment, where interest rate 

rises might be justified by investment proposals [5]. If the prediction is carried out incor-

rectly, it will influence all subsequent phases in the planning of future loads, putting the 

entire planning and operation in danger. An accurate load estimate not only aids in the 

optimization of future producing units but also assists in the identification of risk factors 

in planning, operation, and control activities. Furthermore, utilizing a designed bidding 

mechanism, electricity price forecasting gives important information to power suppliers 

and customers. To create their bidding strategy and to optimize their earnings and ad-

vantages, both suppliers and consumers require precise pricing projections. As a result, 

accurate and efficient load and price prediction have become a critical approach for 

achieving the aims of Saudi SGs. In the load-estimate challenge, a variety of AI approaches 

and machine learning algorithms are currently insufficient for properly anticipating the 

load in the required form [6]. Furthermore, most of these models are based on tiny da-

tasets, with very significant prediction errors. Adding deep learning approaches to smart 

grid load forecasting will result in more accurate forecasts and efficient forecasting. 

Deep learning (DL) is a kind of algorithm in which the structure contains deeper in-

ner hidden layers. Its objective is to duplicate the grid of human brain connections to make 

machines such as computers comprehend as humans do. Many sectors have looked at AI 

for automation processes such as automated labor, image and audio recognition, decision-

makers in crucial domains, and science research assistants [6]. Machine learning (ML) 

methods are AI’s core techniques for extracting patterns from raw data to make subjective 

choices. Unsupervised learning and supervised learning are two types of machine 
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learning algorithms. A supervised learning method is applied to a dataset comprising fea-

tures, each of which has a label [1]. Another type is the unsupervised learning method, 

which learns from valuable qualities of the dataset structure and many features in the 

dataset [3]. In learning methods, the dataset is always divided into training and testing 

sub-datasets. The training and the validation datasets help the model learn from the raw 

dataset and validate the model performance, whereas the test dataset assists in examining 

the model’s predictions based on unseen datasets. The inefficiency of learning models for 

high-dimensional datasets is a drawback of machine learning techniques. The ML is fre-

quently utilized in load forecasting across a wide range of papers and applications. The 

typical neural network has one input layer, one hidden layer, and one output layer. Be-

cause it contains more layers and calculations, the structure of DL is so much more com-

plicated than other neural network models [1]. DL is a multi-layered computational model 

that uses features as inputs to represent data in various representations. DL algorithms 

are employed in a variety of learning applications, particularly unsupervised learning. 

Many publications in the field have used DL techniques to help with Saudi load forecast-

ing. The main contributions of the paper can be summarized as follows: 

• An SG planning model of Saudi cities, which increases the planning and control pro-

gress and meets the planning of future Saudi load demands, is proposed. 

• A load-forecasting technique based on hybrid DL algorithms is applied to predict the 

expected load growth. 

• The hybrid DL algorithms of the time-series forecasting is adopted to solve the prob-

lem. 

• The Saudi SGs of Jeddah and Madinah are investigated according to their different 

loads and characteristics. 

The contents of the paper are organized as follows: a literature review is first pre-

sented in Section 2. In Section 3, we elaborate on general information about the methods 

and DL algorithms including (ANN, RNN, CNN, LSTM, BiLSTM, and GRU). Then, we 

reformulate the forecasting problem from the case study to real datasets of Saudi SGs in 

Jeddah and Madinah in Section 4. The prediction results are evaluated and compared with 

regular DL predictive models and conventional models in Section 5. Finally, some conclu-

sions and future work are presented in Section 6. 

2. Literature Review 

Saudi Arabia just announced its Vision 2030 plan. The plan details long-term goals 

for converting the Kingdom’s oil-based economy into one that is diverse, sustainable, and 

situated at a global trade crossroads. A strong renewable energy-procurement program 

might assist the Kingdom in accomplishing its renewable energy goals as well as its eco-

nomic development and diversification goals [7]. The vision’s goals as well as the strate-

gies intended for the future energy management system to achieve them are examined in 

this article [8]. Electricity shortages and how to satisfy the predicted rise in demand in the 

foreseeable future are also highlighted. Furthermore, the researchers have applied a com-

prehensive study of the potential applications of renewable and sustainable energy tech-

nologies for developing an energy policy to achieve energy security and cost reduction as 

well as to ensure the efficiency of renewable and sustainable energy applications in the 

Kingdom of Saudi Arabia for long-term prosperity and energy security. The authors of [2] 

suggested a new technique that forecasts peak loads for the following year using hourly 

daily loads. The method was based on applying multivariable regression to the hourly 

loads from the prior year. Three regression models were examined in this study: linear, 

polynomial, and exponential. The proposed models were used to simulate actual de-

mands on the Jordanian electricity grid. The findings acquired utilizing the suggested 

methods demonstrated that they perform almost as well as results produced using the 

commonly utilized exponentiation regression technique. Furthermore, the proposed 

methodology had a peak load forecast accuracy of roughly 90%. The authors of [9] focused 
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on the characterization, active learning, and long-term forecast of power consumption at 

a single KSA level. The authors claimed that load forecasting is crucial for the electric 

industry in Saudi Arabia’s deregulated economy. The purchase and generation of energy, 

load switching, contract review, and infrastructure development are only a few examples 

of applications. A variety of mathematical approaches to load forecasting have been de-

vised. Peak load was shown to be a major determinant to increase in that study [10]. Ref-

erence [11] discussed several different approaches to load forecasting. 

The researchers in [12] aimed to present an overview of how the load-forecasting 

performance in SGs might be enhanced using DL methods. According to [12], there is little 

evidence that researchers have investigated the issue of combining different DL methods 

for complex large-scale load forecasting in SGs to develop a reliable predictive model and 

to understand the relationships between the different predictive models and deep learn-

ing methods. To address this gap, our article investigates the capability of hybridizing two 

DL algorithms and studying their prediction accuracy for a real load dataset. 

In [13], the authors proposed a novel hybrid prediction methodology based on evo-

lutionary DL combined with the genetic algorithm. The evolutionary DL algorithm was 

defined as an LSTM method that optimizes time window lags and uses hidden neurons. 

The results showed that the evolutionary DL model outperforms conventional and regu-

lar prediction models. 

The authors in [14] used two different sequence-to-sequence (S2S) RNN techniques 

on a building-level energy consumption dataset to consider hybridizing two DL models. 

A comparison of five commonly used short-term load forecasting approaches was pro-

vided. Multiple linear regression, stochastic time series, general exponential smoothing, 

state space, Kalman filter, and knowledge-based methods are some of these techniques. 

Each of these strategies is briefly discussed, along with their relevant equations. For a di-

rect comparison of these distinct forecasting methodologies, algorithms implementing 

these strategies were written and applied to the same database. The findings were com-

pared to give a sense of the inherent difficulty of each of these strategies and their perfor-

mances [15]. GRU encodes information for the first RNNs, and the LSTM model succes-

sively creates outputs utilizing this information for the second RNN. The new method 

was compared with traditional DL algorithms in three different prediction-length scenar-

ios. Using same-day selection and an LSTM network for buildings, Yong et al. [16] sug-

gested a short-term load-forecasting technique for buildings. For residential buildings, the 

LSTM algorithm was used in network-based short-term load forecasting [17]. To produce 

the feature vector retrieved from lagged load variables, the authors used wavelet decom-

position and collaborative representation approaches. The authors in [18] suggested a 

model for estimating power consumption at a specific period based on empirical mode 

decomposition (EMD) and an LSTM network. The residential buildings dataset was the 

subject of a similar study in [19]. For a single user with a one-minute resolution, the au-

thors found that the LSTM-based RNN model outperformed the simple RNN and GRU–

RNN models. For short- and medium-term load forecasting, LSTM prediction models 

with various configurations were built using data from France’s metropolitan energy us-

age. They compared the results to ML models [20]. Furthermore, for a cluster analysis of 

the load trend, LSTM multi-input, multi-output models were trained and compared with 

ML models [9]. The LSTM model beat the backpropagation neural network (BPNN) in the 

task of short-term load forecasting, according to Kong et al. [21]. Using the most recent 

popular DL models, these previous studies produced respectable and good forecasting 

outcomes. 

Another method for word-level recognition was developed utilizing CNN architec-

ture, which assesses whether a specific n-gram is present in a specific area of the image 

[19]. Krishnan et al. [20] also utilized a CNN to learn PHOC-like properties for images and 

embedded the text represented by the PHOC features into a common subspace with the 

embedded images. Both of these methods were based on the proposed PHOC represen-

tation in [9]. Machine learning with artificial neural networks was used in [22–24] to 
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forecast the demand for an electric power substation at a specific hour of the day. From 

September to November 2018, historical load data at each hour of the day were collected 

from the 33/11 kV substation at Kakatiya University in Warangal. Based on the approach 

utilized to forecast the load, a novel artificial neural network architecture was designed. 

To forecast the load on a 33/11 kV electric power substation, the generated model was run 

in MATLAB using historical data. According to the analysis, the proposed design esti-

mated the load with more accuracy. 

To forecast household EEC, Le et al. integrated a BiLSTM network with a convolu-

tional neural network (CNN). The CNN was utilized to extract the discriminative feature 

values from the IHEPC dataset first, followed by the BiLSTM network to produce predic-

tions. To anticipate and estimate energy usage and needs, Ishaq et al. proposed a new 

ensemble-based DL model. Data were preprocessed using transformation, normalization, 

and cleaning procedures and then input into the ensemble model, which included the 

CNN and BiLSTM networks, which extracted discriminative feature values. To improve 

and ensure the prediction performance of the presented model, an active learning ap-

proach based on the moving window was developed in that work. A Korean commercial 

building dataset was used to see how well the model worked, and the results were shown 

in the next phase. MAPE, RMSE, MAE, and MSE values were used to measure this [25]. 

In [26], the authors proposed a predictive model based on a sliding-window algorithm 

and a stacking ensemble neural network for a same–day load predictive method. 

For medium- to long-range forecasting for a larger metropolitan region, an LSTM 

model employing only ideally selected time-delayed features captured all of the proper-

ties of complicated time series and demonstrated lower mean absolute errors (MAEs) and 

root mean square errors (RMSEs) [9]. In Reference [27], why Adam generalizes less well 

than SGD was investigated and a variation of Adam was proposed to close the generali-

zation gap. Normalized direction-preserving Adam, the suggested method, allows for 

more precise control of the direction and step size for updating weight vectors, resulting 

in much-enhanced generalization performance. The authors increased the generalization 

performance in classification problems by regularizing the softmax logits following a sim-

ilar logic and shed light on why some optimization techniques generalize better than oth-

ers by bridging the gap between SGD and Adam. Reference [5] discussed the most com-

mon DL methods used in the literature to solve load-forecasting problems in SG and 

power systems. That study utilized many types of DL methods for the application of 

power systems and smart-grid load forecasting. It also compared the accuracy results be-

tween RMSE and MAE for the applications examined and demonstrated that the use of 

convolutional neural networks (CNNs) with the k-means algorithm resulted in a signifi-

cant reduction in RMSE. 

3. Forecasting Methods 

3.1. Artificial Neural Networks  

Neural networks are biologically inspired models of computation. Generally, a neu-

ral network consists of a set of artificial neurons, commonly referred to as nodes or units, 

and a set of directed edges between them, which intuitively represent the synapses in a 

biological neural network. An artificial neural network (ANN) is a generic network that 

encompasses any representation of neural networks, e.g., feedforward, recurrent, convo-

lutional, radial bias function, etc. An example of the simple architecture of multi-layered 

feedforward neural networks is demonstrated in Figure 1. They are also called “pro-

cessing elements” (PE) because they process data. Weighted inputs, a transfer function, 

and one output are all included in each PE. A mathematical formula that balances these 

inputs and outputs is called a PE. Because the connection weights represent the system’s 

memory, ANNs are also known as connectionist models. ANNs, on the other hand, are 

capable of digesting large volumes of data and making predictions that are sometimes 

startlingly accurate. 
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Figure 1. Simple ANN network architecture. 

As seen in Figure 1, all artificial neural networks have similar structures or topolo-

gies. Some of the neurons in that structure create an interface with the real environment 

to accept inputs. The network's outputs are delivered to the real world through other neu-

rons. This output could be the character that the network believes it has scanned or the 

image that it believes is being displayed. The remaining neurons are hidden from view. 

Many types of generic ANN architectures are developed with different connections and 

computations such as convolutional neural networks and recurrent neural networks, 

which are defined in the following subsections.  

3.2. Convolutional Neural Networks 

In DL applications, the CNN method is typically used for image-recognition tasks. 

For classification and regression applications, the feature matrix is created automatically 

from the convolution layer of CNN, unlike traditional approaches. The convolution layers 

are based on the “convolution” operator’s processing principle, and their primary goal is 

to extract useful features from input data while maintaining correlation between data 

samples. The feature matrix is created by moving a filter over n-dimensional data, fol-

lowed by an activation function that replaces all negative values in the feature matrix with 

zero. 

Because CNN models were created for image-classification problems, the input vec-

tor is represented in two dimensions, such as image pixels and color information. A fea-

ture matrix may be produced via a shifting process with a fixed period over time, and a 

similar technique can be applied to 1-D sequential data. The 1-D CNN architecture is 

mostly applied for time-series applications. The structure of data and how the convolution 

operator traverses across data are the primary differences between multi-dimensional 

CNN models [28]. According to [29], the authors proposed 1-D CNN and used a one-

dimensional time-series signal as input for the fault-diagnosis problem. The authors con-

cluded that the interpretability of 1-D CNN is excellent compared with 2-D CNN for time-

series fault diagnosis, has a better feature-extraction mechanism compared with the con-

volutional kernel analysis, and produces an output in the time-domain. Basically, the ar-

chitecture of a 1-D CNN includes an input layer such as 1-D time-series dataset, a convo-

lutional layer, a pooling layer, a fully connected layer, and an output layer, as shown in 

Figure 2. The convolutional layer is responsible for generating a feature map for the 1-D 

time series dataset, where the convolutional kernels extract the different features of the 

input. Since the number of features from the convolutional layer increases extensively, a 

down-sampling techniques is employed in the pooling layer by averaging the feature size 

according to the pooling window. Finally, the fully connected layer maps all features from 

the previous layer to the activation function. 
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Figure 2. Architecture of a 1-D CNN network. 

3.3. Recurrent Neural Network (RNN) 

Recurrent neural networks (RNNs) are a kind of ANN with one input layer, many 

hidden layers, and one output layer. These hidden layers feature recurrent connections, 

making them appropriate for sequential computing as in [30]. The recurrent connections 

in the hidden layer are from the output to the input. It is frequently used for time-series 

sequences because its architecture includes a memory state that aids in the processing of 

sequential data. The method was used for a variety of load-forecasting situations.  

Two equations specify all calculations necessary for computation at each time step 

on the forward pass in a simple RNN, as shown in Figure 3: 

𝑠𝑡 = 𝑓𝜃(U𝑥𝑡 + U𝑊𝑠(𝑡−1))  (1) 

ℎ𝑡 = 𝑓∝(𝑉𝑠𝑡)  (2) 

where 𝑥𝑡 denotes the input at timestamp t, 𝑠𝑡 denotes the state ate timestamp t, ℎ𝑡 denotes 

the output at t, and the current state 𝑠𝑡 is computed based on current input 𝑥𝑡 and on the 

previously hidden state 𝑠𝑡−1 [23,24]. 

 

Figure 3. Architecture of an RNN network. 

3.4. Long-Short Term Memory (LSTM) 

The LSTM model is similar to the RNN model in structure, but Gers et al. [23] re-

placed each node of the hidden layer unit with a processing unit called “memory cell” 

and then improved it with an extra unit called “forget cell”. Each memory cell has a re-

current node with a set weight to ensure that the gradient does not vanish or explode over 

time. Memory cells and gate units make up the LSTM cell’s basic structure. Input gate it, 

forget gate ft, and output gate 𝑂𝑡 are the three gates that make up the gating mechanism, 

where 𝜎 stands for the standard sigmoid function: 

𝜎 (𝑥) =
1

1+ 𝑒𝑥  (3) 
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For the objective function, we use the square loss function given by the following 

formula: 

e = ∑ (𝑦𝑡 − 𝑝𝑡)2𝑛
𝑡=1   (4) 

where 𝑦𝑡  is the actual output, 𝑝𝑡  is the anticipated load Adam optimizer, and a modified 

stochastic gradient descent (SGD) optimizer with adaptive learning rates is used for back-

propagation across time to minimize the training error while avoiding local minimal 

points (BPTT). Figure 4 depicts the structure of a single-cell LSTM memory block as in 

[31]. The cell states at timestamps t and t − 1 are denoted by 𝑐𝑡 and 𝑐𝑡−1. The forget gate 

uses the sigmoid layer to select the information to be retained in 𝑐𝑡−1 and takes x and h as 

input. The value of c is determined by the input gate i using x and h. Using both the sig-

moid and tanh layers, the output gate 𝑂𝑡 adjusts the output of the LSTM cell based on 𝑐𝑡. 

The equations of all nodes in an LSTM cell are given by 

𝑓𝑡 = 𝜎(𝑊𝑓·[ℎ𝑡−1·𝑥𝑡] + 𝑏𝑓)  (5) 

𝑖𝑡 = 𝜎(𝑊𝑖·[ℎ𝑡−1·𝑥𝑡] + 𝑏𝑖)  (6) 

𝑐𝑡′= tanh(𝑊𝑐 · [ℎ𝑡−1 ·  𝑥𝑡]  +  𝑏𝑐)  (7) 

𝑐𝑡= 𝑓𝑡 ⊙ 𝑐𝑡−1⨁ 𝑖𝑡 ⊙ 𝑐𝑡′  (8) 

𝑂𝑡 = 𝜎(𝑊𝑜·[ℎ𝑡−1·𝑥𝑡] + 𝑏𝑜)  (9) 

ℎ𝑡 = 𝑂𝑡 ⊙ tanh(𝑐𝑡)  (10) 

where 𝑊(.) and 𝑏(.) are the weight matrices and biases, respectively, and denote the sig-

moid activation function. While the input gate is in charge of the memory unit’s update 

mechanism, the output gate and the forget gate determine whether the present infor-

mation in the unit will be kept or wiped. The internal state of the LSTM structure does not 

change when the input gate is set to zero, and the memory cell retains its current activity. 

As long as both the input and output gates are closed, this process continues with inter-

mediate time steps. 

 

Figure 4. Architecture of the LSTM cell. 

3.5. Gate Recurrent Unit (GRU) 

The GRU is a variant of the LSTM method and was introduced by K. Cho [11]. The 

GRU is based on the LSTM unit, but it is thought to be easier to compute and implement. 

It has the same resistance to the vanishing gradient problem as the LSTM method, but its 

internal structure is simpler, making it easier to train because it requires fewer computa-

tions to update its hidden state. The reset gate 𝑟 and the update gate 𝑧 are the two gates 

that make up a typical GRU cell as in [32]. The hidden state output at time 𝑡 is calculated 

by combining the hidden state at time 𝑡 − 1 with the input time-series value at time 𝑡, as 

illustrated in the mathematical functions used to control the gating mechanism in the GRU 

cell. 

𝑡 = 𝜎 (𝑊𝑧ℎ𝑡−1 + 𝑈𝑧𝑥𝑡)  (11) 
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𝑟 = 𝜎 (𝑊𝑟ℎ𝑡−1 + 𝑈𝑟𝑥𝑡)  (12) 

𝑐 = tanh(𝑊𝑐(ℎ𝑡−1⨂ 𝑟) + 𝑈𝑐𝑥𝑡)  (13) 

ℎ𝑡 = (𝑧⨂𝑐) + ((1 − 𝑧) ⨂ℎ𝑡−1)  (14) 

Figure 5 depicts the GRU’s update and reset gates, which are comparable with the 

forget and input gates in the LSTM unit. The update gate specifies how much past 

memory should be retained, whereas the reset gate specifies how the current input should 

be combined with the previous memory. The main difference is that the GRU uses only 

integration to fully expose its memory content (but with an adaptive time constant con-

trolled by the update gate). 

 

Figure 5.  Architecture of the GRU cell. 

3.6. Bidirectional Long Short-Term Memory (BiLSTM) 

The bidirectional RNN (BiRNN), first proposed by Schuster and Paliwal, uses both 

past and future data to calculate the output values of a regular time series. Unlike the 

LSTM network, where only past information has an effect on output, this technique can 

be trained without the need for a predetermined input length. According to [33], two hid-

den layer nodes exist in the BiRNN architecture, and these layers are coupled to both the 

input and output layers. This means that the first hidden layer's recurrent unit is linked 

to previous time steps in a forward direction. However, the second hidden layer's recur-

rent unit is linked in the opposite direction. The model structure is shown in Figure 6. 

The same procedure used to train a normal RNN may be used to train a BRNN. Due 

to the lack of interaction between hidden layers, a typical feed-forward network unfolded 

over time might also be preferred. BRNN’s mathematical formulae are as follows: 

ℎ𝑡 = 𝜎 (𝑤ℎ,𝑥𝑥𝑡 + 𝑤ℎ,ℎℎ𝑡−1 + 𝑏ℎ)  (15) 

𝑒𝑡 = 𝜎 (𝑤𝑒,𝑥𝑥𝑡 + 𝑤𝑒,𝑒𝑒𝑡−1 + 𝑏𝑒)  (16) 

𝑦𝑡  = 𝑓(𝑥)𝑖 × (𝑤𝑦,ℎℎ𝑡 + 𝑤𝑦,𝑒𝑒𝑡 + 𝑏𝑦)  (17) 

The values of hidden layers in both the forward and backward directions of BRNN 

are represented by ℎ𝑡 and 𝑒𝑡, respectively. As a result, the LSTM and BRNN approaches 

are complementary and can be combined. The LSTM method can be used to create a new 

unit that can be employed in the hidden layer, while the BRNN approach connects these 

units. 

 

Figure 6. Architecture of the BiLSTM cell. 
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4. Forecasting Modeling 

4.1. Data Description 

The dataset used in this study is a real dataset of Saudi SGs, consisting of loads for 

Jeddah city for the year 2021 with a one-hour resolution and thus containing a total of 

4876 hourly consumption for two seasons during 2021. Figure 7a,b represent the load data 

from the beginning of March to the end of September 2021 for the cities of Jeddah and 

Madinah, which are two of the biggest cities in Saudi Arabia in terms of population, and 

industrial and commercial density. Each dataset consists of 4876 consumptions and can 

be used to generate our proposed DL model for each load forecasting model. The input of 

the prediction model is the historical energy-consumption values of Jeddah’s loads in 

Saudi Arabia, collected by customers’ smart meters. This DL method also covers incon-

sistencies, missing and outlier values, and issues that arise in the datasets of energy con-

sumptions. The output of the proposed short-term load forecasting is a precise future en-

ergy-consumption prediction. It is possible to predict the loads using one of the methods 

of DL and to obtain optimal results in terms of RMSE, NRMSE, and MAPE. The forecast-

ing results can provide ideas for improving Saudi energy systems because the Ministry of 

Energy changes its physical systems based on the results. 

 
(a) 

 
(b) 

Figure 7. Real dataset loads from the Saudi SGs (March 2021–September 2021). (a) Jeddah city load 

with a one-hour time resolution. (b) Madinah city load for the year of 2021 with a one-hour time 

resolution. 
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4.2. Hybrid DL Approach 

Using energy usage for customer load forecasting in a smart grid is a difficult time-

series problem. To handle complicated systems and to reduce prediction errors, we used 

a hybrid DL strategy reinforced with advanced preprocessing techniques in this study to 

address the time-series issue. Normally, a time-series dataset consists of a large amount 

of noise and requires reliable smoothing and denoising techniques for more accurate pre-

diction. In [34], the Savitzky–Golay (SG) filter was proposed to eliminate noise from a 

dataset. We plan to adopt this technique for our future work. As a result, the suggested 

method’s modeling framework was divided into two parts: an advanced single-layer 

model and a hybrid DL model. 

Figure 8 depicts the architecture of the proposed CNN–LSTM, CNN–GRU, and 

CNN–BiLSTM-based DL frameworks. The convolutional operation allows the initial layer 

to learn low-level features in the applied input. A pooling layer is frequently added to 

mitigate the invariance limitation of the resulting feature map. The activation function is 

used to improve the model’s capacity to learn complicated structures. We used a dropout 

layer between the CNN feature extraction block and the LSTM, GRU, and BiLSTM se-

quences of learning in this study. To avoid overfitting, this layer comprises a random se-

lection of neurons and deactivates some of them. 

When creating a CNN model, typically, a coarse-to-fine strategy is used. Because 

there are so many trainable parameters in this structure, it adds to the computational com-

plexity. To avoid overfitting, we chose a kernel size of 32 for the convolution layer. There 

were 200 hidden units in each layer of the LSTM, GRU, and BiLSTM layers in the se-

quence-learning block. We used one layer for each of these layers. The return sequence 

for the LSTM, GRU, and BiLSTM layer was set to true so that the network outputs the 

whole sequence of hidden states, whereas the return sequence for the final layer was set 

to false so that the network only outputs the hidden state at the final time step. To avoid 

overfitting, we employed the dropout layer before the fully linked layer. Figure 9 shows 

a flowchart of the overall proposed hybrid DL algorithm. The flowchart starts with the 

data input from the real dataset for Jeddah load or Medinah load. The input data were 

then fed to the preprocessing stage, which consists of normalizing and splitting the dataset 

into two main portions: 70% for training and 30% for testing. Then, the training dataset 

was applied to the hybrid DL model predictive model, which consists of a CNN in the 

first stage first and RNN–LSTM–BiLSTM–GRU in the second stage. Each experiment of 

the hybrid DL algorithm consisted of a CNN and one of the conventional DL algorithms 

in the second stage. Then, the model was tested with the remaining 30% of the dataset. If 

the prediction performance and the forecasting accuracy was the lowest and satisfactory, 

the model was terminated; otherwise, another combination of the hybrid DL model was 

chosen and then trained again with the same training dataset. 
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Figure 8. Proposed hybrid DL algorithm architecture for 1-D CNN combined with different DL al-

gorithms. 

 

Figure 9. Proposed hybrid DL algorithms flowchart for load-forecasting modeling. 

Table 1 shows the parameters for the DL system that was built. In this study, we used 

Adam, a well-known optimizer, as well as the mean absolute error as a loss function. The 

proposed hybrid DL model was trained using a 1-D CNN to extract features from time-

series data and an LSTM or GRU or BiLSTM model for feature analysis. In the feature 

extraction and the first phase of the extracted feature analysis (LSTM or GRU or BiLSTM), 

the model was trained forward, whereas in the second stage of the extracted feature anal-

ysis, it was trained backward. 
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Table 1. Hyperparameters of the proposed hybrid DL model. 

Parameter Setting 

Network architecture 
LSTM, GRU, BiLSTM, RNN, ANN 

CNN–LSTM, CNN–GRU, CNN–BiLSTM 

Optimizer  Adam  

Loss Function  Mean Absolute Error (MAE)  

Learning Rate  {0.0005}  

Adjustment  learning rate = 1 × 10−6 

Batch Size  64 

Epoch  2000 

Iteration per epoch 52 

Lag 1:50 h look back 

TrainFcn gradient descent momentum (traingdx) 

LearnRateDropPeriod 400 

LearnRateDropFactor 0.2 

CNN, ANN 32 hidden units 

LSTM, GRU, BiLSTM layers 400 hidden units  

Two layers of the 1-D CNN with a 5-filter size and 32 hidden units were used in the 

training process to improve the extraction of input features, and two layers of the LSTM 

or GRU or BLSTM with 400 hidden units were used to analyze the features retrieved and 

to predict the output. Our model employs a rectified linear unit (ReLU) activation function 

with a total of 2000 training epochs. For DL fine-tuning and complex stochastic processes, 

the hyperparameters, which include the network design, the number of hidden units, an 

activation function, a loss function, and the number of epochs, constitute a nondetermin-

istic polynomial (NP) optimization problem. In our modeling, the hyperparameters were 

chosen using a trial-and-error method, though 400 hidden units have been noticed as the 

most optimal architecture for DL algorithms after our many training trials. Although dif-

ferent types of DL algorithms have their own methods of computation, specifying the op-

timal hyperparameters to all models is a key element of fast-track modeling due to the 

high computational cost and prediction accuracy. 

In [35], a hybrid CNN–RNN model was proposed and was implemented using 

MATLAB. In our modeling, we adopted the generic algorithm of the CNN and RNN hy-

bridization, and we modified our proposed models based on different CNN hybridization 

with the RNN, LSTM, BiLSTM, and GRU. A summary of the MATLAB code is represented 

in Figure 10 as a pseudocode. 

The platforms used in our modeling were a MacBook Pro (13-inch, M1, 2020) and 8 

GB (4 for performance and 4 for efficiency) as the total number of cores. The developmen-

tal environment of our system was MATLAB 64-Bit (maci64), where the DL models were 

implemented with the deep learning toolbox [36]. 
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Figure 10. Pseudocode of the proposed hybrid DL algorithms. 

5. Results 

To evaluate the forecasting-performance results, we utilized 30% of the dataset to test 

the model and 70% of the dataset to train the model. Conventional metrics were used to 

evaluate the prediction models and to evaluate the forecasting in our experiments. Tradi-

tional metrics such as the root mean squared error (RMSE); the coefficient of variation 

(CV) of RMSE, known as the normalized root mean squared error (NRMSE); MAE; and 

MAPE are defined as follows: 

RMSE = √
∑ (𝑦𝑖−𝑝𝑖)2𝑛

𝑖=1

𝑛
   (18) 

NRMSE = 
RMSE

�̅�
 × 100%   (19) 

MAE = 
1

𝑛
∑ |𝑦𝑖 − 𝑝𝑖|𝑛

𝑖=1    (20) 

MAPE = 
1

𝑛
∑

|𝑦𝑖−𝑝𝑖|

𝑦𝑖

𝑛
𝑖=1  × 100   (21) 

where n represents the total number of data points in the time series, �̅� represents the av-

erage of the measured time series in the original scale of the dataset, and 𝑝𝑖  is the predicted 

output of the time series. 

All of the DL models and empirical approaches shown in Table 2 were evaluated 

only for comparison. While most of the conventional DL algorithms such as ANN, RNN, 

LSTM, BiLSTM, and GRU were proposed in the literature only recently [13,14,25,30,37], 

we have benchmarked our proposed hybrid algorithms to them. Since 30% of the dataset 

was used to test the trained model with unseen data, the prediction performance of the 

testing can be used to evaluate the performance and the accuracy of the forecasting model. 

According to Reference [35], a CNN hybrid with the RNN forecasting model was demon-

strated to be useful for medical-forecasting applications in chickenpox cases based on 

prior months. Our proposed model was benchmarked with their modeling and design. 

Therefore, the idea of a hybrid CNN–RNN was applied to a dataset to predict the loads 

of Jeddah and Madinah as benchmarks. In addition, we applied a hybrid method of CNN 

with LSTM, GRU, and BiLSTM for a comparison of the results. We also used the R, RMSE, 

NRMSE, and MAPE values. For the performance of the individual ANN, RNN, LSTM, 

GRU, and BiLSTM models, we see that the R, RMSE, NRMSE, and MAPE of the BiLSTM-

based model were 0.9869, 80.5873, 1.526, and 0.9991, respectively, for the optimal forecast. 

However, the average MAPE of the BiLSTM-based DL model was higher than that of the 

other DL models. For analyzing the performance of the suggested hybrid CNN–GRU, 

CNN–LSTM, and CNN–BiLSTM models, we chose a DL model based on the LSTM, GRU, 

and BiLSTM architectures based on this research. The suggested hybrid CNN–BiLSTM 

model had average R, RMSE, NRMSE, and MAPE of 0.9872, 78.085, 1.4786, and 0.9497, 
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respectively. According to Table 2, on the other hand, the model based on CNN–GRU, 

produced the best results, with average R, RMSE, NRMSE, and MAPE of 0.9875, 77.4877, 

1.4673, and 0.9505, respectively. State-of-the-art methods such as LSTM and GRU were 

unsuitable for forecasting compared with the suggested method. RNN-based methods 

were also not as good as the suggested method. The simple ANN showed better perfor-

mance than RNN, LSTM, BiLSTM, and GRU because the size of the dataset was not very 

large. If the dataset contained big data, the DL models would perform better than the 

simple ANN. In Table 3, the prediction performance of the CNN–RNN model showed the 

most accurate prediction result. The hybrid CNN– ٍRNN model of Madinah forecasting 

loads had average R, RMSE, NRMSE, and MAPE of 0.9927, 20.7501, 1.2227, and 0.7591, 

respectively. In addition, the hybrid model outperforms other DL models in predicting 

loads in both cases. 

Table 2. Prediction error (R, RMSE, NRMSE, and MAPE) for the Jeddah results. 

Model R RMSE NRMSE (%) MAPE 

ANN 0.9873 78.3173 1.483 0.9562 

RNN 0.98577 95.2624 1.8039 1.1695 

LSTM 0.9868 81.6872 1.5468 1.0144 

GRU 0.9868 81.3668 1.5407 1.0100 

BiLSTM 0.9869 80.5873 1.526 0.9991 

CNN–RNN 0.9819 97.321 1.8428 1.2194 

CNN–LSTM 0.9873 77.8123 1.4734 0.9511 

CNN–BiLSTM 0.9872 78.085 1.4786 0.9497 

CNN–GRU 0.9875 77.4877 1.4673 0.9505 

Table 3. Prediction error (R, RMSE, NRMSE, and MAPE) for the Madinah results. 

Model R RMSE NRMSE (%) MAPE 

ANN 0.9749 38.3944 2.2623 1.4723 

RNN 0.992 21.4315 1.2628 0.7667 

LSTM 0.992 21.6804 1.2775 0.7778 

BiLSTM 0.992 21.7257 1.2802 0.7776 

GRU 0.9922 21.419 1.2621 0.7614 

CNN–RNN 0.9927 20.7501 1.2227 0.7591 

CNN–LSTM 0.9918 21.9719 1.2947 0.7946 

CNN–BiLSTM 0.9918 22.0343 1.2983 0.7989 

CNN–GRU 0.9917 22.141 1.3046 0.8074 

In Table 4, the computational cost of the hybrid DL models and the conventional DL 

models show a variety of different time complexities for each model according to their 

architecture and weights. From the table, the computational cost of conventional DL algo-

rithms seems to be less than that of the hybrid models. This concludes that the shortcom-

ing of the proposed hybrid DL algorithm is the critical time cost. A potential solution to 

this problem is to tune the hyperparameters of each model. 

The hybrid CNN–GRU model was created and represented as MAPE, RMSE, and a 

regression plot. Forecasting in comparison with the observed sequences was assessed and 

plotted. The forecasting load was observed for an iteration at a different hour. The actual–

observed forecasting had an MAPE of 0.95053 and is shown in Figure 11a, while with 

RMSE it was found to be 77.4877. 
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Table 4. Computational cost of different DL and hybrid DL algorithms. 

Model Training Time  

RNN 77 min 44 s 

LSTM 43 min 25 s 

BiLSTM 107 min 59 s 

GRU 60 min 40 s 

CNN–RNN 91min 54 s 

CNN–LSTM 62 min 25 s 

CNN–BiLSTM 135 min 10 s 

CNN–GRU 78 min 26 s 

In MATLAB, an ANN architecture was created by considering various hidden neu-

rons in the hidden layer. The network’s performance was measured in terms of RMSE and 

R at various hidden neurons. To predict the load, the architecture with the best perfor-

mance, i.e., one with a low RMSE and a high R, was chosen. In Table 2, the RMSE was 

used to evaluate the performance of the best model using 32 hidden units. 

  
(a) Training and testing prediction performance (b) Testing prediction performance  

 
(c) CNN–GRU regression model  

Figure 11. Hybrid CNN–GRU model prediction performance for the Jeddah load: (a) training and 

testing, (b) testing, and (c) regression plot. 
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Figure 12 and Figure 13 presents the model’s performance at each level of training 

and testing for the CNN-RNN model and ANN model, respectively. The regression plot 

containing data from training and testing resulted in a regression coefficient of 0.9873, 

which is acceptable because it is close to one. Figure 13c shows an error histogram plot 

with training and testing data, and all of the errors have a normal distribution. Figure 14 

shows the results of the real and forecast Madinah loads that were applied in the hybrid 

CNN–RNN. Figure 14c shows the regression data from training and testing for the hybrid 

DL model for the Madinah load dataset with a regression coefficient R = 0.99267. 

  
(a) Training and testing prediction performance (b) Testing prediction performance  

 
(c) CNN-RNN regression model  

Figure 12. CNN-RNN model prediction performance for Jeddah load: (a) training and testing, (b) 

testing, and (c) regression plot. 
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(a) Training and testing prediction performance (b) Testing prediction performance  

 

(c) ANN model error histogram plot 

Figure 13. ANN model prediction performance for the Jeddah load: (a) training and testing, (b) 

testing, and (c) error histogram plot. 

Our proposed model showed promising empirical results in terms of performance 

and showed that our model outperformed conventional prediction models. Hybrid DL 

models can effectively combine two DL models to improve the forecasting performance. 

The prediction accuracy improved by combining CNN model with RNN, LSTM, BiLSTM, 

or GRU. These short-term load-forecasting models were developed for extracting the re-

lationships between the Jeddah and Madinah SGs. The outcomes of the proposed method 

could be used for power system planning. 
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(a) Training and testing prediction performance (b) Testing prediction performance  

 
(c) CNN–RNN regression model 

Figure 14. CNN–RNN model prediction performance for the Madinah load: (a) training and testing, 

(b) testing, and (c) regression plot 

6. Conclusions, Limitations, and Further Research 

Recently, load forecasting has been a vital problem in the energy management and 

cost-effectiveness of SGs due to the increase in energy consumption globally. There have 

been many attempts to predict future loads efficiently using statistical models; one of 

those attempts was using DL methods to obtain promising prediction results. This paper 

proposed a hybridization of DL prediction models to improve the prediction accuracy and 

network architecture. 

A hybrid model based on a combination of two DL algorithms among CNN, LSTM, 

GRU, BiLSTM, and RNN was proposed. The framework’s performance in short-term elec-

tric load forecasting was compared with that of other state-of-the-art systems. The results 

showed that the proposed hybrid CNN–GRU- and CNN–RNN-based DL algorithms out-

performed the competition when it comes to predicting how much energy will be used. 

The LSTM, GRU, and BiLSTM models improve the overall average RMSE, NRMSE, and 

MAPE of Saudi Arabia’s energy-consumption prediction for both single-step and multi-
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step forecasting. The implementation of the prediction system was applied to two real 

datasets from Jeddah and Madinah in Saudi Arabia. The proposed model presented better 

performance than the conventional DL prediction methods. The reasoning behind the hy-

bridization concept is that, for DL algorithms, it is faster and more efficient to find the 

optimal forecasting accuracy and the optimal computational cost. Although the hybrid 

DL concept is more demanding regarding computational requirements, it notably outper-

formed the best conventional DL prediction models. To this end, accurate forecasting re-

sults can help solve the problem-relevant features for planning engineers and site manag-

ers. Thus, the best forecasting performance can help optimize the network scalability and 

requirements. The relative load-forecasting errors at the level of transmission and distri-

bution substations result in increasingly smooth load shapes. By leveraging the data of 

smart meters, communication tools and sensors, enhanced load forecasting can play a ma-

jor role in optimizing SG investments and grid operations. Like any time-series forecasting 

technique, our proposed approach, the hybrid DL method, does not guarantee optimal 

solutions or the most accurate prediction. Furthermore, data preprocessing and an opti-

mized DL architecture may not be suitable for accurate prediction for other problems. 

Therefore, there are still some limitations to our proposed approach, e.g., the computa-

tional cost of the hybrid DL methods is considerably higher than that of conventional DL 

models 

Since the proposed hybrid DL approach is a more complex architecture than conven-

tional DL algorithms, utilizing meta-heuristic approaches in future work for DL architec-

ture optimization problems can help find the optimal hyperparameters of DL models such 

as the number of hidden neurons, the number of hidden layers, epochs, , etc. A genetic 

algorithm could be a good optimization approach for hyperparameter population search 

coupled with the proposed approach. The forecasting outcome would be the most optimal 

architecture. Moreover, time-series datasets commonly consist of noise; therefore, utiliz-

ing a noise-cancellation method such as SG filter and wavelet decomposition can enhance 

the prediction accuracy. In addition, conducting a computation parallel to the proposed 

hybrid DL model can provide a real-time load-forecasting paradigm that can train histor-

ical input variables offline and can update and test recent input variables online. 
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