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Abstract: Heat exchangers are predominantly used in the industries of production, manufacturing,
power, oil and gas, petroleum, and cooling solutions. The competence of the heat exchanger is
optimized through active and passive augmented techniques. The current study revolves around the
performance evaluation of Novel Para winglet tape for flow and friction characteristics. Turbulence
flow properties from Re of 30,000-to-6000 were explored for three different inclinations and pitches,
respectively. Experimental and numerical solutions are derived to showcase the flow behavior over
Para winglet tape inserts in the double pipe heat exchanger. Appreciable results were obtained in
enhancing the Nusselt number (Nup) for a better heat transfer enforcement through the DEX. All
case studies also increased when compared to the smooth pipe. Experimentally, the maximum Nu
and Nusselt number ratio was observed to be 398.23 and 5.05 times over the plain tube. Similarly, the
maximum friction factor and its ratio were observed to be near 0.33 and 8.89 times over the plain tube.
Finally, the maximum POI of 2.68 to 2.37 was achieved with 20◦ inclinations. The experimental and
numerical outcomes of Para winglet tape with the higher inclination and shorter pitch were found to
be best out of the others.

Keywords: heat exchangers; performance evaluation; experimental; numerical

MSC: 65K05; 65L09

1. Introduction

The heat exchanger is one of a few important types of equipment that have found
themselves in the application [1] of pharmaceutical, refrigeration, medical waste recycling,
heat recovery systems [2], energy systems, automobile, and aeronautical industries [3].
Engineers in industries are very keen on energy savings and the performance of equipment.
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Optimization techniques (OT) can serve as one of the break-throughs for their needs in
long-term conditions. The heat transfer rate and pressure drop [4] or, in other words, the
Nusselt number (Nup) [5] and the friction coefficient, are used to assess the efficacy of
OT [6]. Passive and active strategies are used to characterize OT. Recent findings on the
OT [7] from numerous researchers on double pipe heat exchangers (DHX) [8,9] are shown
in Table 1 to describe their achievements.

Table 1. Optimization Techniques in DHX.

Sl. No. Author Type of OT Achievements

1 Zheng [10] HEV vortices generator Generates longitudinal vortices

2 Mozafarie [11] Circular fin Efficiency optimized to 15%

3 Liu [12] Fluid exchange inserts Efficiency optimized to 24% ≈ 64%

4 Maakoul [13] helical baffle Deficiency of 10 to 15%

5 Shiva Kumar [14] parabolic fin and triangular fins Pressure drop and fin effectiveness increased
compared to plain tube

6 Huang [15] Y-branch inserts 17% to 122% was optimized in heat transfer

7 Wijayanta [16] delta-wing tape inserts A maximum of 15% enhancement was achieved

8 Salem [17] helical tape insert Efficiency optimized to 30% to 95%

9 Mashoofi [18] axially perforated twisted tapes A maximum of 7% enhancement was achieved

10 Pourahmad [19] wavy strip Effectiveness has increased from 15 to 70%

11 Sheikholeslami [20] Discontinuous helical turbulators Efficiency optimized to 5% to 50%

12 Sheikholeslami [21] perforated circular-ring Efficiency optimized to 10% to 20%

13 Zohir [22] Coiled wires Effectiveness has increased from 20 to 100%

14 Naphon [23] Brush Inserts Pressure drop and effectiveness increased
compared to plain tube

15 Zhang [24] Vortex generators Heat transfer was enhanced to 1.34 to 1.46 times

Table 1 shows a different set of inserts and their optimization levels with the flow for
the past decade. The study of Y-branch inserts by Huang [15], and Vortex generators by
Zhang [24] has achieved the highest augmentation of heat transfer in the flow regime. The
investigation of the wavy strip and coiled wires by Pourahmad [19] and Zohir [22] has
proved to have an effectiveness of 70% to 100%. The fluid flow assessment in a square and
circular heat exchanger was investigated by Abdelrazek [25]. They used four different types
of nanofluids mixed in distilled water. Both experimental and numerical analyses were
carried out by them. They found the different percentages of enhancement in heat transfer
rates when the same fluid is passed into the circular and square heat exchangers. Afzal [26]
used graphene nanofluid in water (base fluid) to investigate the heat transfer performance
of a novel implanted helical tube type triple heat exchanger. The nanofluid concentration,
flow rate of hot water, and cold water were all varied during the experiments. They found
considerable variations in the Nusselt numbers in this heat exchanger as compared to a
normal concentric pipe exchanger. A significant enhancement in heat transfer coefficients
was also found by using the nanofluids as compared to pure water.

Noorbakhsh [27] investigated the influence of employing distorted tapes of different
shapes on both the tubes of a concentric tube heat exchanger. The investigation was
conducted using commercially available CFD software ANSYS Fluent V18. The effect
of various parameters on the thermal performance of the exchanger was analyzed by
determining the exit temperature, Nusselt number, and pressure drop. They found an
increment in the Nusselt number due to the increment in the number of twisted tapes from
1 to 4. There was also a reduction in pressure drop for this configuration. Hosseinnejad
et al. [28] numerically investigated the heat transfer features of tubular-type heat exchangers
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that had dual distorted tapes. The flow was maintained as turbulent, with constant
inlet velocity. They used commercially available CFD code Fluent to solve the governing
equations. The results showed that aligned positioning improves heat transfer performance
more than non-aligned positioning. The investigation concerning the air–air heat exchanger
on any OT is very limited. So, the current investigation was carried out between Reynolds
number 30,000 and 6000 with the application of Para-Winglet Tape (PWT) for the tube
section. The PWT was investigated with CFD results and correlations were developed for
flow and thermal parameters. The present study involved the development of a new type
of turbulator/swirl generator for optimizing the performance of heat exchangers in terms
of Nusselt number, friction factor, performance optimization index, and effectiveness. An
air-to-air double pipe heat exchanger test setup was developed to investigate the PWT
Inserts with 10◦, 15◦, and 20◦ degrees of para-inclination for dimensionless Reynolds
numbers fluctuating between 6000 and 30,000.

2. Investigation Details

Figure 1 provides the details of the investigating setup developed for the experimen-
tation of PWT. The flow was developed using the blowers and u-tube manometers were
used to validate the pressure, settling tank for the stabilization of flow, surface heat for the
addition of heat, DAC system to monitor the temperature readings, and inverter to reduce
the fluctuations of power. The shell section was completely insulated with glass wool and
asbestos rope. The tube section was made of copper for better heat engagements.
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Figure 1. DHX Investigation Setup [29].

The design of the PWT inserts is shown in Figure 2. The designs were developed
to achieve better heat transfer over the smooth tube at a turbulent flow regime. They
were placed in tube sections securely and monitored the surface temperature through ten
evenly placed K-type thermocouples. The design of PWT is similar to that of a parachute
design. The survey shows that inserts are manufactured with a material that is tough,
flexible, and easy to manufacture. Stainless steel is one such type of material that has the
above properties.

The development of the PWT was carried out with utmost care so as minimize any
errors from the external environment. Figure 2 shows that the PWT inserts displayed
at different pitches and inclinations. Figure 3a displays the orientation of the PWT by
showcasing the pitch of three variants, namely 30 mm, 40 mm, and 50 mm. Figure 3b
displays the orientation of the PWT by showcasing the para inclinations of three variants,
namely 10◦, 15◦, and 20◦ degrees. The thermophysical characteristics of the tube material
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(copper), the hot stream in the tube, and the cold fluid across the annular portion are
described in Table 2.
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Table 2. Thermophysical properties.

Type Temperature in [K] CP in [J/KgK] ρ in [Kg/m3] µ in [Pa·S] K in [W/mk] Pr

Hot Fluid 300 1007.07 1.16134 18.568 × 10−6 26.19 × 10−3 0.7138

Cold Fluid 353 1010.38 0.9869 21.037 × 10−6 29.99 × 10−3 0.7083

Copper —- 393.5 8910 —- 391.1 —-

From Figure 4A it is observed that the numerical model was developed with a bound-
ary layer mesh technique. A 15-layer boundary was developed over the tube surface
with a y-plus equal to one to capture the near boundary phenomenon and the exact flow
regime is shown in Figure 4B. Figure 4C shows the placement of inserts in the double pipe
heat exchanger.
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The pre-processing, solving, and post-processing steps were carried out using the
StarCCM+ software which includes geometry development, mesh development in polyhe-
dral, boundary conditions, inlet conditions, environmental conditions, and post-processing.
Polyhedral mesh is considered due to its advantage over the tetrahedral as it takes less CPU
time to solve, is more robust for turbulence models, and has fewer internal memory require-
ments for each case study. Grid independence analysis is usually carried out to understand
the number of elements required to reach approximated results of a particular physics.
Figure 5 shows the independence check from 11 lakhs to 61 lakhs grid sizes where the heat
transfer coefficient and the Nusselt number of the inside tube were measured at each level.
The variation in the variable values was seen to be below 2% from 40 lakhs to 61 lakhs. So,
a 61 lakhs grid size was selected to study all the cases for numerical simulation.

Figure 6 shows the details of the percentage of heat loss across the insulation from
the external surfaces; the variations are high as the Re increases so the maximum possible
heat loss, which can be restricted by the insulation provided over the external surfaces, is
within 4.7%.
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3. Data Reduction

From Table 3, “i” and “o” indicate the inlet and exit, “c” and “h” indicate the cold
and hot, and “p” and “w” indicate plain and augmented tube. The equations in Table 3
represent the data reduction from temperature, heat transfer, and heat loss to coefficients,
dimensionless number, and performance index. Each equation serves as input for the
other equation until it has attained the ultimate factor. The data reduction is followed for
both augmented pipe and non-augmented pipe concerning different Reynolds numbers as
mentioned earlier [30–34]. The relation starts from the temperature, mass flow rate of both
hot and cold side fluids, and thermophysical properties of the fluids and solids used in
the system as the input variables. Through the relations’ average and overall heat transfer
coefficients, heat transfer on the hot and cold side, dimensionless number, and finally the
optimization factor is derived for the overall analysis of the DHX [35–38].
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Table 3. Numerical and Experimental Correlations.

Sl.
No. Parameters Notation Equations

1 Temperature of the hot tube section Th Th = Thi+Tho
2

2 Temperature of cold tube section Tc Tc =
Tci+Tco

2

3 heat transfer in cold fluid Qc Qc =
.

mcCpc
(
Tc,o − Tc,i

)
= ho Ao

(
Tw,avg − Tc

)
4 Average wall temperature Tw,avg Tw,avg = ∑ Tw,o

10

5 heat transfer in hot fluid Qh Qh =
.

mhCph
(
Th,i − Th,o

)
= Ui Ai∆LMTD

6 Logarithmic mean temperature difference ∆LMTD ∆LMTD =
(Th,i−Tc,o)−(Th,o−Tc,i)

ln(Th,i−Tc,o)/(Th,o−Tc,i)

7 Heat loss Qloss Qloss = Qh −Qc

8 Average heat transfer Qavg Qavg = Ui Ai∆LMTD

9 overall heat transfer coefficient Ui 1
Ui Ai

= 1
hi Ai

+
ln(do/di)

2πkp Li
+ 1

ho Ao

10 heat transfer coefficient tube hi
hi =

1[
1

Ui
− di ln(do /di)

2kp
− di

do ho

]
11 Nusselt Number tube Nup Nup = hidi

k

12 Friction factor tube fp fp = ∆P
(ρU2/2)(Li/di)

13 Performance optimization index POI POI = Nuw/Nup

( fw/ fp)
1
3

4. Governing Equations

The current fluid region is simulated using the CFD approach. The approach is based
on three governing equations: continuity, momentum, and energy. The continuity equation
denotes mass conservation, the momentum equation denotes force conservation, and the
energy equation denotes energy conservation (temperature). For capturing the turbulence
performance in the DHX, i.e., k → kinetic energy and ε → dissipation correlations are
computed concerning the Navier–Stokes equation for stable results on the steady flow heat
transfer model. The physics of the numerical model are simulated using the governing
equations as shown in Table 4.

Table 4. Governing CFD Correlations.

Sl.
No. Parameters Notation Equations

1 Continuity Equation - ∂
∂xi

(ρui) = 0

2 Momentum Equation - ∂
∂xi

(ρuiuk) =
∂

∂xi

(
µ f

∂uk
∂xi

)
− ∂p

∂xk

3 Energy Equation - ∂
∂xi

(ρuiT) = ∂
∂xi

(
Γ

Cp

∂T
∂xi

)
4 Kinetic Energy k ∂

∂xi
(ρuik) = ∂

∂xj

{[
µt
σk

+ µ
]

∂k
∂xi

}
+ Gk − ρε

5 Dissipation ε ∂
∂xi

(ρuiε) =
∂

∂xi

{[
µt
σε
+ µ

]
∂ε
∂xi

}
+ ε

k [C1εGk − ρC2εε]

Grid sensitivity checks are usually performed for three main reasons: (a) repeatability
of results; (b) computational cost; and (c) computational time. The grid sensitivity check
was carried out under the steady-state-turbulence-heat transfer condition where each
equation of flow, energy, momentum, and turbulence are validated up to the residual
level of 1 × 10−6. All the equations were solved under the segregated flow conditions
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of starccm+ CFD software [39,40]. The grid sensitivity analysis was carried out for 20◦

inclination and 50 mm pitch over Reynolds numbers of 18,000 for grid sizes 1,134,031,
2,155,673, 4,045,608, and 6,107,308 are presented in Table 5. The interior tube was analyzed
for any variations and repeatability in Nusselt number and heat transfer coefficient. The
variation between 4,045,608 and 6,107,308 results was less than 2%. So, 4,045,608 grid-level
methodologies were implemented for all the other numerical models with changes in the
flow conditions.

Table 5. Grid Sensitivity over Reynolds number of 18,000 for 20◦ inclination and 50 mm pitch.

Number of Cells 1,134,031 2,155,673 4,045,608 6,107,308

hi 240.34 255.19 267.79 266.15

Nup 160.55 169.62 176.24 177.13

5. Discussion of Results

The plain tube was tested with two correlations, mainly Dittus for Nusselt number
(Nup) and Blasius for friction factor. The correlations are as follows;

Dittus− Boelter correlation− Nu = 0.023 Re0.8 Pr0.4 (1)

Blasius′s correlation− f = 0.316 Re−0.25. (2)

The variation of the test data and numerical data of Nusselt number for a plain tube
model was examined and is displayed in Figure 7. The study reveals that the Nusselt
number between experimental and numerical values had a maximum variation percentage
of ±4.21%. In a similar practice, the friction factor was also determined for experimental
and numerical study and observed a maximum variation percentage of ±2.16% in Figure 8.
The plain tube analysis provides a clear vision of the approaches between numerical and
experimental studies.
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The thermal and flow observations were performed for the PWT on different cases as
mentioned in Table 6. The case studies are divided based on the three different pitches and
para inclinations. Each case is investigated numerically and experimentally for all the flow
conditions varying from Reynolds numbers 6000 to 30,000.

Table 6. Experimental/Numerical case studies.

Sl. No. Designation Pitch = P Para-Inclination = PI

1 Plain ———- ———-

2 Case 1 30 mm = P1 10◦ PI

3 Case 2 30 mm = P1 15◦ PI

4 Case 3 30 mm = P1 20◦ PI

5 Case 4 40 mm = P2 10◦ PI

6 Case 5 40 mm = P2 15◦ PI

7 Case 6 40 mm = P2 20◦ PI

8 Case 7 50 mm = P3 10◦ PI

9 Case 8 50 mm = P3 15◦ PI

10 Case 9 50 mm = P3 20◦ PI

The Nusselt number variation for different cases is shown in Figure 9. The numerical
values were seen to be much higher for all the cases for the same condition when compared
to the experimental values [41–43]. Each case study was investigated for heat transmission
rate in terms of Nusselt number and was compared to the plain tube; the highest Nusselt
number was achieved by case studies 2 and 3 with pitch 30 mm and para inclination 15-
and 20 degrees. The minimum value of the Nusselt number was observed in case study
7 with a pitch of 50 mm and a para inclination of 10 degrees.

The value of Nu increases with the increase of Re, the turbulators with 15◦ and 20◦

inclinations have better augmentation over higher Re because of the development of local
turbulence and recirculation to wider openings of inserts. The variation in 10◦ inclinations
has reduced with Re 24,000 to 30,000. The variation of friction factors in different cases is
shown in Figure 10. The numerical values were seen to be much higher for all the cases
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for the same condition when contrasted with the experimental values [44–46]. Every case
study has an appreciation in the friction factor when compared to the plain tube but the
highest was achieved by the case study with a pitch of 30 mm and a para inclination of
20 degrees (case 3). The minimum value of the friction factor was experienced by the case
studies with a pitch of 50 mm and para inclination of 10 degrees (case 7). The friction
factor is higher at low Re and further reduces as the Re increase, the friction factor reduces
predominantly from Re 18,000 to 30,000 for a case study with 15◦ and 20◦ inclinations,
which in turn optimizes Nu.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 9. Augmented values of Nusselt Number over Reynolds Number. 

The value of Nu increases with the increase of Re, the turbulators with 15° and 20° 
inclinations have better augmentation over higher Re because of the development of local 
turbulence and recirculation to wider openings of inserts. The variation in 10° inclinations 
has reduced with Re 24,000 to 30,000. The variation of friction factors in different cases is 
shown in Figure 10. The numerical values were seen to be much higher for all the cases 
for the same condition when contrasted with the experimental values [44–46]. Every case 
study has an appreciation in the friction factor when compared to the plain tube but the 
highest was achieved by the case study with a pitch of 30 mm and a para inclination of 20 
degrees (case 3). The minimum value of the friction factor was experienced by the case 
studies with a pitch of 50 mm and para inclination of 10 degrees (case 7). The friction factor 
is higher at low Re and further reduces as the Re increase, the friction factor reduces pre-
dominantly from Re 18,000 to 30,000 for a case study with 15° and 20° inclinations, which 
in turn optimizes Nu. 

Figure 9. Augmented values of Nusselt Number over Reynolds Number.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 10. Augmented values of friction factor over Reynolds Number. 

Figures 11 and 12 depict the ratio of Nusselt number and Friction factor variations 
with Reynolds number. Each case study’s percentage change in the Nusselt number and 
friction factor is compared to the plain tube. Reynolds number 30,000 with a para tilt of 20 
degrees, the pitch of 40 mm and 50 mm, achieves the maximum Nusselt number ratio 
(cases 6 and 9). For Reynolds number 30,000, pitch 30 mm and para inclination 20 degrees 
(case 3), the highest friction factor ratio was achieved. The ratio of Nu increases with the 
Re, the highest value is attained for pitch 30 mm due to the placement of the maximum 
number of turbulators within the inner tube, and 20° inclinations due to a wider area of 
flow restriction which promotes better mixing and recirculation to have better heat trans-
fer. The Nusselt number ratio reduces in those cases with para inclinations of 10° from 
18,000 to 30,000 which signifies that, at a greater Reynolds number, para inclinations with 
15° with 20° are much better due to local turbulence, and recirculation near the wall 
boundary. 

Figure 10. Augmented values of friction factor over Reynolds Number.



Mathematics 2022, 10, 2893 11 of 19

Figures 11 and 12 depict the ratio of Nusselt number and Friction factor variations
with Reynolds number. Each case study’s percentage change in the Nusselt number and
friction factor is compared to the plain tube. Reynolds number 30,000 with a para tilt of
20 degrees, the pitch of 40 mm and 50 mm, achieves the maximum Nusselt number ratio
(cases 6 and 9). For Reynolds number 30,000, pitch 30 mm and para inclination 20 degrees
(case 3), the highest friction factor ratio was achieved. The ratio of Nu increases with the
Re, the highest value is attained for pitch 30 mm due to the placement of the maximum
number of turbulators within the inner tube, and 20◦ inclinations due to a wider area of
flow restriction which promotes better mixing and recirculation to have better heat transfer.
The Nusselt number ratio reduces in those cases with para inclinations of 10◦ from 18,000
to 30,000 which signifies that, at a greater Reynolds number, para inclinations with 15◦ with
20◦ are much better due to local turbulence, and recirculation near the wall boundary.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 11. Augmented values of Nusselt Number Ratio over Reynolds Number. 

 
Figure 12. Augmented values of Friction factor Ratio over Reynolds Number. 

The lowest value of the Nusselt number ratio is attained for Reynolds number 6000 
for pitch 50 mm with para inclination 10 degrees (case 7). The lowest value of friction 
factor ratio is attained for Reynolds number 24,000 for pitch 50 mm with para inclination 
10-degrees (case 7). The ratio of friction factor increases for 20° inclinations irrespective of 
pitch 30 mm, 40 mm, and 50 mm for Re. The larger pitch and smaller inclination provide 
the minimum friction factor ratio over Re. The friction factor ratio increases in the cases 
with para inclinations 10° from 18,000 to 30,000 which signifies that at a greater Reynolds 
number, para inclinations with 15° with 20° are much better due to better flow distribution 
over the flow area and streamline flow. 

Figure 11. Augmented values of Nusselt Number Ratio over Reynolds Number.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 11. Augmented values of Nusselt Number Ratio over Reynolds Number. 

 
Figure 12. Augmented values of Friction factor Ratio over Reynolds Number. 

The lowest value of the Nusselt number ratio is attained for Reynolds number 6000 
for pitch 50 mm with para inclination 10 degrees (case 7). The lowest value of friction 
factor ratio is attained for Reynolds number 24,000 for pitch 50 mm with para inclination 
10-degrees (case 7). The ratio of friction factor increases for 20° inclinations irrespective of 
pitch 30 mm, 40 mm, and 50 mm for Re. The larger pitch and smaller inclination provide 
the minimum friction factor ratio over Re. The friction factor ratio increases in the cases 
with para inclinations 10° from 18,000 to 30,000 which signifies that at a greater Reynolds 
number, para inclinations with 15° with 20° are much better due to better flow distribution 
over the flow area and streamline flow. 

Figure 12. Augmented values of Friction factor Ratio over Reynolds Number.



Mathematics 2022, 10, 2893 12 of 19

The lowest value of the Nusselt number ratio is attained for Reynolds number 6000
for pitch 50 mm with para inclination 10 degrees (case 7). The lowest value of friction
factor ratio is attained for Reynolds number 24,000 for pitch 50 mm with para inclination
10-degrees (case 7). The ratio of friction factor increases for 20◦ inclinations irrespective of
pitch 30 mm, 40 mm, and 50 mm for Re. The larger pitch and smaller inclination provide
the minimum friction factor ratio over Re. The friction factor ratio increases in the cases
with para inclinations 10◦ from 18,000 to 30,000 which signifies that at a greater Reynolds
number, para inclinations with 15◦ with 20◦ are much better due to better flow distribution
over the flow area and streamline flow.

The streamlines of turbulent flow along the PWT for 10◦, 15◦, and 20◦ inclinations are
shown in Figure 13. The flow lines along PWT inserts represent that the higher the angle of
inclination of PWT, the greater the distribution of flow near the wall. The flow at the center
follows a zig-zag pattern, near the PWT the flow is distributed, and again at the wall they
flow in a straight line.
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The turbulent kinetic energy (TKE) variation in Figure 14 at different inclinations
of the PWT shows that due to the application of PWT the TKE intensity near the wall is
enhanced and is higher for 20◦ inclinations. The PWT has created the perfect blend of flow
regime with recirculation happening in the form of four quadrants as they pass through the
ups and downs of PWT inserts [47–50]. The maximum TKE of 49.61 J/Kg was developed
near the edges of the inserts and a minimum of 2.79 was below the insert opening region
which creates the recirculation region.
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Figure 15 displays the temperature distribution along the plane x1, x2, and x3 for
various inclinations along 10◦, 15◦, and 20◦ for the PWT inserts. The temperature dissemi-
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nation along the 20-degree PWT inserts was seen to be much more promising than others.
Figure 16 displays the velocity distribution along the x1, x2, and x3 planes. For the same
Reynolds number, the velocity in the case of 20◦ inclinations of the PWT inserts is shown to
be very high when it comes to other cases [51–53]. The highest velocity is obtained near
the corners of the PWT inserts where the recirculation of the flow exits, which is better
for mixing and recirculation. From the overall results of Nu, friction factor, TKE, and
temperature contours it can be observed that for 20◦ inclination turbulators, the turbulence
regions are widespread due to wider opening area against the flow, for wider openings,
the TKE and temperature distribution reached towards the wall boundary layer thereby
disturbing and creating better heat transmission along with the heat exchanger.
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The performance optimization index (POI) is determined by the ratio of Nusselt
number and friction factor. Figure 17a shows the comparison values of POI concerning
different case studies of the numerical and experimental studies. The obtained CFD results
are within the range of 5% to 8% difference from the experimental values. The maximum
POI value of 2.68 to 2.37 was determined experimentally for 20◦ inclinations from pitch
50 mm to 30 mm. Similarly, 2.91 to 2.57 was determined numerically [53–55]. The minimum
POI value of 1.76 to 1.68 was determined experimentally for 10◦ inclinations from pitch
50 mm to 30 mm. Similarly, 1.9 to 1.81 was determined numerically.
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Figure 17. (a) POI of different experimental and computational case studies, and (b) Comparison of
POI with present and past investigations.

Finally, the POI shows the overall outcome of the different cases relating to the
Reynolds number as displayed in Figure 17a. The comparative study between various other
inserts [15–18,20,21] to that of PWT is described in Figure 17b for a better understanding of
performance. PWT has good performance at a higher Reynolds number as compared to
other inserts except for y-branch inserts.

The model equation for Nusselt number and friction factor are derived from the
Reynolds number and the ratio of tube inlet diameter to pitch of the insert (di/p) obtained
from the test data [29]. Three different di/p ratios were examined in this study: 1.62, 2.16,
and 2.7. The relation between the observed and projected values of friction factor and
Nusselt number is depicted in Figures 18 and 19. The correlation of f and Nu was possible
to forecast test values in the range of 6% and 10%, respectively, the constants are also
determined and showcased in Equation (3). The performance of the correlations in terms
R2 = coefficient of multiple determination = 0.9944, Standard Error of the Estimate = 5.33,
and Proportion of Variance = 99.52%. The constant values of the different case studies of the
PWT are presented in Table 7. Uncertainty analyses were carried out in the current investi-
gation to understand the percentage of errors associated with the measuring instruments
on various parameters. The analysis follows the procedure described by Kline et al. [39]
and Moffat et al. [40]. The error range percentage for data reduction parameters is shown
in Table 8. The maximum variation was limited to 5.54% and the minimum was limited
to 1.08%.

Nu = a(Re)(b+1)
(

di
p

)c
(3)

f = a(Re)b
(

di
p

)c
. (4)
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Table 7. Correlation constants of Nu and f.

Case Study a b c

Nu at 10◦ PI 3.618 −0.2914 −0.6076

Nu at 15◦ PI 4.866 −0.3004 −0.6076

Nu at 20◦ PI 4.085 −0.2515 −0.6298

f at 10◦ PI 4.51 × 10−3 1.0637 −0.1241

f at 15◦ PI 1.07 × 10−3 1.2317 −0.1448

f at 20◦ PI 7.23 × 10−4 1.2748 −0.0513

Table 8. Error Range of Experimental parameters.

Sl. No. Parameters Error Range (%)

1 Flow rate of hot fluid 1.56–4.89

2 Flow rate of cold fluid 1.52–4.92

3 Reynolds Number 2.04–5.23

4 Pressure drop 1.08–2.03

5 Heat transmission coefficient 1.23–5.15

6 Nusselt Number 1.67–5.42

7 Friction factor 1.89–5.33

8 Temperature 1.04–2.45

6. Conclusions

The performance of PWT as a turbulator to enhance flow and heat transfer was
successfully validated with experimental and numerical results of CFD. The variation
of Reynolds number, para-inclination and pitch were completely studied on all the flow
conditions with the constant temperature at the respective inlet. From the CFD and
experimental results it has been seen that the highest value of POI was obtained for
case 3, case 6 and case 9, which proves that the higher the para-inclinations, the higher
the turbulence kinetic energy, the greater the heat transfer, and the better the POI. The
maximum POI value of 2.68 to 2.37 was determined experimentally for 20◦ inclinations
from pitch 50 mm to 30 mm. Similarly, 2.91 to 2.57 were determined numerically. The
minimum POI value of 1.76 to 1.68 was determined experimentally for 10◦ inclinations from
pitch 50 mm to 30 mm. Similarly, 1.9 to 1.81 was determined numerically. The empirically
obtained Nu and f correlations were built and contrasted with the test data and were found
to be within 10% and 6% deviance.
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