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Abstract: Component Labeling, as a fundamental preprocessing task in image understanding and
pattern recognition, is an indispensable task in digital image processing. It has been proved that it
is one of the most time-consuming tasks within pattern recognition. In this paper, a fast quantum
image component labeling algorithm is proposed, which is the quantum counterpart of classical local-
operator technique. A binary image is represented by the modified novel enhanced quantum image
representation (NEQR) and a quantum parallel-shrink operator and quantum propagate operator are
executed in succession, to finally obtain the component label. The time complexity of the proposed
quantum image component labeling algorithm is O(n2), and the spatial complexity of the quantum
circuits designed is O(cn). Simulation verifies the correctness of results.

Keywords: quantum image processing; image component labeling; local operator; Levialdi shrink-
ing operator

MSC: 81P68

1. Introduction

Image processing involves certain operations that help improve aesthetics and en-
hance comprehensibility of what the image conveys. This is widely used in environment,
agriculture, military, industry, and medical sciences to extract valuable information. Due
to the rapid development of information technology, data handled in image processing
have undergone exponential growth. Usage of classical image processing has declined and
therefore quantum image processing has emerged as a feasible way to solve the problems.
The coherent superposition characteristics of the quantum state and other unique quantum
mechanical principles are used for generating data processing capability in quantum image
processing, which can accelerate the process significantly compared to classical algorithms.

In the last two decades or so, a large number of productive techniques have emerged
for quantum image processing, which serves two purposes. The first is to construct models
for representation of the digital image mainly including qubit lattice [1], entangled image [2],
flexible representation of the quantum image (FRQI) [3], quantum log-polar image [4],
a novel enhanced quantum representation of digital images (NEQR) [5], and Quantum
Boolean image processing [6], a simple quantum representation of infrared images (SQR) [7]
and some extensions from FRQI or NEQR [8–16]. The other is applications based on the
above which vary with types of representation, such as geometric transform [17–19],
image scaling [20–23], image scrambling [24,25], image segmentation [26–29], image edge
extraction [30–35], image matching [36–38], image watermarking [39,40], and so on.

Although many issues are studied by researchers, as mentioned above, quantum
image processing is still an emerging field and, compared with classical image processing,
it is still in its infancy. To the best of our knowledge, image component labeling has not yet

Mathematics 2022, 10, 2718. https://doi.org/10.3390/math10152718 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10152718
https://doi.org/10.3390/math10152718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0014-2095
https://doi.org/10.3390/math10152718
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10152718?type=check_update&version=2


Mathematics 2022, 10, 2718 2 of 18

been extended to the quantum imaging processing domain. Image component labeling is
the most fundamental preprocessing required for image understanding, pattern recognition,
and computer vision. By use of the labeling operation, a unique label is assigned to each
connected region so that higher-level operations can process different regions separately. In
some applications, image component labeling is still an active area of research in classical
image processing, which has been proved to be one of the most time-consuming tasks in
pattern recognition [41]. The parallel processing characteristic is the great advantage of
quantum computation, which is one feasible way to accelerate image component labeling.

This paper proposes a fast quantum image component labeling algorithm based on
a modified NEQR representation model for binary images, a quantum counterpart of
classical local-operator techniques [42]. The quantum image component labeling algorithm
consists of three main steps. Firstly, a binary image is represented by the quantum version
using the modified NEQR model. Secondly, all pixels of the image are simultaneously
worked upon by the quantum parallel-shrink operator several times until each black pixel
changes to white, and the connectivity relations are reserved during the processing. Finally,
the quantum label-propagate operator is executed on each pixel to restore the pixels with
changed colors and each pixel assigns different numbers to different connected areas at
the same time. The process is in reverse order to the image generated by the quantum
parallel-shrink operations.

The rest of the paper is organized as follows. Section 2 briefly introduces classical
local-operator techniques, giving a detailed example specifying how to operate the binary
image to obtain the labels for the connected area. The purposed quantum version of
the local-operator technique, as well as circuit design, is described in Section 3. Section 4
analyzes the circuit complexity. Simulation results based on the classical computer’s Python
software are given in Section 5. Finally, the conclusions are drawn in Section 6.

2. Local-Operator Technique

A connected region or component in a binary image is a maximal connected set of
black pixels. The image component labeling algorithm assigns a unique label to each
connected region in the image. Thus, in the labeled image, any two black pixels have the
same label if and only if they lie in the same connected region. Local-operator techniques
involve two types of local operations used for image region labeling: Parallel-shrink and
Label-propagate. The two operators use local information from the neighborhood of a pixel
to determine its new value.

2.1. Basic Definitions

The following basic definitions constitute some of the concepts required for Local-
operator techniques [42]. Assume black pixels have value 1 and white pixels have value 0.
Let a ∈ {0, 1}X denote the source binary image on the point set X = {0 ≤ i ≤ n, 0 ≤ j ≤ m}
with a(i, j) being the value at pixel p(i, j). Two pixels are said to be neighbors if they share
one edge, one vertex, or both. The pixels are chosen to be squares, and then a pixel may
have either 4 or 8 neighbors in terms of edges or both edges and vertices. Two pixels
p(i0, j0) and p(i1, j1) are called 4-neighbors if |i0 − i1| + |j0 − j1| = 1 and 8-neighbors if
max{|i0 − i1|, |j0 − j1|} ≤ 1. Let C be the connectivity relation defined on an image as follows:
for all pairs of pixels, p, q ∈ a if and only if p and q are both black and are connected by a
path in a. The internal distance between two black pixels is defined as the length of a shortest
4- or 8-neighbor path connecting them within the component. The internal diameter of a
connected component is defined as the maximum of lengths of all internal distances among
all pairs of pixels within the component. Local-operator techniques use a part of 8-neighbor
components of a given n×m binary image. The parallel-shrink operator uses neighborhood
Ns shown in Figure 1 which is the set of points {p(i, j), p(i, j + 1), p(i + 1, j), p(i + 1, j + 1)},
and the label-propagate operator uses neighborhood Np (Figure 1), which is the set of points
{p(i, j), p(i, j− 1), p(i− 1, j), p(i− 1, j− 1)}.
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2.2. The Parallel-Shrink Operator

The parallel-shrink operator ϕs was first designed by Levialdi [43] and it used the
Heaviside operator H defined on Ns neighborhoods, such that, if a′ = ϕs(a), then:

a′(i, j) = H(H(a(i, j) + a(i, j + 1) + a(i + 1, j)− 1) + H(a(i, j) + a(i + 1, j + 1))) (1)

where H is the Heaviside operator defined by H(t) = 0 for t ≤ 0 and H(t) = 1 if t > 0.
Since a is a binary image, it is easy to express ϕs using the logic operations ∧(and) and
∨(or) as follows:

a′(i, j) = (a(i, j) ∧ (a(i, j + 1) ∨ a(i + 1, j) ∨ a(i + 1, j + 1))) ∨ (a(i, j + 1) ∧ a(i + 1, j)) (2)

The parallel-shrink operator shrinks the components toward the top left corner of
the bounding rectangles of connected components. The two important properties of the
shrinking procedure are as follows:

1. No connected component becomes disconnected.
2. No two disconnected components become connected in any step.

A component with an internal diameter r will shrink to a single black pixel after
r− 1 shrinking steps, and then disappear in the next shrinking step. After each shrinking
operation, a different image is obtained and the result of applying the shrinking operation
y times to the original image is called partial result y. Thus, we have a sequence of images
ay, ay−1, · · · , a0, a0 representing the initial binary image.

2.3. The Label-Propagate Operator

The label-propagate operators are applied in the reverse order to the images generated
by the parallel-shrink operations. Suppose at a certain time of the label-propagate operator,
black pixels of ar are labeled with the correct labels and the labels can be used to label the
black pixels of ar−1. The label-propagate operator then continues to label the black pixels
until the image returns to the initial image a0.

Let l be a global variable that saves the maximum label in the image, the initial number
is 0, and lr(i, j) is the label of pixel p(i, j) in ar. The parallel-shrink operator ϕp is defined
on Np neighborhoods, such that, if lr = ϕp(lr+1), then:

lr+1 =


lmaxr+1(i, j) if ar(i, j) = 1 and lmaxr+1(i, j) 6= 0

l + 1 if ar(i, j) = 1 and lmaxr+1(i, j) = 0

0 otherwise

(3)

where lmaxr+1 = lr+1(i, j) ∨ lr+1(i, j− 1) ∨ lr+1(i− 1, j) ∨ lr+1(i− 1, j) ∨ lr+1(i− 1, j− 1),
∨ is a bit-wise logic or operation.

Note that, first, we must ensure that labels of the four neighbors for whom the value is
not zero on Np remain the same after Equation (3) is executed, then:

lr(i, j− 1) = lr(i, j) i f ar(i, j− 1) = 1

lr(i− 1, j) = lr(i, j) i f ar(i− 1, j) = 1

lr(i− 1, j− 1) = lr(i, j) i f ar(i− 1, j− 1) = 1

(4)
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Second, we should backfill the value 1 of pixels based on partial result y during
propagating.

2.4. A Simple Example of the Local-Operator Technique

In this subsection, we give a simple example to explain how the label-propagate
operator functions. The binary image consists of two connected regions or components as
shown in Figure 2a, and the maximum internal diameter of two connected regions is 3. The
detailed process is described below.
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Phase 1 Preparation: When every pixel has its Ns and Np neighbors, the original
image is extended by a 1-pixel outer border that pads the border of the image with white.
The white pixels (0 value) are ignored in the board so that we can focus better on changes
in the black regions (1 value), as shown in Figure 2b.

Phase 2 Parallel shrinking: In Phase 2, the parallel-shrink operator, (1) or (2), is
performed on every pixel simultaneously. Since the maximum value of the internal diameter
of the two connected regions is 3, the operator would be applied three times, and then all
pixels of the image will change to 0 and that completes Phase 2. Figure 2c–e depict the
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performance process. In Figure 2c–e, we only show the pixels that were changed using the
red dotted box.

Phase 3 Label propagating: As mentioned before, label propagating is a reverse-order
process, so Equations (3) and (4) are applied for the same number of times as Phase 2. The
process order is indicated in Figure 2f–h using the left arrow, and the purple dotted boxes
are used for marking the label change. In Figure 2h, p(1, 1), p(2, 5), and p(3, 4) are labeled
with different numbers based on (3) at the same time. We use the row–column criterion
to label the pixels. In Figure 2f, serial numbers of the pixels that have been labeled are
represented in the upper left corner box, p(1, 2), p(2, 1), p(3, 5), p(4, 4) need new labels
based on Equation (3), and p(2, 5) needs a change of the labeled number based on Equation
(4) to keep consistent with p(3, 5)’s Np neighbors. In Figure 2f, the last two pixels, p(2, 2)
and p(4, 5), are labeled, which means that label propagating is finished, and two different
label numbers are obtained.

The example shows that the local-operator technique is a parallel method that is
performed simultaneously on every pixel, so it only takes O(n) time and is a type of fast
image component labeling method.

3. Quantum Version of the Local-Operator Technique

In this section, a series of specific quantum circuits are designed to realize the local-
operator technique.

3.1. Modified NEQR Model Representation of a Binary Image

The NEQR is a deterministic image retrieval model that facilitates the operations on
an image, so we modified the model to represent the quantum image as required [5]. In the
modified model, one qubit sequence is employed for storing the position information on
the Cartesian coordinate system and another sequence represents the information required,
including color, number of partial results, and label number. Two entangled qubit sequences
are in superposition states.

The binary image with size 2n × 2m can be represented by modified NEQR as the
following equation:

|I〉 = 1√
2m+n ∑2m−1

Y=0 ∑2n−1
X=0 | f (Y, X)〉 ⊗ |YX〉

= 1√
2m+n ∑2m−1

Y=0 ∑2n−1
X=0 |LPB〉 ⊗ |YX〉

(5)

|YX〉 = |Y〉|X〉 = |YmYm−1 · · ·Y0〉|XnXn−1 · · ·X0〉

|LPB〉 = |L〉|P〉|B〉 =
∣∣LjLj−1 · · · L0

〉
|PiPi−1 · · · P0〉|B0〉

(6)

where |YX〉 address qubits represent the position information, X is row number, Y is
column number, |LPB〉 work qubits represent the computation information, B is color, P is
number of partial results, L is label number, and Yi, Xi, Li, Pi, B0 ∈ {0, 1}.

A quantum circuit equivalent to Equation (5) can be used to prepare the initial im-
age state. Figure 3 is an example that presents the quantum circuit of Figure 2b, the
address qubits are entangled using six Hadamard gates, and the information circuit of two
connected regions are in dotted boxes.

3.2. Basic Quantum Functional Circuits

To realize the complex quantum circuit, a series of quantum functional operation
modules are prepared for local-operator, including address shift operation module, logic
operation module, assignment operation module, compare operation, full addition module,
and full subtraction module.



Mathematics 2022, 10, 2718 6 of 18

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 20 
 

 

qubits are entangled using six Hadamard gates, and the information circuit of two 
connected regions are in dotted boxes. 

 
Figure 3. The quantum circuit of Figure 2b. 

3.2. Basic Quantum Functional Circuits 
To realize the complex quantum circuit, a series of quantum functional operation 

modules are prepared for local-operator, including address shift operation module, logic 
operation module, assignment operation module, compare operation, full addition 
module, and full subtraction module. 

3.2.1. Address Shift Operation Circuits 
It is an important operation for a large number of quantum algorithms to obtain the 

neighborhood information [34,35]. Shift transformation is a geometric operation that can 
be used to shift the whole image and it skillfully helps us to obtain the information of 
every pixel’s adjacent information simultaneously. For example, make a one-unit shift 
right for an image, the pixel ( , )p x y  will be transformed to ( 1, )p x y+  and the value 
( 1, )a x y−  can be visited. Shift − and + are defined in Equations (7) and (8). When it is 

applied on x , the image moves left and right, and when it is applied on y , the image 
moves up and down.  

2 1 2 1

1 1

1( ) ( , ) ( )
2

m n

x xY Xm n
S I f Y X S YX− −

± ±= =+
= ⊗   

2 1 2 1

1 1

1 ( , ) ( 1)mod2
2

m n
n

Y Xm n
f Y X Y X− −

= =+
= ⊗ ±   

(7) 

2 1 2 1

1 1

1( ) ( , ) ( )
2

m n

y yY Xm n
S I f Y X S YX− −

± ±= =+
= ⊗   

2 1 2 1

1 1

1 ( , ) ( 1)mod2
2

m n
n

Y Xm n
f Y X Y X− −

= =+
= ⊗ ±   

(8) 

Based on the above analysis, Equations (7) and (8) are equivalent to Equations (9) and 
(10), respectively. 

2 1 2 1

1 1

1( ) ( , ) ( )
2

m n

x xY Xm n
S I f Y X S YX− −

± ±= =+
′= ⊗   (9) 

Figure 3. The quantum circuit of Figure 2b.

3.2.1. Address Shift Operation Circuits

It is an important operation for a large number of quantum algorithms to obtain the
neighborhood information [34,35]. Shift transformation is a geometric operation that can
be used to shift the whole image and it skillfully helps us to obtain the information of every
pixel’s adjacent information simultaneously. For example, make a one-unit shift right for
an image, the pixel p(x, y) will be transformed to p(x + 1, y) and the value a(x− 1, y) can
be visited. Shift − and + are defined in Equations (7) and (8). When it is applied on x, the
image moves left and right, and when it is applied on y, the image moves up and down.

Sx±(|I〉) = 1√
2m+n ∑2m−1

Y=1 ∑2n−1
X=1 | f (Y, X)〉⊗Sx±(|YX〉)

= 1√
2m+n ∑2m−1

Y=1 ∑2n−1
X=1 | f (Y, X)〉 ⊗ |Y〉|(X± 1)mod2n〉

(7)

Sy±(|I〉) = 1√
2m+n ∑2m−1

Y=1 ∑2n−1
X=1 | f (Y, X)〉⊗Sy±(|YX〉)

= 1√
2m+n ∑2m−1

Y=1 ∑2n−1
X=1 | f (Y, X)〉 ⊗ |(Y± 1)mod2n〉|X〉

(8)

Based on the above analysis, Equations (7) and (8) are equivalent to Equations (9) and (10),
respectively.

Sx±(|I〉) =
1√

2m+n ∑2m−1
Y=1 ∑2n−1

X=1

∣∣ f (Y, X′)
〉
⊗Sx±(|YX〉) (9)

Sy±(|I〉) =
1√

2m+n ∑2m−1
Y=1 ∑2n−1

X=1

∣∣ f (Y′, X)
〉
⊗Sy±(|YX〉) (10)

where X′ = (X∓ 1)mod2n and Y′ = (Y∓ 1)mod2n.
For a two-dimensional digital image, Figure 4 is an example for Sx±, and Sy± is similar

to Sx±. We call the shift transformation circuit an address shift operation circuit just like
the address-of operator in classical programming.
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3.2.2. Logic Operation Circuit

In reversible computing, the TOFFOLI gate is universal gate, and it can be used for
simulating classical irreversible standard gates with ancilla qubits. Figure 5 is the circuit of
the necessary logic operations for computation of Equations (2) and (3) for convenience,
and the inputs and results are connected by black blocks. The following figures are used
for the same notation.
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3.2.3. Control Assignment Operation Circuit

Assignment operation is the most basic statement in classical programming. To achieve
the function, we design the control assignment operation circuit (Figure 6). The circuit
consists of two parts, the first part is shown in a dotted block that is to clear the original data
of the quantum wires |X〉 by using a group of swap gates, the original data are saved in the
ancilla qubits. The second part assigns the value of |Y〉 to |X〉 using a group of CNOT gates.
The whole circuits are controlled by using a CNOT gate, such that, if the control wire is 1,
then assignment operation is executed. As described, the designed circuit is a reversible
circuit, and, by using ancilla qubits, both |X〉 and |Y〉 are stored during the operation.
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3.2.4. Compare Operation Circuit

The compare operation circuit can be used to compare two n-qubits sequences |X〉 and
|Y〉 illustrated in Figure 7 [32], where |X〉 = |Xn−1Xn−2 · · ·X1X0〉, |Y〉 = |Yn−1Yn−2 · · ·Y1Y0〉,
Xi, Yi ∈ {0, 1}. The output two-qubit |e1e0〉 can be used to represent the result of comparison:
if e1e0 = 10, then X > Y; if e1e0 = 01, then X < Y; if e1e0 = 00, then X = Y.
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3.2.5. Full Addition Circuit

Full adder is an adder with carry, a common arithmetic unit in various algorithms. In
this paper, 1-bit full addition circuit is composed of quantum CNOT and CCNOT gate, and
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n-bit full addition circuit is a cascade of 1-bit full addition circuit as shown in Figure 8 [44].
|Ci−1〉 is the (i − 1)th carry qubit, |ai〉 is the ith augend number, |bi〉 is the ith addend
number, |Ci〉 is the ith carry qubit, and |Si〉 is the sum of a + b. The relationships among
|ai〉, |bi〉, |Ci−1〉, |Ci〉 and |Si〉 are given by

|Si〉 = |ai ⊕ bi ⊕ Ci−1〉 (11)

|Ci〉 = |aibi + (ai ⊕ bi)Ci−1〉 = |aibi ⊕ (ai ⊕ bi)Ci−1〉 (12)
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3.2.6. Full Subtraction Circuit

The full subtractor circuit is similar to full addition circuit, the n-bit full subtraction
circuit is a cascade of the 1-bit full subtraction circuit, as shown in Figure 9 [44]. |Bi−1〉 is the
(i− 1)th borrow qubit, |ai〉 is the ith minuend number, |bi〉 is the ith subtrahend number,
|Bi〉 is the ith borrow qubit, and |Di〉 is the ith qubit of difference a− b. The relationships
among |ai〉, |bi〉, |Bi−1〉, |Bi〉, and |Di〉 are given by

|Di〉 = |ai ⊕ bi ⊕ Bi−1〉 (13)

|Bi〉 = |biBi−1 + ai(bi + Bi−1)〉 = |biBi−1 ⊕ ai(bi ⊕ Bi−1)〉 (14)
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3.3. Implementing Quantum Image Component Labeling

The entire workflow of the proposed procedure can be accomplished in four steps.
First, the classical color digital image is converted into binary format and a 1-pixel outer
border as described in Section 2.4 is added. Next, the quantum image |I〉 is prepared as
the input image using a modified NEQR model. The quantum circuit is similar to Figure 3.
Then, the quantum counterpart of parallel shrinking is executed repeatedly until color value
of all pixels is zero in the image. Finally, the quantum counterpart of label propagating is
executed repeatedly for labeling regions or components in the image, and the number of
executions is the same as in Step 3. Similar to its classical counterpart, the most important
steps of quantum image component labeling are quantum parallel shrinking and quantum
label propagating.

3.3.1. Quantum Parallel Shrinking

Quantum parallel shrinking is to repeat the following three steps until all pixels in the
image are zero where pixel zero is the background color.

In the first step, neighborhood Ns is obtained through address shift operation circuits,
the designed circuit is shown in Figure 10, and the color information is saved in the ancilla
qubits. Note that the state of |I〉 should return to the initial value after using the address
shift operation circuit four times, for later use.
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Figure 10. Obtaining of information of Ns.

The second step, the Levialdi operator, is implemented through Logic operation
circuits, and the designed circuit is shown in Figure 11. The number of ancilla qubits used
is the same as the number of Logic operators.
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Figure 11. Execution of the Levialdi operator.

The third step, the number of partial results, is stored in |P〉 through the full addition
circuit, and the designed circuit is shown in Part 3 of Figure 12. If |result〉 = |0〉 and
|B〉 = |1〉, then P = P + 1. Fourthly, the value of pixels |B〉 is updated through CNOT gate
(Part 4 of Figure 12). Finally, the number of loops i = i + 1 through the full addition circuit
is shown in Part 5 of Figure 12. The circuit of Equation (2) is shown in Figure 12.
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3.3.2. Quantum Label Propagating

Quantum label propagating is to repeat the following four steps until the manipulated
image becomes the original image.

The first step, neighborhood Np, is obtained through address shift operation cir-
cuits, the designed circuit is shown in Figure 13, and label numbers |Li〉 are saved in the
ancilla qubits.
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The second step, the computation of lmax, is implemented through Logic operation
circuits, and the designed circuit is shown in Figure 14.
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Figure 14. The computation of lmax.

In the third step, the global variable i − 1 and Equation (3) are implemented through
the designed circuit shown in Figure 15. The condition of Equation (3) is realized in part 1,
|Pi〉, and |i〉 as input to comparer CM1, and Pi = 1 means that the color of the pixel
changes from 1 to 0, so Pi−1 = 1 is equivalent to a(i, j) = 1. Comparer CM2 is used to
determine if lmaxi = 0. If Pi−1 = i and lmaxi = 0, part 2 is executed, the global variable
l = l + 1, then assign l to li−1(i, j) using control assignment operator AO. If Pi−1 = i and
lmaxi 6= 0, part 3 is executed, and the control assignment operator AO is used to implement
li−1(i, j) = lmaxi.

In the fourth step, Equation (4) is implemented through the designed circuit shown
in Figure 16. li−1(i, j) is stored in ancilla qubits using CNOT gate in part 1. In part 2,
li−1(i, j− 1) is obtained using address shift operator SY−1, the condition of ai−1(i, j− 1) is
realized using comparer CM, and then equation lr(i, j− 1) = lr(i, j) is implemented using
control assignment operator AO. Part 3 and part 4 use the same circuits as part 2 to achieve
the same assignment function. In part 5, the initial state is restored.
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4. Quantum Circuit Complexity Analysis

Section 2 introduced the classical local-operator technique, label propagating, and
parallel shrinking executed the same number of times, depending on the Manhattan
diameter of the largest component, so its time complexity is just O(n). Thanks to Levialdi’s
pioneering work, the classical local-operator technique is much faster than scan type
algorithms O(n2) [41].

In this section, we focus on the quantum circuit complexity. The time complexity
depends on the number of elementary gates used. The elementary gates include the NOT
gate, Hadamard gate, CNOT gate, and 2 × 2 unitary operator. The time complexity of
elementary gates is 1. The spatial complexity mainly refers to the ancilla qubits employed
in the circuits.

4.1. Time Complexity

From [45], one Toffoli gate can be further approximately simulated by six CNOT gates
and [46] points out that an n-controlled NOT (n-CNOT) gate is equivalent to 2(n− 1) Toffoli
gates and 1 CNOT gate. One SWAP gate is equivalent to three CNOT gates.

Section 3.2 introduced six basic quantum functional circuits, and label propagating
and parallel shrinking circuits are composed of the functional circuits. One address shift
operation circuit costs the time complexity of O(n2). Logic operation ∧ is one Toffoli gate,
and the time complexity is O(6). Logic operation ∨ needs five NOT gates and one Toffoli
gate, and the time complexity is O(11). Control Assignment Operation needs 2n SWAP
gates and n Toffoli gates, and the time complexity is O(6n + 6n) = O(12n). Compare Oper-
ation needs 4 Toffoli gates and no more than 4n n-CNOT gates, and the time complexity is
O(24+ 4n× (2(n− 1))) ≈ O(n2). The 1-bit full addition circuit needs two Toffoli gates and
two CNOT gates, and the n-bit full addition circuit needs (n− 1) 1-bit full addition circuit,
so the n-bit full addition circuit’s time complexity is O((n− 1)× (12 + 2)) = O(14n− 14).
The 1-bit full subtractor circuit needs two NOT gates, four CNOT gates, and two Toffoli
gates, the n-bit full subtractor circuit needs (n− 1) 1-bit full subtractor circuits, and the time
complexity of the n-bit full subtractor circuit is O((n− 1)× (2 + 4 + 12)) = O(18n− 18).

Considering a 2n× 2m binary image, n > m, the time complexity is analyzed as follows:

4.1.1. Quantum Parallel Shrinking

From Figures 10 and 11, the quantum parallel shrinking circuit is composed of four
address shift operation circuits, three Logic operation ∧, two Logic operation ∨, and four
CNOT, so the time complexity is O(4n2 + 18 + 2× 11 + 4) ≈ O(4n2).

4.1.2. Quantum Label Propagating

From Figures 13–15, the quantum label propagating circuit is composed of four address
shift operations, four Logic operation ∧, one n-bit full subtractors, two compare operation,
one n-bit full addition circuit, and two assignment operations, so the time complexity is:

O(4n2 + 24 + (18n− 18) + 2n2 + (14n− 14) + 24n) = O(6n2 + 56n− 8) ≈ O(6n2)

According to the above analysis, time complexity of the proposed quantum image com-
ponent labeling algorithm is O(10n2) ≈ O(n2), which is only the second-order polynomial
function of image size.

4.2. Spatial Complexity

Table 1 shows that the number of ancilla qubits in basic quantum functional circuits is
a linear function of image size. Therefore, ancilla qubits of the proposed quantum image
component labeling algorithm is also a linear function of image size. That is, the spatial
complexity of the quantum circuits designed in this paper is O(cn).
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Table 1. Number of ancilla qubits used by the basic quantum functional circuits.

No. Function Ancilla Qubits

1 Address Shift Operation Circuit 0
2 Logic Operation Circuit 1
3 Control Assignment Operation Circuit n + 1
4 Compare Operation Circuit 2n
5 Full Addition Circuit 2n + 1
6 Full Subtraction Circuit 2n + 1

Although quantum complexity is discussed, lots of quantum algorithms still can-
not be applied to the quantum computer or a quantum simulator. Quantum computers
and quantum simulations are in their infancy, quantum computing will be limited to
about 10 qubits in quantum computer, and a quantum simulator can only operate at most
30 qubits. LaRose [47] has given a detailed explanation of quantum software platforms.
Therefore, in the next section, we give the use of matrix calculation to complete the algo-
rithm simulation, which is also a common practice at present.

5. Simulation on Classical Computer

This section describes simulations of the quantum image component labeling algo-
rithm on a classical computer, while quantum computers are currently not at hand. The
simulations were run on a classical computer with Inter (R) Core (TM) i7-7500U @2.70 GHz
8.0 GB RAM and 64-bit operating system. The simulations are based on linear algebra
with complex vectors as quantum states and unitary matrices as unitary transforms with
calculations performed using Python 3.9.

In order to compare with classical algorithms, YACCLAB [48] (Yet Another Connected
Components Labeling Benchmark) is used, which is an open-source C++ benchmarking
framework for component labeling. YACCLAB allows researchers to test classical com-
ponent labeling algorithms under the same environment and with the same collection of
datasets, which provides a rich and varied dataset that includes both synthetic and real
images and lots of well-written programs for classical algorithms.

In the experiments, the library Boost.python is used for Python calling C++, and the
quantum image component labeling algorithm is compared with CT [49] (Contour Tracing
approach), SAUF [50] (Scan plus Array-based Union-Find algorithm), and NULL, which
are three classical component labeling types in YACCLAB. The NULL is a fake algorithm
that performs the basic assignment operation defining a lower bound limit of the execution
time. The experimental results (Figure 17) show that the proposed algorithm is better than
the two classical algorithms, and the execution time is the average time for labeling on the
image dataset.

To visually present the result of the proposed algorithm, the two images in traffic
scenarios are used for testing. The first image is a traffic sign (Figure 18), the size of the
image is 256 × 265, the second image (Figure 19) is the license plate held by the author,
the size is 654 × 220. In the experiment, we used different colors to distinguish different
components. The traffic sign and the license plate have execution time of 0.21 ms and
0.26 ms, respectively. Two tests in the experiment verify the correctness of the quantum
image component labeling algorithm in this paper.
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6. Conclusions

In recent years, with the sharp increase in image data processing, the problem of real-
time processing has become a limitation in classical image processing. An image component
labeling algorithm is an important pre-processing operation in many image processing
algorithms. However, in quantum image processing, component labeling algorithm has
not been reported in extant literature. In this paper, we develop a quantum version of the
image component labeling algorithm which makes full use of quantum parallelism. Firstly,
the modified NEQR model is used to represent the information of binary image. Secondly,
basic function circuits are prepared. Thirdly, the quantum circuits of parallel shrinking and
label propagating are designed by using the basic function circuits. The purposed circuits
can process information of all the pixels simultaneously, which can improve the efficiency
of image preprocessing.

Quantum image processing applications have developed only in recent years. The
results obtained in this paper could be used in more quantum image processing algorithms.
In the future, we will be working to develop new quantum image analysis algorithms based
on the quantum component labeling algorithm, especially in the fields of transportation,
logistics, and robot navigation.
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