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Abstract: Predictive graph learning approaches have been bringing significant advantages in many
real-life applications, such as social networks, recommender systems, and other social-related down-
stream tasks. For those applications, learning models should be able to produce a great prediction
result to maximize the usability of their application. However, the paradigm of current graph learn-
ing methods generally neglects the differences in link strength, leading to discriminative predictive
results, resulting in different performance between tasks. Based on that problem, a fairness-aware
predictive learning model is needed to balance the link strength differences and not only consider
how to formulate it. To address this problem, we first formally define two biases (i.e., Preference
and Favoritism) that widely exist in previous representation learning models. Then, we employ
modularity maximization to distinguish strong and weak links from the quantitative perspective.
Eventually, we propose a novel predictive learning framework entitled ACE that first implements the
link strength differentiated learning process and then integrates it with a dual propagation process.
The effectiveness and fairness of our proposed ACE have been verified on four real-world social
networks. Compared to nine different state-of-the-art methods, ACE and its variants show better
performance. The ACE framework can better reconstruct networks, thus also providing a high
possibility of resolving misinformation in graph-structured data.

Keywords: graph learning; predictive learning; fairness; link strength; social networks

MSC: 68T07; 05C62; 91D30

1. Introduction

Graph representation learning, especially predictive representation learning, has
proved to be important in solving a lot of real-life decision-making scenarios, ranging
from recommender systems [1] and exploring human mobility [2] to anomaly detection [3].
The underlying reasons behind its significance are two-fold. First, graph-structured data
are everywhere, which are proved very effective in formulating real-world entities and
relations. Second, predictive learning approaches have provided the primary technical
support for human daily life. With the mature process of predictive learning, much
decision-making is also more dependent on the prediction results. However, it has been
recognized that the paradigms of current graph learning algorithms are a double-edged
sword. The prediction results can cater to people’s interests, such as providing useful
information services or detecting network attacks, but it can lead to ineffective application
because of discriminative decisions that perform well in particular tasks and worse in other
tasks [4,5].

To learn graph data representation, every relationship in the graph should be converted
into a feature space that can be further processed to address the downstream tasks [6,7].
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However, by merely learning graph-structured data, the embedding space learned by
the model may be historically biased. Another thing, which also matters a lot in real-
world network representation, is that current models generally neglect the differences in
link strength when implementing social network predictive learning. Links in real-world
networks apparently are meaningfully different from each other [8]. Previous studies have
well-investigated link strength and categorized it into two classes, i.e., strong links and
weak links [9,10] (Figure 1). Strong links are found within communities, indicating that two
vertices are tightly connected, while weak links connect different communities, meaning
that two vertices are loosely connected. In most social networks, vertices are densely linked
within a community, whereas they are sparsely linked across communities. As a result,
strong links outnumber weak links. Graph predictive learning models will naturally output
biased learning results with those unbalanced distribution data.

Figure 1. The two kinds of biases caused by strong links and weak links.

Since numerous studies have illustrated that strong links and weak links are equally
important for networks [11–13], it is necessary to put forward fairness-aware predictive
learning models that can present non-discriminatory prediction results to learn balanced
distribution data [14]. In this work, we firstly define two types of biases that widely exist
in current methods, i.e., Preference and Favoritism (shown as Figure 1). Preference means
that one method prefers or better performs link prediction on strong links or weak links.
Favoritism means that one method favors or gives higher scores to strong links than weak
links when performing link prediction. The two biases hinder the performance of network
analysis. For example, a method with high Favoritism to strong links is difficult to predict
weak links when weak links are positive examples, and strong links are negative examples
on the task of link prediction.

To fill the gap of this problem, we present a fAirness-aware prediCtive lEarning
framework (ACE) to eliminate the two biases mentioned above and thus resulting in fair
predictive representation learning results. The proposed ACE seamlessly integrates the
learning of the link strength and a dual propagation. Specifically, the link strength is
learned via modularity maximization. The dual propagation applied in ACE has two-
fold advantages: (i) it ensures the independence between strong links and weak links,
preventing the biases; (ii) it guarantees the connectivity of the overall network so that
each vertex reaches its T-hop neighbors after conducting the dual propagation T times.
The performance of ACE is evaluated with nine state-of-the-art approaches on four real-
world social networks. Experimental results show that ACE outperforms baselines by up
to 31.1%. Moreover, ACE better maintains the balance between strong links and weak links,
with smaller extents of the two biases Preference and Favoritism than baseline methods. We
summarize the contributions of this paper as follows:

• Biases Formulation: We formally define two biases, i.e., Preference and Favoritism that
widely exist in current predictive learning models. Based on the formulation, we
utilize modularity maximization to distinguish weak and strong links.
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• Fairness-aware Predictive Graph Learning: We propose ACE, a novel predictive
learning framework that seamlessly integrates link strength to differentiate the learn-
ing process and a dual propagation process.

• Real-world Social Networks Evaluation: We empirically verify the efficacy by exper-
iments on link prediction. Experimental results demonstrate that ACE achieves great
improvement and smaller extents of the two biases than nine baseline methods.

The rest of this paper is organized as follows. Section 2 introduces related work,
including social network predictive learning and fairness graph learning. In Section 3, we
formally formulate the two biases and predictive learning. In Section 4, we describe the
details of our proposed ACE. The experimental setting and experimental results analysis
are clarified in Section 5. Finally, we conclude our work in Section 6 with possible future
directions.

2. Related Work

Predictive learning in social networks. Prior studies about predictive graph learning
models can be divided into three categories, traditional methods, embedding-based meth-
ods, and Graph Neural Networks-based methods. Traditional methods exploit network
structure to conduct network analysis tasks [15]. Common Neighbors (CN) [16] for link
prediction assumes that two vertices with many common neighbors are very likely to be mu-
tual neighbors. The Jaccard Index [17] considers both the union and the intersection of two
vertices’ neighbors. Adamic [18] assigns less-connected neighbors more weight to recount
common neighbors. For embedding-based methods such as DeepWalk [19], Node2Vec [20],
and LINE [21], vertices’ features are of great importance. Attributed social networks have
also been investigated [14,22,23]. More advanced methods in predictive learning are based
on Graph Neural Networks (GNNs) [24]. Graph Convolutional Networks (GCNs) [25] is
a widely used variant of GNNs. Graph Attention Networks (GATs) [26] specify different
weights to different neighbors by leveraging masked self-attentional layers. Deep Graph In-
fomax (DGI) [27] relies on maximizing mutual information between patch representations.

Fairness-aware graph learning. Fairness-aware graph learning methods can be di-
vided into three categories, Preprocessing-based methods, Optimization-based methods,
and Application-oriented methods. Preprocessing-based methods attempt to deal with
bias issues with training data [6]. Optimization-based methods focus on the learning
process. Li et al. [28] investigates the correlation between dyadic fairness and link predic-
tion, indicating that adjusting edge weights can enhance fairness. Application-oriented
methods are generally scenario-specific. Zhu et al. [29] propose a fairness-aware framework
for tensor-based recommender systems. Some more recent studies, such as [30] focus on
fairness-aware link prediction, which also reflects the importance of our research issue.
These models have paid attention to the homophily of vertices in networks but neglected
the fact that links in the network also differ significantly.

In this work, we focus on the link strength in predictive learning for fair representation
results. Since biases of link strength are not well defined in previous studies, we first give
the definitions of two biases that widely exist in predictive learning models. By integrating
information from both strong links and weak links, our proposed model can balance
such biases.

3. Preliminaries
3.1. Graph

In this paper, we use G = (V , E) to denote a graph, where V = {v1, v2, . . . , vN} is the
set of all N vertices, and E = {(vi, vj), (vi, vk), . . . } is the set of all edges. To store the graph
structure, we use an adjacency matrix A ∈ RN×N . If (vi, vj) ∈ E , Aij = 1, otherwise Aij = 0.
G contains C (C > 1) communities and vertices in G have attributes. M ∈ RN×M is used to
represent the attribute matrix, and its ith row denoted by mi is an M-dimensional vector
representing attributes of vertex vi.
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In a graph, we regard strong links as those edges whose two endpoints have at least
one common community. In contrast, the edge between two vertices having no common
community is a weak link [8,31]. We denote the set of weak links by Ew and the set of
strong links by E s, and ensure that E s ∩ Ew = ∅ and E s ∪ Ew = E . Based on the strength of
their links, the neighbors of each vertex are divided into two sets: strong neighbors and
weak neighbors. We use Ni, N s

i and N w
i to represent the sets of the indices of neighbors,

strong neighbors and weak neighbors of vertex vi, respectively. It is important to note that
N s

i ∩N w
i = ∅ andN s

i ∪N w
i = Ni. Table 1 briefly summarizes the notation and definitions

in this work.

Table 1. Notations and Definitions in this paper.

Notations Definitions

G = (V , E) The given graph G, node set V, and edge set E
Ew The set of weak link edges
E s The set of strong link edges
E ′ The set of edges in graph
Ni The set of neighbors linked to node i
N s

i The set of strong neighbors linked to node i
N w

i The set of weak neighbors linked to node i
M The attribute matrix of graph
A The adjacency matrix of graph
D The degree matrix of graph

W, B, Rr The training parameters
∆ The batch size in training model

δ, α, β The attribute information matrix
K The layer number of auto-encoder
T The number of the dual propagation

Predictive Learning: Link prediction aims at predicting whether two vertices that are
not connected are potentially connected or whether there is an underlying edge between the
two vertices. More specifically, given the set of nonexistent set E ′, we need to find E ′p ⊂ E ′,
which is the set of nonexistent but likely existent edges. In practice, it is often conducted by
computing a score for each nonexistent edge—the greater the score is, the more likely the
edge exists.

3.2. Biases

In this paper, we regard strong links and weak links as two different sides and define
the two biases for link prediction. Preference for strong links means better performance
on strong links than on weak links; Favoritism to strong links means giving strong links
a higher score than weak links. The two types of biases affect the performance of link
prediction. For example, if one method has Preference to strong links, it better predicts links
when all examples are strong links than when all examples are weak links; if one method
has Favoritism to strong links, it better predicts links when positive examples are strong
links and negative examples are weak links than when positive examples are weak links
and negative examples are strong links.
Preference: If one method shows Preference to one side, it prefers to perform link prediction
on that side so that it performs link prediction better on one side than on the other side.
Favoritism: If one method shows Favoritism to one side, it favors one side and neglects the
other side so that it gives higher scores to one side when performing link prediction.

4. The Design of ACE

Details of the proposed ACE are illustrated in this section, including the link strength
learning process, dual information propagation process, and supervised learning process.

Figure 2 shows the overall process of how the proposed ACE learns the vector rep-
resentation of v1. Given an attributed graph, our proposed ACE first utilizes modularity
maximization to divide v1’s neighbors into strong neighbors (i.e., neighbors that are in the
same community with v1) and weak neighbors (i.e., neighbors that are in different commu-
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nities with v1). The neighbors with strong link relations and weak link relations will be,
respectively, processed by dual propagation, and thereby two different embedding vectors
are separately generated. Two generated vectors are integrated into the final vector repre-
sentation of v1 through a fully-connected neural network. The final vector can be repeatedly
input into dual propagation or used for downstream tasks such as link prediction.

Figure 2. The overall framework of ACE that demonstrates how to learn v1’s vector representation.

4.1. Link Strength Learning

In this process, ACE utilizes modularity maximization to learn link strength. Link
strength is defined based on community structure, i.e., edges between vertices of different
communities are regarded as weak links and edges between vertices of one community as
regarded as strong links. Considering the fact that many networks do not contain ground-
truth community information, we employ modularity maximization [32–34], which is a
commonly used method for detecting community structure, to learn the link strength.

For a particular division of the network into two communities, i.e., C = 2, let ci = 1 if
vertex vi belongs to the first community, and ci = −1 if it belongs to the other community.
The modularity Q is represented as shown in Equation (1).

Q =
1

4|E |∑ij
(Aij −

didj

2|E | )cicj (1)

where |E | is the total number of edges in the network. di and dj are degrees of vi and

vj, respectively.
didj
2|E | is the expected number of edges between vertices vi and vj if edges

are placed randomly. By defining matrix U ∈ RN×N whose element is Uij = Aij −
didj
2|E | ,

the modularity Q is repressed as shown in Equation (2).

Q =
1

4|E |c
TUc (2)

where c = [ci] ∈ RN is the community membership indicator vector. To generalize
modularity Q to C > 2 communities, we define the community membership matrix as
C ∈ RN×C with one column for each community. After omitting the constant 1

4|E | , we have

Q = tr(CTUC) (3)

s.t. tr(CTC) = N (4)

where tr(·) is the trace of a matrix. The constraint in Equation (4) is added to avoid
arbitrary elements in C. By maximizing Q, we can obtain C where the ith row ci is vi’s
vector representation encoding affinities of the vertex to C communities. The matrix C is
actually a low-dimensional approximation of U. Thus, the similarity of ci and cj reflects
the possibility that vi and vj share common communities. That is to say, vi and vj might
probably have a greater similarity, further implying a greater strength of the link between
vi and vj. By maximizing Q, we can obtain community structure and then determine the
link strength. However, in this study, we avoided doing so. On the one hand, detecting
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community structure deviates from the focus of this paper and is independent of the
following dual propagation. On the other hand, for maximizing Q, we often resort to
NMF (Non-negative Matrix Factorization) [35] or SVD (Singular Value Decomposition),
a linear method of dimensionality reduction. However, the underlying network structure
is highly non-linear [36]. Here, we present a neural network-based method to obtain low-
dimensional vector representations C encoding community affinities of all vertices. This
method is not only non-linear but also closely knitted with the following dual propagation.

We use the auto-encoder [37], a special neural network, to learn low-dimensional
representations that can best approximate the original data. The matrix U, where each
row is the original representation of one vertex, is the input of the auto-encoder. The auto-
encoder consists of two key components: encoder and decoder. The encoder maps the
original data U to a low-dimensional representation C ∈ RN×d where d < N, and the ith
row ci represents vi. It should be noted that d can be unequal to C at this time. The decoder
reconstructs the original data by inputting C. The encoder and the decoder are multi-layer
neural networks with the computation in each layer defined as follows.

Hk = tanh(Hk−1Wk + Bk) (5)

where tanh(x) = ex−e−x

ex+e−x is the activation function; Hk is the representations in kth layer; Wk

and Bk are the weight and bias to be learned in the kth layer. For the K-layer encoder, it
inputs U and outputs C, namely H0 = U and HK = C. For the K-layer decoder, it inputs C
and outputs Ũ, namely H0 = C and HK = Ũ. The auto-encoder aims at minimizing the
reconstruction error defined as follows.

Lrecon = ||U− Ũ||2F (6)

where || · ||2F is the squared Frobenius norm. Adding regularizations of all learned weights
and biases, we define the loss of training the auto-encoder as follows.

Lencoder = Lrecon + αLen
reg (7)

where α is a hyper-parameter. After minimizing the loss Lencoder and updating all weights
and biases, we can obtain C and define the strength of edge between vi and vj as follows.

sij = sigmoid(cT
i · cj) (8)

where sigmoid(x) = 1
1+e−x . A greater sij means a higher probability that the edge is a

strong link.

4.2. Dual Propagation

The learning process of the link strength is not an independent component of our
method. We combine it with dual propagation consisting of propagations, propagationw,
and a fully-connected neural network. The dual propagation including propagations and
propagationw follows a neural message-passing framework [38] and propagates informa-
tion from strong neighbors and weak neighbors separately. The neural network combines
information from two different sources. The separate propagation that ensures the inde-
pendence between strong links and weak links is particularly important when there is a
huge imbalance in their numbers. Dual propagation first disconnects the network and then
connects it via the following combination.

We assume that vj ∈ Ni that has the maximum sij among vi’s neighbors is one of vi’s
strong neighbors. To make propagations propagate information substantially from strong
neighbors, we assign new weights to vi’s neighbors by the following equation.

as
ij =

s2
ij

∑j∈Ni
s2

ij
. (9)
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This assignment of new weights ensures that each vertex receives more information
from stronger neighbors. The propagations for vi is defined as follows.

hs
i = ReLU(Ws ∑

j∈Ni

as
ijhj) (10)

where hj is attributes of vi, initially set to mi. ReLU is an activation function; Ws is
the weight to be learned. With Equation (10), propagations updates vi’s attributes by
propagating information substantially from its strong neighbors.

If only hs
i is used as the vector representation of vi, vi will ignore the influence from

weak neighbors. To add the influence of weak neighbors, we propose another propagation
propagationw. In contrary to propagations, propagationw propagates information substan-
tially from weak neighbors. Since sij represents the probability of a strong link between vi
and vj, 1− sij represents the probability of a weak link between vi and vj. One issue with
designing propagationw is that not all vertices have weak neighbors or weak links, making
it inappropriate to assign new weights to neighbors by Equation (9). We address this issue
by adding self-connections to all vertices. The weight of vi’s self-connection is defined as:

sii =
∑j∈Ni∧sij>0.5 sij

|{j|j ∈ Ni ∧ sij > 0.5}| . (11)

In this paper, we regard the edge whose strength calculated by Equation (8) is greater
than 0.5 as a potential strong link. Equation (11) thus calculates the average strength of
potential strong links. For vi, vj is a potential weak neighbor if sij < sii. The reassigned
weights favoring weak neighbors are defined as:

aw
ij =

(1− sij)
2

∑j∈Ni∪{i}(1− sij)2 . (12)

The advantages of adding self-connections are two-fold: (i) It addresses the situation
of no weak link. At this time, propagations propagates information substantially from
self; (ii) It renders weaker links more dominant during propagation of propagationw. vi’s
attributes updated by propagationw are calculated as:

hw
i = ReLU(Ww ∑

j∈Ni∪{i}
aw

ij hj) (13)

where Ww is the weight to be learned.
hs

i and hw
i incorporate the information from strong neighbors and weak neighbors,

respectively. To adequately combine the two embedding vectors, we employ a fully-
connected neural network to generate the final embedding hi:

hi = ReLU(Wn(hs
i ||hw

i ) + Bn) (14)

where || represents the vertical concatenation of two vectors. Wn is the weight and Bn is
the bias. Such a combination impartially integrates information from strong and weak
neighbors, avoiding the problem of bias towards one side. After obtaining hi, we can
proceed to input it into the dual propagation so that vi can receive information from 2-hop
neighbors. With such dual propagation conducted T times, every vertex reaches neighbors
in T hop.

4.3. Supervised Learning

To train the framework ACE, we extend it to supervised learning by exploiting a priori
knowledge about network structure, namely keeping the connectivity of a pair of vertices
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in the vector space. Given a pair of vertices vi and vj and their vector representation hi and
hj, we define a score function f (i, j) as:

f (i, j) = sigmoid(hT
i Rrhj) (15)

where Rr is a diagonal matrix to be learned, where each diagonal element decides the
weight of its corresponding feature in representations. If there exists an edge between
vi and vj, f (i, j) = 1. Otherwise, f (i, j) = 0. The score function also can be used to link
prediction. For example, f (i, j) returns the probability if we want to predict the edge
between vi and vj.

While training the framework ACE, we randomly sample ∆ non-existent edges as
negative examples and ∆ existent edges as positive examples. The loss is defined as the
cross-entropy:

Ldual = − ∑
(i,j)∈T

ylog f (i, j) + (1− y)log(1− f (i, j)) (16)

where T is the total set of examples. y is an indicator, set to y = 1 for positive examples
and y = 0 for negative examples.

Besides the regularization, denoted by Ldual
reg , of all weights and biases of the dual

propagation, the loss of the auto-encoder is also added to: Ldual . The final loss of ACE is
defined as:

Lloss = Ldual + βLencoder + α(Ldual
reg + Len

reg) (17)

where α and β are two hyper-parameters. We can note that the learning of the link strength
is tightly unified with the dual propagation via Lloss.

Finally, we summarize the process of training ACE in Algorithm 1. In parameters
Θ, W and B are all weights and biases to be learned in the auto-encoder and the dual
propagation. At first, we pre-train the auto-encoder for several epochs independently and
then perform joint training and dual propagation on it. The learned model can be used for
link prediction.

Algorithm 1 Training Process of ACE.

Require: A graph G = {V , E}, adjacency matrix A, attribute matrix M, batch size ∆,
learning rate δ, parameters α and β, the layer number of auto-encoder K, the number T
of the dual propagation.

Ensure: The learned model.
1: Randomly initiate parameters Θ = {W, B, Rr}
2: Pretrain the auto-encoder
3: while ACE do not converge: do
4: C = HK according to Equation (5)
5: for each vi in G do
6: h0

i = Mi
7: end for
8: for t = 1 to T do
9: for each vi in G do

10: Compute ht
i according to Equation (14)

11: end for
12: end for
13: Randomly sample ∆ pairs of connected vertices
14: Randomly sample ∆ pairs of non-connected vertices
15: Calculate scores according to Equation (15)
16: Calculate the loss according to Equation (17)
17: Update Θ by back-propagation
18: end while
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5. Experiments

In this section, we evaluate the performance of the ACE framework with baselines
on real-world datasets. The experimental results show that ACE achieves significant
improvement.

5.1. Datasets

In our experiments, we use four network datasets (DBLP, LiveJournal, Youtube,
and Friendster) introduced in the paper [39]. DBLP is a co-authorship network where
vertices represent authors, containing 8741 vertices and 28,051 edges. An edge between two
authors means that the corresponding authors have co-authored at least one paper. Each
publication venue, e.g., journal or conference, defines an individual ground-truth commu-
nity. LiveJournal is a social network where vertices represent users, and the declaration of
friendship form an edge. LiveJournal allows users to create groups that other members
can then join, covering 1445 vertices and 144,516 edges. Youtube is a social network where
vertices represent users, and the interactions between users form edges, with 4653 vertices
and 22,198 edges. Friendster is a social networking site where users can form a friendship
edge with each other, including 7346 vertices and 173,760 edges. It also allows users to form
a group that other members can then join. The ratio of weak links for DBLP, LiveJournal,
Youtube, and Friendster are 0.0024, 0.0023, 0.189, and 0.005, respectively.

We compare our proposed ACE with nine baselines following the categories we listed
in related work section.

• Common Neighbors (CN) [16], Adamic Adar (AA) [18] and Jaccard Index (JI) [17]
are three traditional methods and use neighbors to calculate the similarity score of
two vertices. Node2Vec [20], LINE [21], and M-NMF [33] are three embedding-based
methods.

• Node2vec learns embedding vectors through vertices sequences sampled by a random
walk. LINE learns embedding vectors by preserving both first-order and second-order
proximities. M-NMF captures community structure through modularity and preserves
second-order proximities to learn embedding vectors.

• GCN [25], GAT [26], and DGI [27] are three GNN-based methods. GCN defines a
layer-wise propagation rule by spectral graph convolutions. GAT uses self-attention
to assign a weight to each neighbor and employs multi-head attention to keep stability.
DGI learns vector representations by maximizing mutual information between patch
representations and corresponding high-level summaries of graphs.

In addition, we compare two variants of ACE:

• ACE_S: It only uses one part PropagationS of the dual propagation.
• ACE_W: It only uses one part PropagationW of the dual propagation.

For embedding-based methods, the embedding dimension is set to 128, and other
parameters are set according to the original papers. For GCN and GAT, we extend them to
supervised learning using the defined score function Equation (15). For ACE, all parameters
Θ are initialized by the way described in the paper [40]. Then, we use Adam for a fast
convergence [41,42] with learning rate = 0.001 and Dropout with keeping rate = 0.5 [43]
to learn these parameters. Two hyper-parameters α and β are set to 1 × 10−4 and 0.5,
respectively. We use a two-layer auto-encoder with the hidden and output layer sizes
set to 512 and 128, respectively, and conduct the dual propagation two times with two
embedding dimensions set to 512 and 128, respectively. During training the ACE model,
we first pre-train the auto-encoder for 100 epochs. We randomly hide some existent edges
as positive examples and randomly select nonexistent edges as negative examples. A total
of 10% of each example is used as the validation example. The maximum epoch is set
to 1000. All experiments are run 10 times, and the average results are reported. To show
the efficacy of predicting strong links and weak links, we consider the following four
different examples:

• Ps: the example set of existent strong links.
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• Pw: the example set of existent weak links.
• Ns: the example set of nonexistent strong links.
• Nw: the example set of nonexistent weak links.

We make |Ps| = |Pw| = |Ns| = |Nw| = half the number of weak links. Ps ∪ Pw

constitutes positive examples, and Ns ∪ Nw constitutes negative examples. Since the four
datasets provide ground-truth community information, we can determine in advance
whether an edge is a strong link or a weak link.

5.2. Fairness Analysis

We investigate the influence of the edge type characterized in terms of link strength
on link prediction. This influence can reveal whether a method is biased toward one side of
strong links and weak links, which sheds light on the unfairness existing in current models.
In this paper, we introduce two biases a method may have, Preference and Favoritism,
which are predefined in the section Preliminaries.

To investigate the two biases of all methods, we first divide all examples into four
types: Ps,Pw,Ns, and Nw. These examples are grouped into four combinations:

• Ps vs. Ns: The experiment on it tells us the capacity with respect to predicting positive
links on strong links.

• Pw vs. Nw: The experiment on it tells us the capacity with respect to predicting
positive links on weak links.

• Ps vs. Nw: The experiment on it tells us the capacity with respect to predicting positive
strong links that are mingled with negative weak links.

• Pw vs. Ns: The experiment on it tells us the capacity with respect to predicting positive
weak links that are mingled with negative strong links.

We define the difference in AUC scores on Ps vs. Ns and Pw vs. Nw as the extent
to which one method has Preference to strong links or weak links, and the difference
of AUC scores on Ps vs. Nw and Pw vs. Ns as the extent to which one method has
Favoritism to strong links or weak links. An ideal method does not have these two biases.
The comparison results are shown in Figures 3 and 4, where the AUC scores on all examples
are also presented.

Preference. As can be seen from Figure 3, the AUC scores of all methods are different
on Ps vs. Ns and Pw vs. Nw. Thus, all methods show the bias Preference, but the extent
varies with different methods. Traditional methods, Common Neighbors (CN), Adamic
Adar (AA), and the Jaccard Index (JI), have enormous Preference extents on DBLP and
Friendster, with the maximum extent up to 60%. On strong links, the AUC scores of these
methods are approximately 1.0, but they are less than 0.5 on weak links, and thus the
Preference extent is above 99.5%. These results suggest that, on the two networks, traditional
methods significantly prefer to perform on strong links, and even they cannot work on
weak links. On LiveJournal and Youtube, Preference extents of traditional methods become
small but still are noticeable. Similar to traditional methods, embedding-based methods
also show significant Pre f erence to strong links on DBLP, where AUC scores achieved by
these methods on weak links are around 0.5, and the maximum Pre f erence extent is up to
49.8%. In general, the performance of these three models on different datasets is basically
the same, as all of them use neighbors to calculate the similarity score of two vertices.

For GNN-based methods, i.e., GCN, GAT, and DGI, their Preference extents are smaller
than the extents of traditional and embedding-based methods. The maximum extent
achieved by GAT on DBLP is 13.8%. On DBLP and Friendster, they prefer to perform on
strong links. On the contrary, they prefer to perform on weak links on LiveJournal and
Youtube. It is noticeable that ACE consistently keeps a small Preference extent on the four
networks, with a maximum extent of 4.2%. In summary, baseline methods show preference
to one side of strong links or weak links, namely preferring to perform on one side. Their
maximum Preference extent is up to 49.8%. ACE keeps the balance between strong links
and weak links, showing smaller extents than these methods.
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(a) DBLP (b) LiveJournal

(c) Youtube (d) Friendster

Figure 3. AUC scores on all examples, Ps + Ns, and Pw + Nw.

Favoritism. Figure 4 shows AUC scores on Ps vs. Nw and Ns vs. Pw, whose difference
reflects the Favoritism extent. Traditional methods conspicuously have Favoritism to strong
links on DBLP and Friendster, with the maximum extent up to 80%. Their AUC scores
on Ps vs. Nw are approximately 1.0, but on Pw vs. Ns are less than 0.5, even below 0.2 on
Friendster. On LiveJournal and Youtube, traditional methods also show clear Favoritism to
strong links. These results suggest that traditional methods tend to give higher scores to
strong links than weak links, leading to their insufficiency in predicting weak links. Like
Preference, the performance of these three models on the four datasets is still very close.
Similar to traditional methods, embedding-based methods also show Favoritism to strong
links on the four networks, conspicuously on DBLP and Friendster, where AUC scores
are below 0.5 on Pw vs. Ns. LINE has the maximum Favoritism extent among the three
embedding-based methods. A salient finding is that on Friendster, LINE approximately
achieves the AUC score of 1.0 on Ps vs. Nw, but its AUC score on Pw vs. Ns is nearly
0.0. LINE has the significant Favoritism to strong links on LiveJournal, with an AUC score
below 0.3 on Pw vs. Ns. We can see that on LiveJournal and Youtube, embedding-based
methods have a larger Favoritism extent than traditional methods. GNN-based methods
also favor strong links on the four networks, but they have smaller Favoritism extents than
traditional and embedding-based methods. It can be seen that the maximum Favoritism
extent of GNN-based methods is achieved on Friendster, where their AUC scores on PN vs.
Nw are less than 0.5.

As can be seen from Figure 4, ACE achieves smaller Favoritism than traditional,
embedding-based, and GNN-based methods, suggesting that ACE keeps a remarkable
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balance between strong links and weak links and approximately gives impartial scores to
them. Even on Pw vs. Ns of Friendster, where baseline methods all achieve AUC scores
below 0.5, ACE achieves an improvement over 20%, and its AUC scores are more than 0.7.
Furthermore, ACE_S and ACE_W also show small Favoritism extents, except on Friendster,
where ACE_S has significant favoritism to strong links. One noticeable finding is that all
methods, except ACE_W, perform better on Ps vs. Nw than on Pw vs. Ns, indicating that
they favor and give higher scores to strong links. On the contrary, ACE_W performs better
on Pw vs. Ns and gives higher scores to weak links. In summary, baseline methods favor
and give higher scores to strong links. Their maximum Favoritism extent is up to 99.5%.
ACE_W reverses the Favoritism extent and gives higher scores to weak links. ACE keeps a
great balance between strong links and weak links and has a smaller Favoritism extent than
baseline methods.

(a) DBLP (b) LiveJournal

(c) Youtube (d) Friendster

Figure 4. AUC scores on all examples, Ps + Nw, and Ns + Pw.

To be specific, we also compare our proposed ACE with these 9 baselines on the
network reconstruction task to examine whether the learned vertex representations can
well preserve the original network structure. It turns out that ACE outperforms the
other baselines in reconstructing networks. As a fundamental basis of predictive learning,
the effectiveness of the learning model on network reconstruction tasks indicates the
model’s superiority in differentiating strong links and weak links. We also analyze the gain
rate in network reconstruction. Corresponding results of network reconstruction and gain
rate are presented in Sections 5.4 and 5.5, respectively.
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5.3. Parameter Sensitivity

We investigate the parameter sensitivity in this section. Specifically, we evaluate how
the parameters α, β, number of auto-encoder layers, and number of the dual propagation
affect the results on the four networks. These results are shown in Figure 5.
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Figure 5. Parameter sensitivity.

The parameter α: The parameter α controls the weight of the regularization imposed
on all weights and biases in the overall ACE framework, preventing this framework from
overfitting. Figure 5a shows that AUC scores on the four networks first increase as α
becomes bigger and then reach the peak when α is between 1× 10−5 and 1× 10−4. When α
is more than 0.001, AUC scores on DBLP and Friendster start to decrease. On LiveJournal
and Youtube, the α value that reduces AUC scores is 0.01. The reason for this decrease
can be attributed to the large value of α, which can bias the loss function towards the
regularization loss. It can also be seen that the AUC score on Youtube shows tiny sensitivity
with respect to α.

The parameter β: We jointly train the auto-encoder and the dual propagation and use
β to control the weight of the loss from the auto-encoder. Figure 5b shows how β affects
AUC scores on the four networks. As shown in the figure, ACE achieves a high AUC
score when β is 0.0, probably as a result of pretraining the auto-encoder for several epochs.
On the two networks, LiveJournal and Friendster, AUC scores show small sensitivities
with respect to β; On Youtube, the AUC score maintains a stable value; On DBLP, the AUC
score has a peak when β = 0.5. We also can see that AUC scores on DBLP, LiveJournal,
and Friendster, start to decrease after β is more than 0.5.

Number of auto-encoder layers: The auto-encoder with more layers can learn more
abstract representations but has higher computational complexity. Thus, it is important to
select an appropriate number of layers. Figure 5c shows the sensitivity, i.e., the number of
auto-encoder layers. On the four networks, a two-layer auto-encoder achieves ideal AUC
scores. The AUC score of Youtube maintains a stable value. On LiveJournal, the AUC score
has a peak when the number is 2 and keeps similar for other numbers. The AUC score of
DBLP increases when the number goes from 1 to 2 and steadily decreases when the number
becomes larger. On Friendster, the AUC score continues to increase when the number is
more than 2 and reaches 3. After that, it starts to decrease.
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Number of the dual propagation: The number of the dual propagation determines
how far one vertex can receive information. We investigate the sensitivity with respect
to the number by conducting the dual propagation from one time to six times and show
these results in Figure 5d. From this figure, we can see that ACE achieves the maximum
AUC score on the four networks when the number is 2. A sharp increase can be observed
when it goes from 1 to 2. When the number is over 2, the AUC score of Youtube first
maintains stable and then decreases; that of LiveJournal first stably decreases and then
sharply decreases; that of Friendster first decreases and then maintains stable; that of DBLP,
however unexpected, first decreases and then increases to a stable value. These results
indicate that it is sufficient to spread information among 2-hop neighbors. Propagating
further information makes vertices receive more irrelevant information, resulting in poor
ACE performance.

Overall, in this part, we analyze the performance of the model with different hyper-
parameter settings through extensive experiments and come up with some interesting
conclusions and assumptions. In future work, we will try to use explainable Artificial
Intelligence (xAI) methods [44,45] for more in-depth research.

5.4. Network Reconstruction

The task of network reconstruction is to reconstruct the original network by predicting
the edges between vertices based on the inner product or similarity between vertex repre-
sentations. The given edges in the original network are served as ground truth to evaluate
reconstruction performance. We provide an evaluation of different embedding-based and
GNN-based methods, all of which learn vector representations for vertices with respect to
their capability of network reconstruction. We use Precision@K and Recall@K as evalua-
tion metrics. Precision@K is used to evaluate the performance of reconstructing all links,
and Recall@K is used to evaluate the performance of reconstructing strong links and weak
links. To address the issue that the number of edges varies greatly for different networks,
we refer to K, in this paper, as a ratio rather than a number. Precision@K and Recall@K are
the precision and recall, respectively, in the top-k of the number of edges in terms of their
scores.

Precision@K. Figure 6 shows the precision of network reconstruction as K ranges
from 0.1 to 1.0. It can be seen from the figure that ACE outperforms all baselines and two
variants on three datasets, including LiveJournal, Youtube, and Friendster. Although LINE
has great superiority when K is less than 0.6, ACE achieves the best performance when K
is more than 0.8. These results show that the vector representation learned by ACE better
maintains the network structure compared with the baseline and variants. One noticeable
finding is that ACE outperforms its two variants, ACE_S and ACE_W, on the four datasets.
The improvement of ACE over the two variants demonstrably suggests that keeping the
balance between two parts is necessary for network reconstruction. In addition, we can see
that ACE_S performs better than ACE_W. This result can be attributable to the fact that
strong links outnumber weak links, as demonstrated in Section 5.

Recall@K. Here, we examine the efficacy of all methods with respect to reconstructing
strong links and weak links. A good method needs to reconstruct both strong and weak
links well. Figures 7 and 8 show recall@K of reconstructing the two types of edges. ACE,
Node2Vec, and LINE achieve similar performance and outperform other methods on
DBLP when reconstructing strong links. For weak links, ACE significantly outperforms all
baselines. At this time, Node2Vec and LINE show weak competitiveness to ACE. On the
other three datasets, ACE keeps its great superiority and outperforms baselines, with the
exception of reconstructing weak links on LiveJournal, where ACE_W is the best. Another
significant improvement of ACE is reconstructing weak links on Friendster, where recall@K
of four methods stays at 0.0. These results suggest that ACE reconstructs strong and
weak links well.

From the two figures, it can be seen that some methods reconstruct strong links,
but they fail to reconstruct weak links. For example, LINE can reconstruct strong links on
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three datasets, LiveJournal, Youtube, and Friendster. However, it reconstructs a few weak
links in these datasets. Another example is that DGI is unsatisfactory in reconstructing
weak links on LiveJournal compared with reconstructing strong links. For reconstructing
strong links, ACE_S outperforms ACE_W on the four datasets. On the contrary, ACE_W
performs better for reconstructing weak links, except on DBLP. On Friendster, ACE_S fails
to reconstruct weak links, but ACE_W performs well. It is surprising that on LiveJournal,
ACE_W outperforms ACE when reconstructing weak links.
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Figure 6. Precision@K of network reconstruction.
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Figure 7. Recall@K of reconstructing strong links.
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Figure 8. Recall@K of reconstructing weak links.

5.5. Gain Rate

In this part, we examine gain rates achieved by ACE on baselines and its variants in
terms of Recall@1.0 for reconstructing strong links and weak links. The results are shown in
Table 2, where “inf” means the method completely fails to rebuild the links. As presented in
the table, the gain rates on weak links differ from those on strong links. ACE achieves larger
gain rates on weak links than on strong ones compared with embedding-based methods.
On DBLP, the gap in gain rates is more than 20 times when LINE and Node2Vec are
compared with ACE. On GNN-based methods, we can observe a similar gap in gain rates
with embedding-based methods. However, an exception is found on Youtube, which is gain
rates on strong links are more than that on weak links. These gaps indicate that compared
with these baselines, ACE pays more attention to weak links, and ACE reconstructs a large
number of weak links that these baselines cannot reconstruct.

We can also notice that gain rates on weak links are larger than on strong ones when
comparing ACE_S with ACE. This is because ACE_S mainly propagates the information
from strong neighbors. On the contrary, gain rates against ACE_W are larger on strong
links than weak links, except for an exception found on Friendster. This result can also be
attributable to the propagation mode adopted by ACE_W.

In this experiment, we use AUC as the metric to evaluate the performance of ACE
and other baseline methods. A higher AUC score means better performance. Results
of ACE and other contenders in terms of AUC are presented in Table 3, where the best
performance is boldfaced. Table 3 shows that the proposed ACE outperforms all baselines
and its two variants on the four datasets. These results demonstrate the great superiority
of ACE. The superiority of ACE over its two variants further indicates that keeping the
balance between strong and weak links is necessary. Compared with traditional methods,
the maximum improvement achieved by ACE is 26.8%; 29.2% for embedding-based meth-
ods; 31.1% for GNN-based methods. These improvements occur on Youtube, which has
the maximum ratio of weak links. A possible explanation for the enormous improvement
is that Youtube has a great number of weak links, but these baselines pay less attention to
these links. One interesting finding is that ACE_S outperforms existing methods on DBLP,
LiveJournal, and Youtube, although it is biased towards strong links. On Friendster, ACE_S
achieves great performance only when it is combined with ACE_W, i.e., to be ACE.



Mathematics 2022, 10, 2696 17 of 19

Table 2. Gain Rate Results.

Dataset Link Strength ACE_S ACE_W LINE Node2Vec

DBLP Strong 83.5% 258.2% 9.2% 2.8%
Weak 124.6% 152.9% 192.2% 116.5%

LiveJournal Strong 12.1% 40.2 % 88.7% 36.4%
Weak 58.3% -1.9% 1289.6% 218.8%

Youtube Strong 16.6% 21.5% 231.4% 46.7%
Weak 17.4% 15.7% 1622.2% 124.6%

Friendster Strong 136.1% 152.0% 62.1% 31.8%
Weak inf 220.0% inf 100%

Dataset link strength M-NMF GCN GAT DGI

DBLP Strong 107.3% 2070.6% 1950.0% 301.1%
Weak 301.3% inf 9933.3% 4200.0%

LiveJournal Strong 55.5% 6.7% 5.4% 75.9%
Weak 644.8% 8.6 8.1% 1211.3%

Youtube Strong 4540% 231.4% 136.7% 2220.0%
Weak inf 154.1 89.0% 1191.2%

Friendster Strong 25.6% 109.6% 269.3% 216.1%
Weak 166.7% inf inf 300.0%

Table 3. AUC Scores of Link Prediction.

Dataset ACE ACE_S ACE_W CN AA JI

DBLP 0.751 0.748 0.554 0.659 0.659 0.659
LiveJournal 0.977 0.957 0.729 0.942 0.942 0.892

Youtube 0.935 0.874 0.839 0.692 0.694 0.667
Friendster 0.781 0.570 0.525 0.612 0.615 0.607

Dataset LINE Node2Vec M-NMF GCN GAT DGI

DBLP 0.712 0.691 0.727 0.686 0.700 0.663
LiveJournal 0.702 0.883 0.872 0.937 0.943 0.726

Youtube 0.783 0.738 0.643 0.845 0.855 0.624
Friendster 0.603 0.630 0.700 0.617 0.585 0.531

6. Conclusions

While the human-in-the-loop is beneficial for overcoming biases [46], decisions made
manually by decision-makers may be influenced by many implicit and cognitive bi-
ases. Therefore, predictive learning methods are recommended to automate and enhance
decision-making and solve other problems. Although the automation of decision-making
gives more accurate results and limits the influence of bias to a large extent, bias still exists
in machine learning models that can also not be totally avoided. Based on that challenge
and considering the high dependency of human daily life on predictive results, fair graph
learning models are needed to balance performance on various tasks. This work aims to
present a fair predictive graph learning solution to better resolve the bias issue due to link
strength differences that widely exist in social network representation learning models.
By predefining two kinds of biases that most existing models might have, the proposed
ACE framework qualifies the link strength and then employs the dual propagation process
to learn node information from both strong links and weak links, which will accelerate the
fair graph learning process.

Of course, ACE might never be perfect. For example, we only use AUC to evaluate the
model in this paper, and we will try to use more metrics such as Mutual Information (MI)
in future work. Moreover, to further demonstrate the reliability and effectiveness of ACE,
on the one hand, we will compare with more GNN models and datasets. Specifically, we
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will use non-ground truth datasets or datasets and methods that include node attributes
for a more in-depth study. On the other hand, we will try to use Explainable Artificial
Intelligence (xAI) methods to explain our models and experiments in the future.
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