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Abstract: The outcome of a dimensionless characterization study in a two-dimensional porous me-

dia domain in which groundwater flows at a constant horizontal velocity is presented in this report. 

Using spatial discrimination, the dimensionless groups that govern the solution patterns are deter-

mined from dimensionless governing equations. As a boundary condition on the surface, the case 

of constant temperature is studied. From the mathematical deduction of the groups, a characteristic 

horizontal length emerges. This length determines the region in which temperature–depth profiles 

are affected by flow. Existing analytical solutions have been shown to be invalid due to the severe 

assumption that the horizontal thermal gradient has a constant value. Therefore, universal solutions 

based on pi theorem have been obtained for the characteristic horizontal length, temperature field, 

temperature–depth profiles and horizontal temperature profiles. Dependencies between dimen-

sionless groups have been depicted by universal curves, abacuses and surfaces. These graphical 

solutions are used in an easy way to estimate groundwater velocity from experimental temperature 

measurements in the form of an inverse problem. In addition, an easy and fast protocol for estimat-

ing fluid flow velocity and groundwater inlet temperature from temperature profile measurements 

is proposed. This protocol is applied in a scenario of groundwater discharge from a quaternary 

aquifer to a salty lagoon located in the southeast of Spain. 

Keywords: nondimensionalization; inverse problem; analytical solutions; numerical modeling; 

groundwater flow 
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1. Introduction 

The study of the temperature field (temperature patterns) or its dimensionless form 

coming from the heat balance in semiconfined aquifers with horizontal water flow veloc-

ity is a complex problem due to the large number of geometrical and physical parameters 

involved. However, it is a problem of great interest since this field depends on water ve-

locity that could be derived through experimental measurements of temperature–depth 

profiles in the form of an inverse problem, avoiding the costly installation of flow meters 

[1]. The increase in temperature with increased depth in the Earth, known as the geother-

mal gradient, is not uniform around the globe as this temperature rises in a range of 2–3 

°C per 100 m of depth on average [2]. There are many numerical methods for related stud-

ies, such as the finite element method, which can provide a general analysis [3], and the 

boundary element method, which allows for more accurate calculation [4]. Numerical 

methods cannot quantify transfer in porous media as sufficiently as analytical methods. 
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Therefore, the fractal theory is well-accepted for analytical analysis of porous media, be-

cause it can treat complicated geometry in porous media with higher precision [5,6]. The 

relationship between temperature–depth profiles and water velocity has been studied by 

many authors, some of them providing empirical or semiempirical models [7–15]. 

Suzuki [7] was the first author who proposed a solution in semiconfined aquifers 

with constant vertical water flow. His solution, later rearranged by Stallman [8], intro-

duced two empirical constants with no clear physical meaning. Lapham [1] presented 

steady-state and transient solutions based on finite-differences methods, applying them 

to real scenarios in the United States. Taniguchi [11], based on the work of Stallman [13], 

provided a new set of universal curves that allows direct estimation of vertical ground-

water fluxes in relatively shallow aquifers. Ziagos and Blackwell [10] presented analytical 

studies for horizontal flow through a thin, permeable layer located between two imper-

meable regions. Lu and Ge [12] proposed analytical solutions for horizontal and vertical 

fluid flow under the severe assumption of constant horizontal temperature gradients. Ku-

longoski and Izbicki [14] proposed an inverse problem that characterizes the physical 

properties of sediments as well as regions (points) to implement artificial recharges. Fi-

nally, Duque et al. [15] estimated the vertical upward velocity in a groundwater–surface 

water interaction scenario (Ringkøbing Fjord, a coastal lagoon on the west coast of Den-

mark) using the solution of Bredehoeft and Papadopulos [9], for which a steady state had 

been reached. Temperature–depth profiles were taken very close to the bed of the coastal 

lagoon. In relation to two-dimensional problems, many authors try to investigate from a 

qualitative point of view the flow of water from temperature profiles [16–18]. Apart from 

the old work of Stallman [8], Cartwright [19] is the only author who studies in a qualitative 

way the thermal profiles derived from the existence of a horizontal water flow in a shallow 

semiconfined aquifer. However, his solution assumes the severe assumption of a constant 

horizontal thermal gradient along the aquifer. Actually, such a gradient emerges in the 

entrance region where a lineal temperature profile develops. Beyond this region, the ver-

tical temperature profile is lineal and does not depend on water velocity. 

Regardless of the temperature boundary conditions at the surface and at the bottom 

of the aquifer, the existence of horizontal flow with a given inlet temperature different 

from the others gives rise to a balance of advective and diffusive heat fluxes, determining 

a steady-state temperature field in a limited region of the aquifer. The characteristic hori-

zontal length is defined as the extent of the developed region of this profile. Our interest 

in this work is to study temperature–depth profiles within the characteristic length in 

which the influence of the water velocity can be appreciated and to search for the dimen-

sionless groups that rule the temperature profiles and look for simplified hypotheses that 

allow obtaining universal solutions [20]. Pi theorem [21] allows us to express these un-

knowns (characteristic length, temperature profiles, temperatures field, etc.), written in 

their dimensionless form, as a function of the dimensionless groups [22]. Once it has been 

verified that the set of dimensionless groups correctly determine the problem, the precise 

dependence between them is graphically adjusted through numerical simulations. As in 

many other recent works [23,24], dimensionless groups are formally derived from the di-

mensionless mathematical model which, in turn, is deduced by introducing dependent 

and independent, dimensionless and normalized variables (discriminated dimensional 

analysis). Using spatial discrimination ensures that the references used to set dimension-

less variables are different according to each spatial direction while normalization con-

fines the range of values of the variables to interval [0, 1]. Once the dimensionless groups 

of the problem have been established, they are verified by means of a set of cases in which 

it is proved that the dimensionless temperature patterns are identical for the same values 

of the dimensionless groups. Based on these results, a protocol is proposed to solve the 

inverse problem of estimating water velocity from experimental measurements. 
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2. Physical, Mathematical and Network Models 

Figure 1 shows the physical scheme of the problem as well as temperature and flow 

boundary conditions in the saturated aquifer. Water penetrates at the left vertical bound-

ary. The upper and lower horizontal surfaces are no-flow conditions. As regards temper-

ature, surface, bottom and left boundaries are first class conditions (Diritlech). The aquifer 

is large enough to satisfy the temperature profile being completely developed before the 

right limit, and in order to ensure that water leaves the aquifer with a temperature at the 

right boundary, a free condition (temperature at this edge does not affect temperatures 

within the domain) is imposed there. The origin of the domain is shown in Figure 1. The 

study area is delimited by the length L, a region in which the groundwater velocity has a 

single horizontal component of constant value. 

 

Figure 1. Physical scheme of the problem and boundary conditions. 

The velocity field is known, v(x, y) = vx,o. Thus, the governing equation is reduced 

to the expression for heat conservation, resulting from the local balance between diffusion, 

𝐣d = k ∙ T  (Fourier), advection, 𝐣c = ρe,wce,w𝐯T  and storage 𝐣𝐬 = ρece
T

t
  terms. The 

equation for the simultaneous flow of fluid and heat on Earth [7] is the governing equa-

tion: 

ρece

∂T

∂t
− k∇2(T) + ρe,wce,w𝐯∇(T) = 0 (1) 

In homogeneous, isotropic domains and rectangular geometry, Equation (1) is writ-

ten as 

k (
∂2T

∂x2
+

∂2T

∂y2
) − ρe,wce,w (vx,o

∂T

∂x
) = ρece

∂T

∂t
 

(2) 

The equations that establish the initial and boundary conditions complete the math-

ematical model. These are: 

T(x,y=H,t) = T1  (3) 

T(x,y=0,t) = T2 (4) 

T(x=0,y,t) = T3 (5) 
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∂T

∂x
|

x=L
= 0 (6) 

Although it is not relevant for a steady-state solution, the initial temperature (Tini) is 

assumed in the entire domain to simulate both transient and steady-state solutions. The 

mathematical model is simulated numerically using the free software Ngspice through a 

precise model based on the Network Simulation Method [25], a tool that has proven to be 

effective and reliable in many other problems of similar or greater complexity [26]. 

The “Network Simulation Method” has been used to carry out the numerical 

simulations necessary for the construction of universal curves. Instead of using 

commercial software, this numerical tool (computationally fast) has been chosen thanks 

to its ease of handling. The Network Simulation Method is a tool that allows the study of 

any process that can be determined by space-time partial derivative equations to which 

initial and boundary conditions must be added. The application of the method consists of 

two phases: first, elaboration of a network model and, second, simulation of the physical 

process by means of an appropriate electrical circuits software (NgSpice) that allows ob-

taining the solution of the network model [25]. For the elaboration of a network model, 

the space must be reticulated in elementary volume elements or cells. Differential equa-

tions (in finite differences) are applied to the elements, and the correspondence between 

variables of the physical problem and those of the network model is established. In this 

particular case, the electric current corresponds to the groundwater velocity and voltage 

to the temperature. 

Parameters that remain constant are defined: thermal conductivity, specific heats of 

water and of the water–soil matrix, geometry of the aquifer and horizontal groundwater 

velocity. For the largest number of simulations carried out, the number of cells was 200 

columns and 40 rows (8000 cells in total). The electrical circuit elements within the cells, 

as well as the electrical elements in the boundary conditions cells, are reflected in Figure 

2. The network model will be composed of resistors, capacitors, batteries and voltage gen-

erators. 
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Figure 2. Network models in elementary cell (a), cells of the ground surface (b), bottom of the do-

main (c), water inlet edge (d) and right edge of the domain (e). 

Spatial discretization of the governing equation for horizontal flow is: 

k [
1

∆x
(

∆T

∆x
|

x+
−

∆T

∆x
|

x−
)] + k [

1

∆y
(

∆T

∆y
|

y+

−
∆T

∆y
|

y−

)] − (ce,wρe,wvx,o

∆T

∆x
) − (ceρe)

dT

dt
= 0 (7) 
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On the other hand, finite difference equation is: 

(T)
i+

∆x
2

,j
− (T)i,j

(∆x)2

2km,x

+

(T)i,j − (T)
i−

∆x
2

,j

(∆x)2

2km,x

+

(T)
i,j+

∆y
2

− (T)i,j

(∆y)2

2km,y

+

(T)i,j − (T)
i,j−

∆y
2

(∆y)2

2km,y

− ρe,wce.wvx,o

(T)
i+

∆x
2

,j
− (T)

i+
∆x
2

,j

∆x
− (ρece)

dTi,j

dt
= 0 

(8) 

Each addend of Equation (9) can be considered as an electric current, which balance 

each other at the central node of the volume element. From (9), expressions of each pa-

rameter of the circuit elements are obtained: 

Rxl = Rxr =
(∆x)2

2 ∙ km,x

 (9) 

Ryu = Ryd =
(∆y)2

 2 ∙ km,y

   (10) 

Gc = ρe,wce,w

vx,oV((i, j)xT, (i + 1, j)xT)

∆x
 (11) 

The initial temperature of each volume element is set in the capacitors. The batteries 

located in the cells on the ground surface and in the cells at the bottom of the domain, as 

well as the cells on the left border (groundwater inflow), will generate a constant value 

voltage throughout the simulation. These voltages implement the Diritlech condition 

(constant temperature) at the boundaries. 

3. Preliminary Discussion 

Regarding the steady-state temperature field, by way of illustration, Figure 3 shows 

the solution patterns for four typical scenarios whose parameters are listed in Table 1. The 

temperature at the soil surface is constant for all of them, and, for simplicity, simple values 

are chosen for lengths and temperatures. These patterns confirm the more relevant aspects 

of the solution, such as the appearance of a characteristic length (for steady-state solutions 

in sufficiently extensive scenarios) in which the temperature–depth profiles depend, 

among other parameters, on groundwater flow velocity. The precise definition of this 

characteristic length will be established later. Beyond this length, on the one hand, the 

temperature profiles (T − y) are lineal, independent on time and water velocity. If this 

length is named lx,T
∗ , temperature–depth profiles develop at x < lx,T

∗ , and bend progres-

sively more the smaller x is compared to lx,T
∗ , that is, they bend as they approach the left 

edge of the groundwater inlet. On the other hand, the relative value of T3 compared to 

T1 and T2 determines the existence (or not) of inflections in temperature profiles within 

a small region close to the left boundary, seeming to weakly influence the value of the 

characteristic length. As will be seen later, in this small region, the diffusive and advective 

horizontal effects are comparable. It can be seen that inflections at the profiles emerge 

when T3 is within [T2, T1] (see Figure 3). 
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Figure 3. Patterns of the steady-state solution for scenarios of Table 1. Scenarios I and II (up) and 

Scenarios III and IV (down). 

In real aquifers, with depths of several meters and greater, the horizontal character-

istic length increases with the square of the thickness of the aquifer. This dependence will 

be derived later. 

Vertical profiles of temperature at x  = 2 m are shown in Figure 4 for these four sce-

narios. According to these results, while the profile is almost lineal for Scenario II, Scenario 

III provides a clearly bent profile with a weak inflection at a point closer to the surface due 

to |T3 − T1| <  |T2 − T1|. In Scenario I, curvature of the temperature profile is even more 

noticeable, and the inflection has disappeared because T3 = T1. Finally, Scenario IV shows 

a pronounced curvature with different concavity and no bending, since T3 is out of the 

range [T1, T2]. 
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Figure 4. Temperature profiles at x  = 2 m for scenarios of Table 1. 

Table 1. Parameters of typical scenarios whose patterns are shown in Figure 3. 

Scenario 
𝐓𝟏  

(°C) 

𝐓𝟑  

(°C) 

𝐓𝟐  

(°C) 

𝐤  

(cal s−1 m−1 °C−1) 

𝛒𝐞𝐜𝐞 

(cal/(m3 °C) 

𝛒𝐞,𝐰𝐜𝐞,𝐰 

(cal/(m3 °C) 

H 

(m) 

𝐯𝐱,𝐨 

(m/s) 

I 0 0 1 0.8 106 106 1 5∙10−6 

II 0 0.5 1 0.8 106 106 1 5∙10−6 

III 0 0.2 1 0.8 106 106 1 5∙10−6 

IV 0 2 1 0.8 106 106 1 5∙10−6 

Continuing with the aim of illustration, Figure 5 shows the horizontal temperature 

profiles of Scenarios I and III at five depths, y =
H

6
,

2H

6
,

3H

6
,

4H

6
  and 

5H

6
. To ensure that lx,T

∗ <

L, L = 10 m has been used in the simulations in this section, although some figures cut 

this length for a better graphical representation of the region where the temperature pro-

files develop. It is observed that, although the profiles are less steep near the surface, the 

temperature ranges in which they move are also of lesser value. 

Based on these results and assuming that the aquifers are extensive enough, in the 

sense that the horizontal diffusive effects are negligible with respect to advective effects, 

lx,T
∗   would be defined as the extension of the aquifer from which the dimensionless tem-

perature at the center line of the aquifer (y = H/2) reaches a significant percentage (95–

99%) of its steady-state value, (T1 + T2)/2. From Figure 5, for Scenario III with (T1 +

T2)/2  = 0.5, the characteristic lengths related to percentages 95 and 99% are: 

T =  0.950.5 = 0.475 °C,  lx,T (95%)
∗ = 2.1m  

T =  0.990.5 = 0.495 °C,  lx,T (99%)
∗ = 3.3m  

0
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0.2

0.3
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0.5
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1
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Figure 5. Steady-state, horizontal temperature profiles of Scenarios I (up) and III (down) at y =
H

6
,

2H

6
,

3H

6
,

4H

6
 and 

5H

6
. 

Other criteria to define  lx,T
∗   would be equally valid, for example, the distance at 

which the dimensionless, horizontal temperature gradient, on the line y = H/2, has a suf-

ficiently small value. Figure 6 shows this component of the gradient for Scenario III in 

which T3 ∈ [T1, T2]. In the figure, T/x has been depicted for five regularly distributed 

depths, y =
H

6
,

2H

6
,

3H

6
,

4H

6
  and 

5H

6
 m. The values of lx,T

∗   are, for T/x = 0.02 (1.15 °C/m), 

lx,T
∗   = 3.05 m, while for T/x = 0.01 (0.57 °C/m), lx,T

∗   = 3.55 m. 
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Figure 6. Values of T/x for Scenario III at y =
H

6
,

2H

6
,

3H

6
,

4H

6
  and 

5H

6
. 

Finally, for scenarios where L < lx,T
∗ , L itself instead of lx,T

∗   is the parameter that 

rules the temperature patterns of the problem. 

Let us now study the influence of horizontal diffusivity against advection to justify 

in most real cases the hypothesis of neglecting the former. The comparison between both 

effects can be made through the quotient between the diffusive and advective horizontal 

terms of Equation (2), k (
∂2T

∂x2)  and ρe,wce,w (vx,o
∂T

∂x
) , respectively. The dimensionless 

group that characterizes this ratio (a kind of Peclet number), the result of nondimension-

alizing and averaging over the domain of the aquifer bounded by lx
∗  (Bejan [27]), is 

diff−adv =  
k

ρe,wce,wvx,olx
∗  

 (12) 

Assuming the same order of magnitude for horizontal diffusion and advective ef-

fects, the order of magnitude of lx
∗  (which, in contrast to lx,T

∗ , does not depend on H) is 

given by: 

lx
∗   

k

ρe,wce,wvx,o

 (13) 

For the fluid to reach this length, a time value of ∗(s) =  
lx
∗

vx,o
 will be necessary. Below 

this time, diffusive effects (in the region x < lx
∗) predominate, while above this time ad-

vective effects (in the region x > lx
∗) predominate. 

Figure 7 shows the dependencies lx
∗ − log(vx,o)  and ∗ − log(vx,o). The horizontal 

diffusive effect will be negligible as long as lx
∗   is well below lx,T

∗   and at times when the 

temperature field reaches its steady-state value. For example, if 
k

ρe,wce,w 
 = 1∙10−6 m2/s and 

velocity is 10−5 m/s, typical values in many soils, from Figure 7, lx
∗   = 0.1 m and ∗ = 10,000 

s are values that allow us to neglect horizontal diffusivity. However, for a velocity of 10−7 

m/s, lx
∗  = 10 m and ∗ = 1157 days. 
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Figure 7. Dependences lx
∗ − log(vx,o)  and ∗ − log(vx,o). 

4. Dimensionless Characterization 

This means the search of the most precise dimensionless groups on which the 

unknowns of interest expressed in their dimensionless form depend. An analytical 

expression is derived for the characteristic length since this parameter depends on a single 

group. In contrast, the dimensionless temperature field depends on more than one group, 

thus requiring numerical simulation to establish this dependence graphically. 

4.1. Horizontal Characteristic Length 

In this section, using pi theorem [21], the relations between the dimensionless form, 

the unknowns of interest and independent dimensionless groups that can be formed with 

the physical and geometric parameters (as well as boundary conditions) will be deduced. 

There are several ways to determine the dimensionless groups of a problem. The most 

direct is to deduce them from the dimensionless equations (Sonin [28]). In addition to a 

deep knowledge of the physical phenomena involved in the problem, an accurate appli-

cation of dimensional analysis requires a correct choice of the dimensional basis and, in 

two-dimensional scenarios, the use of spatial discrimination [29]. 

Another more precise technique to derive the dimensionless groups is to work with 

the dimensionless mathematical model, that is, with governing equations and boundary 

conditions. It consists of defining dependent or independent variables in a dimensionless 

form, inserting them into the governing equations and deducing the coefficients that arise 

from the new equation. The independent ratios between these coefficients are the searched 

groups. However, to obtain the minimum and most accurate set of monomials, nondi-

mensionalization has to be carried out in its discriminated form (discriminated dimen-

sional analysis), which assumes that lengths, parameters and variables associated with 

different spatial directions have different dimensionless equations according to those di-

rections. 

The relevant variables, for the case of constant temperature at the aquifer surface that 

defines the steady-state temperature field in large aquifers, in which horizontal diffusivity 

can be neglected, are the set 〈H, vx,o, α〉. Introducing the normalized dimensionless varia-

bles T′, x′ and y′ (whose value ranges are approximately [0, 1], except for the case T3 >

max(T1, T2) for which T′ > 1), defined in the forms 

T′ =
T − T1 

T2 − T1

 (14) 

x′ =
x

lx,T
∗  

 (15) 
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y′ =
y

H
 (16) 

into the governing equation k (
∂2T

∂y2) − ρe,wce,w (vx,o
∂T

∂x
) = 0  yields the dimensionless 

equation: 

ky

(T2 − T1)

H2
 
∂2T′

∂y′2
− ρe,wce,wvx,o

(T2 − T1)

lx,T
∗

∂T′

∂x′
= 0 (17) 

or, re-arranging coefficients, 

lx,T
∗ ky

ce,wρe,wH2vx,o

 
∂2T′

∂y′2
−

∂T′

∂x′
= 0  (18) 

Therefore, the solution depends on the value of the dimensionless ratio 
lx,T
∗ ky

ce,wρe,wH2vx,o
=

lx,T
∗ m

H2vx,o
 (a kind of discriminated Peclet number), which becomes a dimen-

sionless group named lx,T
∗ , precisely the dimensionless form of lx,T

∗ . Since the equation 

constitutes a balance of addends, assuming that derivative terms 
∂T′

∂x′ and 
∂2T′

∂y′2  can be av-

eraged to unit by the normalized range of values of variables, the ratio 
lx,T
∗ m

H2vx,o
 must neces-

sarily be of the order of unity. Pi theorem states that lx,T
∗  1, or 

lx,T
∗  

H2vx,o

m

  (19) 

This expression can be written as an equality, 

lx,T
∗ = C1

H2vx,o

m

 (20) 

where C1 is a constant that can be deduced by single numerical simulation. lx,T
∗  will be 

defined as the distance from the left border to the point on the line y = H/2 where the 

dimensionless temperature has reached 95 (or 99)% of its steady-state value or the point 

for which T/x = 0.01 (or 0.02). If the dimensionless temperature has reached 99% of its 

steady-state value, C1 = 0.49. 

4.2. Dimensionless Temperature Field 

In relation to the temperature field and referring firstly to the case of constant tem-

perature at the ground surface, the existence of three boundary temperatures gives rise to 

the immediate appearance of a monomial that can be arbitrarily chosen as a dimensionless 

expression that contains these temperatures. Due to the great variety of cases that could 

arise in relation to values of T1, T2  and T3, the construction of universal temperature 

curves would be a very extensive task. We will stick to the cases that, we believe, are closer 

to real situations in which T3 has a value that is within interval [T1,T2]. The emergent 

monomial is defined in the form 

T1,T2,T3
= 

T3− T1

T2− T3
  (21) 

so that its values, always positive, are confined to [0, ] when T3 = T1, being infinite when 

T3 = T2. Defining the dimensionless temperature in the form T′(x, y) =
T− T1

T2− T1
, the steady-

state temperature field in the region of interest (0 ≤ x ≤ lx,T
∗ , 0 ≤ y ≤ H), according to pi 

theorem, is given by 

T′(x, y) =
T − T1

T2 − T1

=  f (
x

lx,T
∗ ,

y

H
,
T3 − T1

T2 − T3

)   (22) 

This expression can be particularized in horizontal and vertical profiles 

T′(x)vertical profile =
T − T1

T2 − T1

=  f (
x

lx,T
∗ ,

T3 − T1

T2 − T3

)  (23) 
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T′(y)horizontal profile =
T − T1

T2 − T1

=  f (
y

H
,
T3 − T1

T2 − T3

)  (24) 

According to these expressions, the vertical profiles can be depicted by universal 

curves (abacus) in which each graph, which represents T′ versus dimensionless depth 

y/H, is related with a specific value of x/lx,T
∗  (abacus parameter). Each abacus, in turn, 

would correspond to a different value of T1,T2,T3
. Similarly, the horizontal profiles would 

be collected in abacuses in which each graph, which represents T′ versus x/lx,T
∗ , would be 

associated with a specific value of y/H (abacus parameter), and each abacus would cor-

respond to a value of T1,T2,T3
. Figure 8 represents universal surfaces (Expression (23)) of 

the temperature field for which T1,T2,T3
 takes five typical values, T1,T2,T3

 = 0 for T3 =

T1, T1,T2,T3
 = 0.25 for T3 = (T2 − T1)/5, T1,T2,T3

 = 1 for T3 = (T2 − T1)/2, T1,T2,T3
 = 4 for 

T3 = 4(T2 − T1)/5 and T1,T2,T3
 =  for T3 = T2. Note that the surfaces corresponding to 

T1,T2,T3
 = 0.25 and T1,T2,T3

 = 4 can be obtained from each other by rotating 180 degrees 

about the horizontal axis and changing the vertical scale from 
T− T1

T2− T1
   to 1 −

T− T1

T2− T1
. 

 

Figure 8. Universal surfaces of the temperature field (Expression (23)) for T1,T2,T3
= 0, T1,T2,T3

=

0.25, T1,T2,T3
= 1, T1,T2,T3

= 4 and T1,T2,T3
= . 

Figure 9 shows universal vertical profiles for which T1,T2,T3
 takes five typical values 

T1,T2,T3
= 0, T1,T2,T3

= 0,25, T1,T2,T3
= 1, T1,T2,T3

= 4 y T1,T2,T3
= . 
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Figure 9. Universal vertical temperature–depth profiles (Expression (24)) for T1,T2,T3
= 0,T1,T2,T3

=

0.25, T1,T2,T3
= 1, T1,T2,T3

= 4 and T1,T2,T3
= . 

The use of an adequate manipulation of these abacuses allows a parametric study to 

be carried out to find the sensitivity of the solution to changes in the values of the physical 

parameters. The universal curves of Figure 9 implicitly contain this study. For example, 

let us define a specific scenario with known physical parameters (velocity, thermal con-

ductivity, specific heat and height of the aquifer). For this scenario, a particular character-

istic length is given by Equation (20). The profiles corresponding to each relative position 

x/lx,T
∗  are shown in Figure 9 (or Figure 10 for T3 = T2). If we double the thermal conduc-

tivity (retaining the value of the rest of physical parameters: velocity, specific heat and 

height of the aquifer), the characteristic length is reduced by half. Thus, each profile in 

Figure 9 moves leftwards to the curve 2(x/lx,T
∗ ). Therefore, the solution for the new con-

ductivity can be inferred by direct inspection of the new set of curves. 
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Figure 10. Location of the study area and location of measurement wells in front of Mar Menor 

(Google Earth Pro). 

In the same way, you can infer the influence of any other parameter by looking at 

Equation (20). Furthermore, it is seen that certain changes in one of the parameters have 

similar effects from the point of view of the parametric study as certain changes in others. 

So, doubling the thermal conductivity has the same effect as halving the velocity, doubling 

the height of the aquifer has the same effect as quadrupling the thermal conductivity (or 

dividing the velocity by four), etc. 

In summary, all the information related to the parametric study is collected in the 

universal solutions (abacus) of Figure 8. The shape of such curves reflects that the sensi-

tivity of the curves to each parameter can be observed by inspection. Small characteristic 

lengths, which are determined either by large thermal conductivities, small specific val-

ues, small velocities and small heights or a combination of these effects, make the solution 

more sensitive to changes in these parameters. In contrast, large characteristic lengths de-

termined by small thermal conductivities, large specific values, large velocities and large 

heights or a combination of these effects cause the curves of the abacus to close off each 

other. 

5. Inverse Problem and Application 

Firstly, we propose a protocol for the application of the inverse problem that allows 

estimating the water velocity flow from measurements of temperature–depth profiles. Af-

ter that, an application is developed. 

5.1. Inverse Problem Protocol 

To estimate groundwater horizontal velocity and temperature at the left border 

(groundwater inlet edge), the protocol of the inverse problem described below can be ap-

plied. 

Data that must be known for the application of the protocol are (a large number of 

measurements for locations x1 and x2 can be chosen): 

• Depth of the aquifer: H. 

• Thermal diffusivity: m. 

• Temperatures at the surface and at the bottom of the aquifer (T1  and T2). 

• Steady state, average temperature measured at position (x1, y1 = H/4): Tx1,H/4. 
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• Steady state, average temperature measured at position (x2 > x1, y1 = H/4): Tx2,H/4. 

• Steady state, average temperature measured at position (x1, y1 = H/2): Tx1,H/2. 

• Steady state, average temperature measured at position (x2 > x1, y1 = H/2): Tx2,H/2. 

• Steady state, average temperature measured at position (x1, y1 = 3H/4): Tx1,3H/4. 

• Steady state, average temperature measured at position ( x2 > x1 ,  y1 = 3H/4 ): 

Tx2,3H/4. 

The most unfavorable case, in which the temperature at the water inlet boundary to 

the domain (left boundary) is an unknown of the problem, is assumed. If temperatures 

T1, T2 and T3 were known, we would know directly which universal abacus to use, since 

T1,T2,T3
 would be known. 

The steps of the protocol of the inverse problem are the following: 

Step (1). Nondimensionalize temperatures  Tx1,H/4 , Tx1,H/2 , Tx1,3H/4 , Tx2,H/4  Tx2,H/2 , 

Tx2,3H/4 using expressions (25) to (30): 

Tx1,H/4
′ =

Tx1,H/4 −  T1

T2 − T1

 (25) 

Tx1,H/2
′ =

Tx1,H/2 −  T1

T2 − T1

 (26) 

Tx1,3H/4
′ =

Tx1,3H/4 −  T1

T2 − T1

 (27) 

Tx2,H/4
′ =

Tx2,H/4 −  T1

T2 − T1

 (28) 

Tx2,H/2
′ =

Tx2,H/2 −  T1

T2 − T1

 (29) 

Tx2,3H/4
′ =

Tx2,3H/4 −  T1

T2 − T1

 (30) 

Step (2). Find the set of universal vertical temperature–depth profiles in Figure 8 that 

best fit the six dimensionless temperatures. When the best-fit set of curves is found, T3 is 

obtained from T1,T2,T3
. 

Step (3). From the universal vertical temperature–depth profiles in Figure 8, x1
′ =

x1

lx,T
∗  

and x2
′ =

x2

lx,T
∗  are obtained. 

Step (4). Calculate the value of lx,T
∗ =

x2−x1

x2
′−x1

′. 

Step (5). Clear the value of velocity from Equation (21): lx,T
∗ = C1

H2vx,o

m
. 

5.2. Application in the Quaternary Aquifer–Mar Menor Interaction Scenario 

To verify the protocol of the inverse problem, it will be applied to a surface water–

groundwater interaction scenario. Discharges from the Quaternary aquifer (Campo de 

Cartagena) to the salty lagoon of the Mar Menor (SE of Spain) will be studied (Figure 10). 

Campo de Cartagena is a complex hydrogeological unit that occupies an approximate area 

of 1450 km2, of which 1200 km2 belongs to the Region of Murcia and the rest to the prov-

ince of Alicante (Valencian Community). The Quaternary aquifer, formed by clay, silt, 

local conglomerate and sand facies, has an approximate thickness of between 40 and 60 m 

and can reach 100 m at points near the coastline [30]. The Quaternary aquifer is a very 

important surface aquifer from an environmental point of view, since it is the main route 

of discharge of groundwater and therefore of anthropogenic nutrients (mainly of agricul-

tural origin) to the salty and coastal lagoon of Mar Menor [30–32]. 

Groundwater temperatures were recorded for approximately one month (26 full 

days from 27 January to 22 February 2022) every hour and in two wells separated by 519 

m (x2 − x1 =  519 m). The closest well to the coastline was 244 m from it. From the 
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temperature–depth profiles measured, the average temperatures necessary for the 

application of the inverse problem are reflected in Table 2. On the other hand, from the 

bibliography [11], average thermal diffusivity is m = 10−6 m2/s. 

Table 2. Measured temperatures in wells 1 (x1) and 2 (x2). 

Temperature Mean Value (°C) 

T1 17.45 

T2 22.12 

Tx1,H/4 19.93 

Tx1,H/2 21.50 

Tx1,3H/4 21.75 

Tx2,H/4 18.80 

Tx2,H/2 20.15 

Tx2,3H/4 21.15 

Applying step one of the inverse problem protocol, dimensionless temperatures re-

flected in Table 3 are obtained. 

Table 3. Dimensionless temperatures in wells 1 (x1) and 2 (x2). 

Temperature Value 

Tx1,H/4
′ 0.53 

Tx1,H/2
′ 0.87 

Tx1,3H/4
′ 0.92 

Tx2,H/4
′ 0.29 

Tx2,H/2
′ 0.58 

Tx2,3H/4
′ 0.79 

Substituting values from Table 3 into the sets of universal curves of Figure 9, it is 

found that the set of curves in which dimensionless temperatures best fit are those of the 

abacus with parameter T1,T2,T3
= . Therefore, T3 = T2 (see Figure 11). 

 

Figure 11. Application of step 2 of the inverse problem protocol. Triangles for dimensionless tem-

peratures in well 1 (x1) and points for dimensionless temperatures in well 2 (x2). 
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From Figure 11 (applying step three), x1
′ =

x1

lx,T
∗ = 0.25 and x2

′ =
x2

lx,T
∗ = 0.75. Apply-

ing step four: lx,T
∗ =

x2−x1

x2
′−x1

′ =
519 m

0.5
= 1038 m. Therefore, x1 = 259.20 m and x2 = 778.50 

m. 

Finally, the last step is to clear vx,o from Equation (21): lx,T
∗ = C1

H2vx,o

m
. 

Then, the horizontal component of groundwater discharge from the Quaternary aq-

uifer to the salty lagoon of Mar Menor is  vx,o =
mlx,T

∗  

H2C1
=

10−6m2/s ∙ 1038 m

(33.75 m)2 ∙ 0.49
= 1.86 10−6 m/s. 

Since it is the first time that groundwater velocity is obtained in the study area, to 

verify the results, the direct problem will be solved with the following input data (Table 

4). 

Table 4. Input data for direct problem. 

T1 (°C) 17.45 

T2 (°C) 22.12 

T3 (°C) 22.12 

m (m2/s) 1.00∙10−6 

H (m) 33.75 

L (m) 1300.00 

vx,o (m/s) 1.86 ∙ 10−6 

The results of the direct problem as well as the error are reflected in Table 5. 

Table 5. Measured temperatures in wells 1 (x1) and 2 (x2). 

Temperature Measured (°C) Direct Problem (°C) e% 

Tx1,H/4 19.93 19.31 3.21 

Tx1,H/2 21.50 20.73 3.71 

Tx1,3H/4 21.75 21.61 0.65 

Tx2,H/4 18.80 18.69 0.59 

Tx2,H/2 20.15 19.88 1.6 

Tx2,3H/4 21.15 21.02 0.62 

In view of these results, it can be said that velocity is correctly estimated. 

6. Contributions and Conclusions 

The dimensionless groups that rule the solution patterns of the coupled 2D problem 

of horizontal water flow and heat transfer in aquifers under constant temperature 

boundary conditions have been derived. The procedure to deduce these groups starts 

from the dimensionless form of the governing equations which, in turn, comes from the 

introduction of adequate and discriminated dimensionless variables in the mathematical 

model. From this arises a characteristic length that defines the region in which the 

temperature–depth profiles depend on horizontal velocity. The simple dependence 

between this length and the only group on which it depends allows us to derive a precise 

analytical formula for this unknown. Regarding the temperature profiles, these depend 

on several groups: the horizontal location relative to the characteristic length, the vertical 

location relative to the height of the aquifer and, for the case of three temperaures at the 

boundary conditions, on dimensionless groups formed by these temperatures. These 

complex dependencies are graphically represented by abacuses using numerical 

simulations. 

In addition, the expression that allows knowing the horizontal extension in which 

the diffusive and advective effects are comparable, as well as the time it would take for 

the fluid to travel that distance, has been obtained. This allows establishing the extent 
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beyond which the horizontal component of thermal diffusivity is negligible compared to 

the effect of advection. Furthermore, the horizontal temperature gradients are not 

constant at any depth but rather vary as we move away from the left border until a null 

value is reached. 

Based on previous results, particularly on the fact that steady-state temperature 

profiles only depend on the relative position of the measurement point in relation to the 

mentioned characteristic length, an inverse problem protocol is proposed. This protocol, 

which is easy to apply, allows estimation of water velocity flow from the experimental 

measurements of six average temperatures at regular depths y = H/4, y = H/2 and y =

3H/4  in two different horizontal locations. The inverse problem protocol uses 

dimensionless temperature–depth profiles as an auxiliary tool to determine the 

characteristic length and subsequently the groundwater velocity. An application of the 

inverse problem at the Quaternary aquifer of Mar Menor lagoon (Spain) allows us to 

deduce the discharge of groundwater into the lagoon from agricultural activities. 
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Nomenclature 

𝐂𝟏 Constant. 

𝐂𝐜 Capacitor connected to central node of the elementary cell. 

𝐜𝐞 Volumetric heat capacity of the soil–fluid matrix (Jm−3 k−1). 

𝐜𝐞,𝐰  Volumetric specific heat of the water (Jm−3 k−1). 

f Denotes function. 

𝐆𝐜 Current generator to implement flow rate. 

𝐇 Total depth of the domain (m). 

(𝐢, 𝐣)𝐓 Central node of the elementary cell. 

(𝐢, 𝐣)𝐱𝐓 Central node of the left edge of each elementary cell. 
(𝐢, 𝐣)𝐲𝐓 Central node of the right edge of each elementary cell. 

𝐣𝐜 Convection heat flux density (Jm−2s−1). 

𝐣𝐝 Diffusion heat flux density (Jm−2s−1). 

𝐣𝐬 Storage heat flux density (Jm−2s−1). 

𝐤 Thermal conductivity of the soil–fluid matrix (cal/(sm°C)). 

𝐋 Length of the aquifer (m). 

𝐥𝐱
∗  

Characteristic length along which the diffusive and advective effects are of 

the same order of magnitude (m). 

𝐥𝐱,𝐓
∗  Thermal characteristic length (m). 

𝐑𝐱𝐥 Resistor arranged in direction of the x-axis in the left half of the cell. 

𝐑𝐱𝐫 Resistor arranged in direction of the x-axis in the right half of the cell. 
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𝐑𝐲𝐝 Resistance placed in direction of the y-axis at the bottom of the cell. 
𝐑𝐲𝐮 Resistance placed in direction of the y-axis at the top of the cell. 

𝐭 Time (s). 

𝐓  Temperature (°C). 

𝐓𝟏  Temperature at the soil surface (°C). 

𝐓𝟐  Temperature at the bottom of the aquifer (°C). 

𝐓𝟑  Temperature at the left border (°C). 

𝐓𝐢𝐧𝐢 Initial soil temperature (°C). 
𝐓(𝐱) 𝐯𝐞𝐫𝐭𝐢𝐜𝐚𝐥 𝐩𝐫𝐨𝐟𝐢𝐥𝐞

′  Vertical dimensionless temperature profile. 

𝐓(𝐲) 𝐡𝐨𝐫𝐢𝐳𝐨𝐧𝐭𝐚𝐥 𝐩𝐫𝐨𝐟𝐢𝐥𝐞
′  Horizontal dimensionless temperature profile. 

(𝐓 − 𝐲)  Vertical temperature–depth profiles (°C). 

𝐯 Water flow velocity vector (m/s). 

𝐯 Fluid velocity (m/s). 

V Denotes voltage generator. 

𝐕𝐟 
Battery connected at central node of the bottom edge to fix a constant value 

temperature at the bottom of the aquifer. 

𝐕𝐥 
Battery connected at central node of the left edge to fix a constant value tem-

perature at the left boundary of the aquifer. 

𝐕𝐬 
Battery connected at central node of the top boundary to fix a constant value 

temperature at the surface of the aquifer. 

𝐯𝐱,𝐨 Horizontal flow velocity (m/s). 

𝐱, 𝐲 Spatial coordinates (m). 

𝛂 Thermal diffusivity of the soil–fluid matrix (m2/s), 𝛂 = 𝐤/𝛒𝐞𝐜𝐞. 

𝛂𝐦 𝛂𝐦  = 𝐤/𝛒𝐞,𝐰𝐜𝐞,𝐰 (m2/s). 

𝛁 Mathematical gradient operator. 

𝐝𝐢𝐟𝐟−𝐚𝐝𝐯 
Dimensionless group that characterizes the ratio between diffusion and ad-

vective effects over the aquifer domain lx
∗ . 

𝐥𝐱,𝐓
∗  Dimensionless monomial of horizontal characteristic length. 

𝐓𝟏,𝐓𝟐,𝐓𝟑
 Dimensionless temperatures monomial. 

𝛒𝐞 Wet bulk density of the soil–fluid matrix (kg/m3). 

𝛒𝐞,𝐰 Fluid density of the water (kgm−3). 

∗ Characteristic time (s). 

 Absolute value. 

[] To denote range of values. 

 Contained in. 

 Order of magnitude. 

 Symbol that encloses the list of relevant parameters of a problem. 

𝐱, 𝐲 Related to spatial directions x and y, respectively. 
𝐇

𝟐
, 

𝟑𝐇

𝟒
 Related to positions 

𝐇

𝟐
, 

𝐇

𝟒
within the aquifer. 

𝐱𝟏, 𝐱𝟐 Related to positions x1 and x2in the inverse problem protocol. 

(𝐢, 𝐣)𝐓 Related to central node of the elementary cell. 

* Denotes characteristic quantity. 

´ Dimensionless quantity. 
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