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Abstract: Surrogate modeling techniques are widely employed in solving constrained expensive
black-box optimization problems. Therein, Kriging is among the most popular surrogates in which
the trend function is considered as a constant mean. However, it also encounters several challenges
related to capturing the overall trend with a relatively limited number of function evaluations as well
as searching feasible points with complex or discontinuous feasible regions. To address this above
issue, this paper presents an improved surrogate blind Kriging (IBK) and a combined infill strategy to
find the optimal solution. According to enhancing the prediction accuracy of metamodels of objective
and constraints, the high-order effects of regression function in the blind Kriging are identified by
promising a variable selection technique. In addition, an infill strategy is developed based on the
probability of feasibility, penalization, and constrained expected improvement for updating blind
Kriging metamodels of the objective and constraints. At each iteration, two infill sample points are
allocated at the positions to achieve improvement in optimality and feasibility. The IBK metamodels
are updated by the newly-added infill sample points, which leads the proposed framework search to
rapidly converge to the optimal solution. The performance and applicability of the proposed model
are tested on several numerical benchmark problems via comparing with other metamodel-based
constrained optimization methods. The obtained results indicate that IBK generally has a greater
efficiency performance and outperforms the competitors in terms of a limited number of function
evaluations. Finally, IBK is successfully applied to structural design optimization. The optimization
results show that IBK is able to find the best feasible design with fewer evaluation functions compared
with other studies, and this demonstrates the effectiveness and practicality of the proposed model for
solving the constrained expensive black-box engineering design optimization problems.

Keywords: blind Kriging; surrogate model; black-box optimization; infill strategy

MSC: 65Kxx

1. Introduction

The optimization process is critical in the engineering design, which requires lower
computational cost, robustness, stability, and accuracy. However, most conventional
optimization techniques face several challenges in solving the black-box global optimization
problem, such as the unavailable expressions, gradient information of objective function
or constraints, and the time-consuming effort. One way to circumvent these issues is
based on the surrogate model (SM) [1,2]. Here, SM is an invaluable tool that is used
to approximate the expensive computational models during the optimization process
indirectly or directly. There are commonly used metamodels, such as response surface
methodology [3,4], radial basis function (RBF) [5,6], Kriging [7,8], support vector regression
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(SVR) [9], neural network (NN) [10–13], inverse distance weighting (IDW) [14], and so on.
To achieve the optimal solution, the sampling technique and infill strategy are employed to
build and iteratively refine the metamodel in order to ameliorate the solution found during
the performance process. Therein, the sampling technique, which is also known as the
design of the experiment, creates a set of points over the domain, and the initial metamodel
is fitted to the observed points. Various sampling techniques for generating the sample
points are developed, including Monte Carlo, random, and Latin hypercubic sampling
(LHS) techniques. For more details, interested readers are suggested to refer to ref. [15].

In the past decade, variants of the metamodel-based optimization method have been
successfully developed for solving the optimization problems with expensive simulations.
For instance, Jones et al. [16] proposed an efficient global optimization (EGO) method
where Kriging and expected improvement (EI) are introduced to find the solution. In
addition, Huang et al. [17,18] extended the EGO algorithm by using the augmented EI
function to determine the next sampling point. Additionally, a new infill strategy with
adaptive radius and direction search is developed by Dong et al. [19] to indicate all local
optimal values. To reduce the dimension of hyper-parameters, Zhao [20] incorporated the
maximal information coefficient into Kriging. Gutmann [21] associated the measure of
bumpiness in the RBF model to find the global minimum. Regis and Shoemaker [22–24]
proposed a stochastic response surface to identify the promising points. More recently,
Shepard [14] introduced the IDW, and then Joseph [25] added a linear regression function
to improve accuracy. A conjugate between IDW and RBF is suggested by Bemporad [26].

The constrained black-box optimization problem is popular in many practical engineer-
ing designs. Hence, it has attracted the remarkable attention of researchers in recent years.
They have been successfully applied to address this issue, such as ConstrLMSRBF [27],
COBRA [28], RCGO [6], CARS [29], and so on. Among the surrogate models, Kriging
has attracted more attention than other models due to estimating the prediction error and
capacity to approximate the highly nonlinear functions. Therein, its regression function can
be considered as the part trying to catch the general trend and thus the largest variations of
the data. In recent times, Li et al. [30] proposed a new Kriging-based constrained global
optimization algorithm in which the global optimal solution is obtained by two pivotal
phases. An enhanced approach based on the modification of the probability of an improve-
ment algorithm is presented by Carpio et al. Carpio et al. [31]. Additionally, Qian et al. [32]
illustrated a new infill strategy, in which the position of the new sampling point is the
intersection between the confidence interval and the constraint boundary. A combination
of Kriging and the mixture of experts is proposed by Bartoli et al. [33] to improve the
model’s accuracy. In addition, Forrester and Keane [34] presented a constrained expected
improvement criterion to attain a new sample for updating the surrogate model. Similarly,
Shi et al. [35] developed a probability of constrained improvement based on filter technol-
ogy. However, there are several challenges due to multimodal, nonlinear functions, limited
sample size, and a strong overall trend exists. In addition, identifying the right regression
function for a set of data with interactions between variables is a difficult task. To address
the above issues, researchers have tried to improve the prediction accuracy of Kriging by
adjusting either the regression function, the stochastic process, or both. A well-known
author, Joseph et al. [36], presented the blind Kriging model, in which the optimal basis
functions are estimated by the Bayesian variable selection technique. Additionally, Ker-
saudy et al. [37] introduced a combination of polynomial chaos expansions and universal
Kriging. Zhang et al. [38,39] proposed the regularization method for constructing a trend
function and the penalized blind likelihood Kriging. Nevertheless, the above-mentioned
models are only established to solve the unconstrained optimization problem. Furthermore,
to the best of our knowledge, it has still not been yet utilized for constrained optimization
thus far.

In this study, an improved surrogate blind Kriging is first presented to handle com-
putational expensive constrained optimization problems. In our work, the higher-order
effects of the trend function are estimated by a Bayesian variable selection technique. Si-
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multaneously, a new infill strategy is developed based on the probability of feasibility,
penalization, and constrained expected improvement to refine the surrogate models and
improve the solution found during the optimization process. According to this scheme,
two sample points will be indicated corresponding to the exploration and exploitation
stages for each iteration. It helps the IBK metamodel to learn the complex or discontinu-
ous feasible domains. The performance and applicability of the proposed approach are
demonstrated through several benchmark optimization problems. The outcomes of the
proposed model are compared with other models to evaluate its efficiency and reliability.
The obtained results showed that our work is able to find the best feasible design with
fewer evaluation functions.

The rest of the paper is organized as follows. Section 2 introduces the IBK model. Next,
an infill strategy based on the combination is presented in Section 3. Afterward, several
numerical examples are investigated to demonstrate the efficiency of the proposed model
in Section 4. Finally, the conclusions are outlined in Section 5.

2. Improved Blind Kriging
2.1. Basics

The primary objective of a metamodel is to search for the approximate function from a
set of data points. A brief summary of Kriging and some basic formulas are described in
this subsection.

Consider the function y(x) as defined in the domain Ω. Let the n sample points X ={
x(1), x(2), ..., x(n)

}T
with x ∈ Rd and the true response values y =

{
y(1), y(2), ..., y(n)

}T

with y ∈ R, respectively. The universal Kriging (UK) model postulates a combination of
the regression function and a stochastic process, as demonstrated in Equation (1)

Y(x) = f (x) + Z(x), (1)

where Y(x) represents a black-box function; f (x) = ν(x)T βm denotes the regression func-
tion; Z(x) is characterized by Gaussian process with zero mean and stationary covariance.
For the blind Kriging, the trend function utilizes a regression function, as defined as
Equation (2)

f (x) = ν(x)T βm, (2)

in which ν(x) = {1, ν1(x), ..., νm(x)}T is the vector that contains known basic functions;
m is the number of basis functions, and βm = {β0, β1, ..., βm}T denotes the unknown
coefficients [40]. All of them are identified through the feature selection methods in
Section 2.2.

Let Ψ be the correlation matrix of the samples, ψ(x) the correlation vector between a
point x and the sample point in the data set, and Fm the model matrix of the sample points.
Then the predicted value at any point x by the blind Kriging model is given as,

ŷ(x) = ν(x)T β̂m + ψ(x)TΨ−1
(

y− Fm β̂m

)
, (3)

where the variance σ̂2
m and mean value β̂m of variance can be calculated as follows

β̂m =
FT

mΨ−1y
FT

mΨ−1Fm

σ̂2
m =

(
y− Fm β̂m

)T
Ψ−1

(
y− Fm β̂m

)
n

. (4)

To indicate the optimal hyper-parameters θ, in this paper, the differential evolution
(DE) algorithm is employed to maximize the likelihood function. Their searching space is
restricted to (10−3, 102) [34,41]. It should be noted that θ is estimated two times. The first
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time, they are found at m = 0, and after choosing m, the hyper-parameters will be estimated
again. The interested reader is referred to [36,39,40] for more details about deriving them.

Mean square error (MSE) at points in the design domain is given by [42]

ŝ2(x) = σ̂2
m

[
1−ψ(x)TΨ−1ψ(x) +

(
FT

mΨ−1ψ(x)

−ν(x))T
(

FT
mΨ−1Fm

)−1(
FT

mΨ−1ψ(x)− ν(x)
)

.
(5)

To provide insight, a single variable test function from five initial samples, which
is assumed as a black-box objective function, is investigated here, as shown in Figure 1.
In which the solid black line represents the true function, the blue dashed line shows the
prediction value, the red dots denote the set of sample points, and the solid red line shows
the root mean squared error. It is easily seen that the predicted value at sample points
is equal to the real value, and its MSE is zero. Note that MSE is used as the measure of
uncertainty in each prediction and to estimate the approximate accuracy of the BK model.

x

y

Sample points
True function
IBK prediction
MSE

Figure 1. Mean square error of the IBK model.

2.2. Variable Selection

As mentioned by Couckuyt [40], BK can capture the most variance in the data set by
data analysis methods. A collection of candidate functions is considered for selection by
using cross-validation prediction error (CVPE). Now, we consider a trend function that
combines the regression function with the set of candidate functions to fit the data in the
following linear model

f (x) =
m

∑
i=0

βiνi(x) +
t

∑
i=0

αiui(x), (6)

where t is the number of potential functions; u(x) = {1, u1(x), ..., ut(x)} denotes the set
of candidate functions, and α is the vector of corresponding coefficients. Note that β has
already been determined independently α. When the transfer function f can be highly
nonlinear, the number of candidate features to approximate are larger than the number
of sample points. Therefore, we cannot determine all the coefficients αi. In this study,
a function prior to all parameters in the linear model is utilized to overcome this issue.
Additionally, the trend function is improved by considering the high-order effect of the
Bayesian variable selection technique, including linear, quadratic, cubic, quartic, and two-
factor interaction effects. Consequently, the total of candidate variables and the mean
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term is t = 4
(

d2 + 2
d−1
∑

i=1
i
)

. Let us consider five-level, spaced factors with possible levels

l(1), l(2), l(3), l(4), and l(5), which are defined as follows

l(1) = min(X) ,

l(2) =
mean(X)

2
,

l(3) = mean(X) ,

l(4) =
3mean(X)

2
,

l(5) = max(X) .

(7)

Therefore, the model matrix using orthogonal polynomial coding, which is the column
lengths of

√
5, is

U j =



1 −
√

2
√

10
7 −

√
1
2

√
1

14

1 −
√

1
2 −

√
5

14

√
2 −

√
8
7

1 0 −
√

10
7 0

√
18
7

1
√

1
2 −

√
5

14 −
√

2 −
√

8
7

1
√

2
√

10
7

√
1
2

√
1

14


. (8)

The corresponding correlation matrix is

Ψj =



1 ψj

(
l(2)j

)
ψj

(
l(3)j

)
ψj

(
l(4)j

)
ψj

(
l(5)j

)
ψj

(
l(2)j

)
1 ψj

(
l(2)j

)
ψj

(
l(3)j

)
ψj

(
l(4)j

)
ψj

(
l(3)j

)
ψj

(
l(2)j

)
1 ψj

(
l(2)j

)
ψj

(
l(3)j

)
ψj

(
l(4)j

)
ψj

(
l(3)j

)
ψj

(
l(2)j

)
1 ψj

(
l(2)j

)
ψj

(
l(5)j

)
ψj

(
l(4)j

)
ψj

(
l(3)j

)
ψj

(
l(2)j

)
1


, (9)

and the Rj (5× 5) variance-covariance matrix is calculated as follows

Rj = U−1
j Ψj

(
U−1

j

)T
. (10)

Note that we only use the diagonal elements of Rj [43]. Hence, the ith element of the
diagonal matrix R((t + 1)× (t + 1)) can be written as

Ri,i =
d

∏
j=1

r
lij
jl r

qij
jq r

cij
jc r

qr ij
jqr

, (11)

in which lij = 1 if αi includes the factor’s linear effect j and 0 otherwise. Similarly,
qij, cij, qrij are assigned to the quadratic, cubic, and quartic effects, respectively.

rjl =
Rj(2, 2)
Rj(1, 1)

,

rjq =
Rj(3, 3)
Rj(1, 1)

,

rjc =
Rj(4, 4)
Rj(1, 1)

,

rjqr
=

Rj(5, 5)
Rj(1, 1)

,

0 6 lij + qij + cij + qrij 6 2.

(12)
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The sample data will be normalized to the interval [0, 1]. The encoded samples for the
linear, quadratic, cubic, and quartic effects are expressed as follows

xj,l =
1√
2

 xj

l(5)j

,

xj,q =

√
5

14


 xj

l(5)j

2

− 2

,

xj,c =
5

6
√

2


 xj

l(5)j

3

− 17
5

 xj

l(5)j


,

xj,qr =
35

12
√

14


 xj

l(5)j

4

− 31
7

 xj

l(5)j

2

+
72
35

,

(13)

where xj defines the jth column X. The two-factor interaction terms can be built from these
basic effects. After the completion of the construction of R as shown above, the posterior
mean of α is defined as

α̂ =

(
τm

σm

)2
RFc

′Ψ−1(y− Fmβm), (14)

var(α̂) = τ2
m

(
R−

(
τm

σm

)2
RFc

′Ψ−1FcR

)
, (15)

where Fc is the matrix of all candidate variables. As shown in refs. [36,40,43], the absolute
of α̂ is used instead of the standardized coefficient for variable selection. Hence, variables
selected at each step correspond to the largest value α̂. It should be noted that τm

σm
is a

constant, which is set to 1 for simplicity of the computation. To be specific, for the best
value of m, the blind Kriging model has to go through five stages, which are described in
detail as follows.

Step 1: The LHS technique is used to create initial sample points X and the obtained
response values, respectively.

Step 2: Construct the ordinary Kriging surrogate model, and the leave-one-out cross-
validation prediction error

(
CVPE(m=0)

)
is estimated to measure accuracy.

Step 3: Determine the coefficients |α̂| corresponding to each promising feature, and
arrange |α̂i| from largest to smallest.

Step 4: If improving the accuracy of prediction has not been satisfied,
Step 4.1: Add a candidate function corresponding to each |α̂i| coefficient to the regres-

sion function.
Step 4.2: Construct the intermediate Kriging surrogate model with the new regres-

sion function.
Step 4.3: CVPE(m) is estimated to measure the accuracy of the model,

CVPE(m) =

√√√√√ n
∑

i=1
cv2

i

n
,

cvi = yi(xi)− ŷi(xi) .

(16)

Step 5: The best set of features to minimize
(

CVPE(m)

)
, will be chosen to build

the final BK model. Finally, the new hyper-parameters are indicated for the new trend
function [40] of the surrogate model.
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3. Infill Strategy

The infill strategy is employed to iteratively refine the metamodel and guide the
algorithm toward a promising region to improve the solution found. Its trade-off between
exploration and exploitation decides the success of the implementation. Although there are
several available infill strategies, such as expected improvement (EI), expected violation,
probability of improvement function (PI), lower confidence bounding, etc., these procedures
may be difficult to find feasible points or feasible disconnected regions [6,28]. In this section,
a new combined infill strategy, which consists of the probability of feasibility, penalization,
and a constrained expected improvement, is introduced to overcome the above limitations.

The mathematical formulation of the constrained expensive black-box global optimiza-
tion problem

min
x∈Rd

f (x),

s.t. gj(x) ≤ 0, j = 1, 2, ..., m,
xlb ≤ x ≤ xub,

(17)

where f and gj denote the objective function and inequality constraints, respectively.
Normally, if there is one equality constraint, it is converted to two inequality constraints
using a very small relaxation factor. xub and xlb are the upper and lower bounds of the
design variables, respectively. It should be noted that the above problem belongs to the
class of derivative-free optimization, so its derivatives are not available. In order to solve
Equation (17), the constrained EI is usually employed as the infill criterion and expressed as
follows

EIC(x) = EICi (x) + EICr (x), (18)

with

EICi (x) = ( f (x∗)− µn(x))Φ
(

f (x∗)− µn(x)
σn(x)

)
PF(x),

EICr (x) = σn(x)φ
(

f (x∗)− µn(x)
σn(x)

)
PF(x),

PF(x) =
m

∏
j=1

Prj
(

gj(x) ≤ 0
)
,

Prj
(

gj(x) ≤ 0
)
= Φ

(
−µgj(x)

σgj
(x)

)
,

where µgj(x) and σgj
(x) are the posterior mean and covariance function of the jth con-

straint, respectively.
As indicated by Haftka et al. [44], EICi (x) indicates the exploitation sample points

where the posterior mean of the objective function is small and has low uncertainty, and
the constraints are likely to be near the boundaries of feasible operation. In contrast,
EICr (x) aims to identify exploration sample points, which tend to be biased towards
regions that are more likely to satisfy the constraints and high uncertainty of the objective
function. However, the standard EIC often fails when there is no initial feasible point in
the data set [44]. To circumvent this, PF(x) is one of the most used methods to favor the
feasible region. Note that the value of PF(x) is easy to be zero when one of the constraints
violates the design specification [44]. Consequently, the high-priority data points are missed
or overlooked.

To tackle these limitations, a combined computation strategy is first introduced in this
study to achieve an initial feasible point as well as find the optimal solution. This scheme
helps to reduce the number of constraint violations and explore other feasible regions,
as follows:

PFC(x) = σn(x)PF(x), (19)



Mathematics 2022, 10, 2906 8 of 19

PIC(x) = −
m

∑
j=1

max
(

0, µgj(x)
)

, (20)

ISC14(x) =
m

∏
j=1

Prj
(

gj(x) ≤ 0
)
. Dj, (21)

where PFC(x) is combined by the covariance function and the probability of feasibility
function; PIC(x) is the penalization function corresponding to the constraint set; ISC14(x)
is the infill sampling criterion for disconnected feasible regions; D is the distance to the
nearest feasible point, and given by:

D = min
x f eas


∥∥∥x f eas − x

∥∥∥
range

, (22)

in which range is the lag distance at which it reaches the sill from the variogram model.
According to the proposed strategy, if the feasible point is not found in the data,

PFC(x) and PIC(x) will be used as an alternative for obtaining two infill sample points.
In this case, providing that there exists a feasible region, two feasible sample points will
be identified. More specifically, the first point is located in the sparsely sampled area by
maximizing PFC(x) , so σn(x) characterizes the sample density of the objective function
in the design space. The other point indicates the corresponding minimum value of the
total constraints PIC(x) . When the models fit poorly and do not have a feasible region,
PIC(x) is utilized to improve the locations that violated constraints. On the contrary, once
an initial feasible point is found, Equations (18) and (21) are employed to determine infill
sample points. ISC14(x) aims to effectively explore other feasible regions. The algorithm
framework is provided in Algorithm 1.

Algorithm 1 The combined infill strategy for the expensive constrained optimization problem

Input: d : number of design variables
m : number of constraints
Nmax: maximum expensive evaluation number
[xlb; xub]: design space

Output: [xbest, fbest]: the optimum solution
1: Generate n0 sample points using LHS from the design space, evaluate the fitness values,

and collect a set of initial observations Dn0
= {xi, yi, gi} ∀i = 1, ..., n0

2: Determine D f es from Dn0
3: Set n = n0
4: while n ≤ Nmax do
5: Build surrogate models for the objective and each of the constraint functions
6: if D f es

n = ∅ then
7: Find xn+1 by maximizing Equation (19)
8: Find xn+2 by maximizing Equation (20)
9: else

10: Find xn+1 by maximizing Equation (18)
11: Find xn+2 by maximizing Equation (21)
12: end if
13: Evaluate function values at xn+1,2, append Dn+2 = Dn ∪ {(xn+1,2, yn+1,2, Gn+1,2)},

and update D f es
n+1,2

14: n = n + 2
15: Update [xbest, fbest]
16: end while
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4. Numerical Examples
4.1. Study in High-Order Effects of the Trend Function

To evaluate the high-order efficiency of the trend function, a planar truss structure for
maximum passive vibration isolation [45], as shown in Figure 2, is introduced. The authors
of Keane and Bright [46] achieved results for this problem through analysis and experiment.
The structures consist of 42 members with the same material properties. The right-hand
end nodes are fixed. The unit force excitation is subjected to node 11 over a frequency range
100–200Hz. The x- and y-coordinates of nodes seventh) and eighteenth are considered as
design variables, and the other nodes are fixed as per the regular structure. The objective
function is stress at the left-hand end node. The interested reader is referred to [45,46] for
more details. LHS is used to obtain data for building metamodels that differ in the number
of sample points, and 100 validation runs were performed to validate the results. In this
case, the average Euclidean error (AEE) is used to measure the prediction error using

AEE(ŷ, y) =
1
k

k

∑
i=1

√
(ŷ− y)2. (23)

 

1 

2 3 4 5 6 7 8 9 10 11 

23 

12 

24 21 20 19 18 17 16 15 14 13 

Figure 2. Planar truss structure. Adapted from [47].

As shown in Figure 3, it is easily seen that the BK model improves compared to the
Kriging model. Clearly, the CVPE is smaller than the Kriging model. It is easy to explain
that the linear, quadratic effect causes a significant rise in accuracy. On the other hand,
the difference in AEE scores between the models was an insignificant amount with the
number of sample points less than 30. This is explained by the fact that if the sample size
is small, then the high-order effect of the regression function will not be much. However,
the high-order BK model achieved a vast improvement over another model when the data
size increased. Then, the regression function with the high-order effects is represented
as Equations (24) and (25) for 100 and 200 sample points, respectively. Clearly, IBK can
capture the overall trend to the largest variations of the data.

1 + x1x3 + x1 + x4 + x1x4 + x3x4 + x2 + x1x3
2 + x4

1x4
2 + x2x4 + x3

1x2 + x4
1x3 + x2

1x3 + x2
1x4. (24)

1 + x1x4 + x1 + x1x3 + x4
1x3 + x1x2 + x3x4 + x4

1x4
2 + x2 + x4

1x2
3 + x4

2x4 + x1x2
3 + x4

2x2
4. (25)

4.2. Synthetic Test Problems

In this section, nine well-known benchmark problems, in which the number of vari-
ables, constraints, and the best know solutions are given Table 1, are investigated to evaluate
the efficiency of the proposed model. More information about these problems can be seen
in Appendix A and in ref. [28]. Although these optimization problems are not expensive to
evaluate, they are treated as all computationally expensive functions to conduct meaningful
comparisons of the performance of the alternative methods. The obtained results will be
compared with the result of RCGO, FLT-AKM, COBRA-local, COBRA-global, and Con-
strLMSRBF. Therein, the two algorithms RCGO and FLT-AKM are implemented by the
authors following Wu et al. [6] and Shi et al. [35]. In the RCGO method, the distance
coefficient in the first phase is Π = [0.001, 0.005, 0.01, 0.05, 0.1], and Γ = [0, 1, 2, 3, 4] is
the value of the exponent in the second phase. In order to obtain a fair comparison between
the different methods, all the tests are performed in a MatlabTM environment using an
Intel® Core(TM) i5-8500 CPU 3.0 GHz desktop machine (Microsoft, New York, NY, USA).
Each metamodel is run ten times on each test problem to reduce the effect of random error.
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Otherwise, the searching process of the model is terminated when either the maximum
number of evaluation functions is reached or the best result does not improve after 10 itera-
tions. LHS created ten different initial data sets. The differential evolution algorithm (DE)
is employed to find hyper-parameters and the next points in the infill strategy.
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Figure 3. The relationship between flesh elements and thickness values. (a) Cross-validation predic-
tion error of metamodels with different sample size. (b) Validation error of metamodels with different
sample size.
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Table 1. Constrained optimization benchmark problems.

Problems Best Known Value Dimensionality No. Constraints

G24 −5.508 2 2
G8 −0.0958 2 2

Two_bars 0.0309 3 2
Four_bars 1400 4 1

Ibeam 0.0131 4 2
G5MOD 5126.5 4 5

G4 −30,665.539 5 6
Hesse −310 6 6

SR 2994.42 7 11

The obtained results are summarized in Table 2, which provides the average number
of evaluation functions (NEF), objective values of the best solution, median solutions,
and mean solutions found by the six metamodels. Firstly, it is easily seen that RCGO has
failed to indicate the feasible solution for G24, SR in all trials, and G5MOD in three trials.
These are mainly due to the small feasible region, all the initial points are infeasible, or the
incoherent distance coefficients. Clearly, IBK outperformed other algorithms for G24, G8,
Two-bars, G4, Ibeam, and Hesse with the best solution. In addition, the IBK requires fewer
evaluations than other metamodels. Figure 4 provides a graphical illustration of the overall
process of identifying the infill samples of the G24 problem. Firstly, the feasible domain is
discontinuous and includes one global and two local minimums corresponding to peaks
of the feasible domain. All initial sample points are quite analogous to the metamodels
for a fair comparison. Clearly, the infill samples obtained by IBK are distributed near the
peaks of the feasible region as well as the boundary of the constraint set. On the contrary,
the obtained result from FLT-AKM divided two groups of the infill samples, and the
first group concentrates on the infeasible region far from the constrained boundary. This
can easily be explained by the fact that the order of constraints is polynomials of degree
four. Hence, IBK can easily capture the high-order effects compared with Kriging of the
FLT-AKM. Furthermore, our infill strategy allows us to reduce the number of constraint
violations and explore other feasible domains. More specifically, our model requires
only 32 evaluation functions, while FLT-AKM requires 45 analyses for the convergence
performance. This shows that the features of IBK and the combination infill strategy
outperform other well-known existing algorithms.

For the Four-bars test, the obtained results of all these models are similar, and there
are not many differences between the models. It is interesting that, among the problems, it
requires few evaluation functions. Hence, IBK will not show much effect with small sample
points or a simple, feasible domain. It can be observed that the optimal results found by the
COBRA provide the best solution to the G5MOD and SR problems. However, IBK performs
better than FLT-AKM and RCGO in terms of median, mean and best values of feasible
optimum. Note that COBRA and RCGO require the initial data that contain the feasible
points. However, it is difficult to find a feasible point for highly nonlinear problems, which
then leads to failure. Clearly, RCGO could not find a feasible point in all trials for the SR
problem. Although the result achieved from SR by IBK is close to FLT-AKM, IBK shows
stability when the median and mean are close to the best value.
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Figure 4. Optimization process-based infill strategy using IBK and FLT-AKM.

Table 2. Comparison of the obtained results for the test problems.

Test Problems

G24 G8 Four Bars Two Bars Ibeam G5MOD G4 Hesse SR

IBK

Best −5.4669 −0.095 1400 0.031 0.013 5126.5 −30,665.5 −310 3042.2
Median −5.4075 −0.091 1400 0.031 0.014 5135.2 −30,665.5 −310 3051.3
Mean −5.3832 −0.089 1400 0.031 0.014 5167.1 −30,665.5 −310 3053.3
NEF 33.2 46.8 17.4 36.2 60 74.0 24.2 38.6 68.4

FLT-AKM

Best −5.46 −0.095 1400 0.031 0.013 5739.9 −30,611.7 −306.553 3024.4
Median −5.4173 −0.084 1400 0.031 0.015 6157.9 −30,416.8 −297.34 3061
Mean −5.415 −0.085 1400 0.031 0.018 6187.8 −30,411.2 −297.093 3058.5
NEF 34 54.8 17.5 37.8 74.8 59.2 35.2 58.6 59.6

RCGO

Best −0.096 1400 0.031 0.013 5323.5 −30,628.8 −306.428
Median −0.096 1400 0.031 0.014 6099.8 −30,389.5 −294.812
Mean N/A(10) −0.073 1400 0.033 0.016 5992.9 −30,395.3 −296.239 N/A(10)
NEF 51.7 17.2 40.4 67.8 65.4(3) 35 73.2

COBRA-Local Best

-

−0.1

- - -

5126.5 −30,665.5 −309.94 2994.4
Median −0.1 5126.51 −30,665.2 −297.87 2994.7

[28] Mean −0.09 5126.51 −30,665.1 −296.25 2994.7
NEF 50 50 50 50 50

COBRA-Global Best

-

−0.1

- - -

5126.5 −30,665.4 −309.97 2994.7
Median −0.1 5126.51 −30,664.9 −297.87 2994.7

[28] Mean −0.09 5126.62 −30,664.9 −296.25 2994.7
NEF 50 50 50 50 50
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4.3. Structural Design Optimization

Finally, the proposed model is applied to perform the shape optimization of truss
structures. This benchmark problem has been previously analyzed by Shao [48] and Supray-
itno [49] using the clustering-based surrogate model and Kriging, respectively. A 21-bars
planar truss shown in Figure 5 is investigated for design optimization. Coordinates of all
free nodes are treated as continuous design variables. The design aim is to maximize the
truss performance, which is defined as the maximum load ratio (Fmax) that the truss can
carry to the self-weight of the truss (W). The structure is subjected to stress and stability
ratio constraints. The stress limitations of all members are the same for tension and com-
pression and set to 200 MPa. The cross-sectional areas of all bars are 25 cm2. The number of
initial sample points is set at 14 [48]. Here, the critical buckling stress Scr,i = π2E/(Le,i/ρ)2.
Whereas E and ρ are Young′s modulus of the truss material and the radius of gyration of
the truss bar, respectively. It can be formulated as follows

Maximize
Fmax

W
= f (x1, x2, x3, y3, x4, y4, y6),

subjectedto {σt, σc} 6 σa,
σc,i

Scr,i
6 1,

0.8 6 x1, x3, y3, y4, y6 6 3 m,

3.3 6 x2, x4 6 5.5 m.

(26)

The number of maximum evaluation functions is set to 100 for all models. The obtained
optimal results are listed in Table 3 and Figure 6. It can easily be seen that IBK found the
best feasible solution, where the objective value is 25.8541, while the maximum tensile stress
and maximum compressive stress are 94.21 and -115.701 Mpa, respectively. In addition,
IBK significantly decreased the number of simulations. These have demonstrated that IBK
can solve expensive black-box structure design optimization problems effectively.

Table 3. Comparison of the obtained results for the 21-bars planar truss.

Design Variables IBK FLT-AKM RCGO CMLS [48] EORKS [49]

x1 3 3 2.98 2.37 3
x2 4.31 4.251 4.19 4.174 4.209
x3 1.907 1.91 1.91 1.877 1.902
y3 2.267 2.275 2.278 1.721 2.285
x4 4.218 4.218 4.237 4.024 4.222
y4 1.706 1.708 1.705 1.438 1.709
y6 2.723 2.702 2.624 2.186 2.644

Best 25.85 25.46 24.72 22.79 25.66
Median 25.27 25.21 23.46 - -
Mean 25.36 25.33 23.75 - -
NFE 55.6 65.7 72.3 95 87
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x 

5 2 1 
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Figure 5. A 21-bars planar truss structure.
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Figure 6. Comparison of optimal shapes of the 21-bars planar truss obtained by IBK.

5. Conclusions

In this study, an improved surrogate blind Kriging combined with the new infill
strategy is introduced to solve the constrained expensive black-box optimization problems.
According to that core idea, the high-order effects of the trend function are identified from
the training data using the Bayesian variable selection method. Simultaneously, the novel
infill strategy based on the probability of feasibility, penalization, and constrained expected
improvement is constructed to reduce the number of constraint violations, explore other
feasible domains, and handle the discontinuous design domain. The efficiency of the
proposed approach is demonstrated through several numerical examples for synthetic test
problems and shapes the optimization of the truss structure. The obtained results have
indicated that the optimum solution obtained by this work is in good agreement with ten
of the eleven tests. The proposed model saves a number of evaluation functions in almost
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all problems in comparison with other metamodels. In addition, it is also shown that the
IBK predictor is simpler to interpret and is more robust than an ordinary Kriging predictor.
This proved to be an efficient model for solving real-world engineering problems. Hence,
it promises to be robust and effective at resolving complex problems in the expensive
optimization of a complex design domain.

Author Contributions: H.T.M.: conceptualization, formal analysis, investigation, methodology,
software, writing—original draft, visualization, writing—review and editing. J.L. (Jaewook Lee):
data curation, validation. J.K.: data curation, validation. H.N.-X.: review, validation. J.L. (Jaehong
Lee): conceptualization, methodology, supervision, funding acquisition. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by a grant (NRF- 2020R1A4A2002855) from NRF (National
Research Foundation of Korea) funded by MEST (Ministry of Education and Science Technology) of
the Korean government.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Appendix A

G5MOD [28]:
min f (x) = 3x1 + 10− 6x3

1 + 2x2 + (2× 10−6/3)x3
2

s.t. g1(x) = x3 − x4 − 0.55 6 0

g2(x) = x4 − x3 − 0.55 6 0

g3(x) = 1000sin(−x3 − 0.25) + 894.8− x1

+1000sin(−x4 − 0.25) 6 0

g4(x) = 1000sin(x3 − 0.25) + 894.8− x2

+1000sin(x3 − x4 − 0.25) 6 0

g5(x) = 1000sin(x4 − 0.25) + 1294.8

+ 1000sin(x4 − x3 − 0.25) 6 0

0 6 x1, x2 6 1200; −0.55 6 x3, x4 6 0.55

Hesse [28]:
min f (x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2

−(x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2

s.t. g1(x) = (2− x1 − x2)/2 6 0

g2(x) = (x1 + x2 − 6)/6 6 0

g3(x) = (2− x1 + x2)/2 6 0

g4(x) = (x1 − 3x2 − 2)/2 6 0

g5(x) =
(

4− x4 − (x3 − 3)2
)

/4 6 0

g6(x) =
(

4− x6 − (x5 − 3)2
)

/4 6 0

0 6 x1 6 5; 0 6 x2 6 4; 1 6 x3,5 6 5;

0 6 x4 6 6; 0 6 x6 6 10

G4 [28]:
min f (x) = 5.3578547x2

3 + 0.8356891x1x5

+37.293239x1 − 40792.141
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s.t. g1(x) = −u 6 0;

g2(x) = u− 92 6 0

g3(x) = −v + 90 6 0;

g4(x) = v− 110 6 0

g5(x) = −w + 20 6 0;

g6(x) = w− 25 6 0

u = 85.334407 + 0.0056858x2x5

+ 0.0006262x1x4 − 0.0022053x3x5

v = 80.51249 + 0.0071317x2x5

+ 0.0029955x1x2 + 0.0021813x3
2

w = 9.300961 + 0.0047026x3x5

+ 0.0012547x1x3 + 0.0019085x3x4

78 6 x1 6 102; 33 6 x2 6 45;

27 6 xi 6 45 f or i = 3, 4, 5
G24 [28]:
min f (x) = −x1 − x2

s.t. g1(x) = −2x4
1 + 8x3

1 − 8x2
1 + x2 − 2 6 0

g2(x) = −4x4
1 + 32x3

1 − 88x2
1 + 96x1

+x2 − 36 6 0

0 6 x1 6 3; 0 6 x2 6 4

Ibeam [28]:

min f (x) =
5000

1
12 x3(x1 − 2x4)

3 + 1
6 x2x3

4 + 2x2x4

(
x1−x4

2

)2

s.t. g1(x) = 2x2x4 + x3(x1 − 2x4) 6 300

g2(x) =
180000x1

x3(x1 − 2x4)
3 + 2x2x4

(
4x2

4 + 3x1(x1 − 2x4)
)

+
15000x2

(x1 − 2x4)x3
3 + 2x3

2x4
6 6

10 6 x1 6 80; 10 6 x2 6 50; 0.9 6 x3,4 6 5

SR [28]:
min f (x) = 0.7854x1x2

2 A− 1.508x1B

+ 7.477C + 0.7854D

s.t. g1(x) = (27− x1x2
2x3)/27 6 0

g2(x) = (397.5− x1x2
2x2

3)/397.5 6 0

g3(x) = (1.93− (x2x4
6x3)/x2

4)/1.93 6 0

g4(x) = (1.93− (x2x4
7x3)/x3

5)/1.93 6 0

g5(x) = ((A1/B1)− 1100)/1100 6 0

g6(x) = ((A2/B2)− 850)/850 6 0

g7(x) = (x2x3 − 40)/40 6 0

g8(x) = (5− (x1/x2))/5 6 0

g9(x) = ((x1/x2)− 12)/12 6 0

g10(x) = (1.9 + 1.5x6 − x4)/1.9 6 0

g11(x) = (1.9 + 1.1x7 − x5)/1.9 6 0
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A = 3.3333x2
3 + 14.9334x3 − 43.0934;

B = x2
6 + x2

7; C = x3
6 + x3

7; D = x4x2
6 + x5x2

7

A1 = [(745x4/(x2x3))
2 + (16.91× 106)]0.5

A2 = [(745x5/(x2x3))
2 + (157.5× 106)]0.5

B1 = 0.1x3; B2 = 0.1x3

2.6 6 x1 6 3.6; 0.7 6 x2 6 0.8

17 6 x3 6 28; 7.3 6 x4, x5 6 8.3

2.9 6 x6 6 3.9; 5.0 6 x7 6 5.5
G8 [28]:

min f (x) =
−sin3(2πx1)sin(2πx2)

x3
1(x1 + x2)

s.t. g1(x) = x2
1 − x2 + 1 6 0

g2(x) = 1− x1 + (x2 − 4)2 6 0

0 6 x1, x2 6 10

Four-bar truss [50]:
The objective here is to minimize the total structural volume subject to the stress

constraints on the members as in Figure A1.
min

(
2a1 +

√
2a2 +

√
2a3 + a4

)
s.t.

FL
E

(
2
a1

+
2
√

2
a2
− 2
√

2
a3

+
2
a4

6 0.04

)
1 6 a1,4 6 3;

√
2 6 a2,3 6 3

L = 200 cm; F = 10 kN; E = 200,000 kN/cm2
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Figure A1. Four-bar truss.

Two-bar truss [50]:
The objective here is to minimize the total structural volume under stress constraints

on member cross-sectional areas as in Figure A2.

min
(

a1

√
b2 + L2 + a2

√
L2 + (2L− b)2

)
s.t.

W2b(2L− b) + W1Lb
2L2a1

6 Smax

(W2b−W1L)
√

L2 + (2L− b)2

2L2a2
6 Smax

5.16 6 a1,2 6 19.4 cm2; 9.144 6 b 6 27.432 m

W1 = 445 kN; W2 = 4450 kN

L = 18.288 m; Smax = 3.79× 106 kN/m2
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Figure A2. Two-bar truss.
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