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Abstract: Personal Identification Numbers (PIN) and unlock patterns are two of the most often
used smartphone authentication mechanisms. Because PINs have just four or six characters, they
are subject to shoulder-surfing attacks and are not as secure as other authentication techniques.
Biometric authentication methods, such as fingerprint, face, or iris, are now being studied in a variety
of ways. The security of such biometric authentication is based on PIN-based authentication as
a backup when the maximum defined number of authentication failures is surpassed during the
authentication process. Keystroke-dynamics-based authentication has been studied to circumvent
this limitation, in which users were categorized by evaluating their typing patterns as they input
their PIN. A broad variety of approaches have been proposed to improve the capacity of PIN entry
systems to discriminate between normal and abnormal users based on a user’s typing pattern.
To improve the accuracy of user discrimination using keystroke dynamics, we propose a novel
approach for improving the parameters of a Bidirectional Recurrent Neural Network (BRNN) used
in classifying users’ keystrokes. The proposed approach is based on a significant modification to
the Dipper Throated Optimization (DTO) algorithm by employing three search leaders to improve
the exploration process of the optimization algorithm. To assess the effectiveness of the proposed
approach, two datasets containing keystroke dynamics were included in the conducted experiments.
In addition, we propose a feature selection algorithm for selecting the proper features that enable
better user classification. The proposed algorithms are compared to other optimization methods
in the literature, and the results showed the superiority of the proposed algorithms. Moreover, a
statistical analysis is performed to measure the stability and significance of the proposed methods,
and the results confirmed the expected findings. The best classification accuracy achieved by the
proposed optimized BRNN is 99.02% and 99.32% for the two datasets.

Keywords: meta-heuristic optimization; feature selection; keystroke dynamics; smartphone;
authentication; Dipper Throated Optimization; Bidirectional Recurrent Neural Network
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1. Introduction

Devices of the Internet-of-Things (IoT), such as smartphones, are expected to play a
significant role in the future of intelligent cities as crowd-sensing entities [1]. Increased
smartphone usage necessitates greater security and privacy protection measures. Personal
Identification Numbers (PIN) and unlock patterns are popular authentication techniques
for cellphones because of their high level of security. However, PINs have just four or six
characters. Therefore, they are subject to shoulder-surfing attacks and are not as secure
as other authentication techniques. Several biometric recognition approaches have been
developed to overcome this constraint and authenticate a typical users using their unique
biometric information. It is possible for a smartphone to learn unique information about its
user, such as the user’s face [2], fingerprint [3], or iris [4] data; PIN-based authentication,
on the other hand, is required as the final step in the authentication process if the user
cannot correctly enter their biometric recognition information or reaches the maximum
number of attempts previously defined. If an intruder obtains knowledge of a user’s
Personal Identification Number (PIN), the smartphone will grant the intruder access during
the PIN-entry phase.

When a person types in their PIN, their typing patterns are analyzed and used to clas-
sify them according to the keystroke-dynamics-based authentication system. Researchers
have been successful in preventing such breaches of security. In addition, several studies
have been conducted to improve the classification performance of these methods. These
studies have focused on diversifying the features extracted from typing patterns, employ-
ing artificial rhythms to facilitate user classification, or utilizing an appropriate classifier
for binary classification. Over the past few decades, multiple optimization approaches
have been gradually developed for handling challenging optimization problem in different
fields. The optimization algorithms are based on various inspirations from different aspects
such as nature [5], art [6], and physics [7], which are applied for different fields of study [8–
10]. In addition, meta-heuristic algorithms are used for the parameter optimization of
some methods.

In contrast to currently used methodologies, the method proposed in this paper was
aimed to increase the classification performance of the regular user by utilizing the meta-
heuristic optimization applied to the Bidirectional Recurrent Neural Network (BDRNN).
The parameters of BDRNN are optimized using a new optimization algorithm based on
the Dipper Throated Optimization (DTO) with dynamic weights assigned to three search
leaders instead of one to improve the optimization results. Following feature selection and
preprocessing, the data obtained from two keystroke dynamics datasets were employed
for assessing the proposed algorithm. The achieved results were then compared to those
of the other optimization and machine learning techniques to prove the superiority of
the proposed approach. The findings showed that the proposed method improved user
categorization in analytical and practical aspects.

The remainder of this paper is organized as follows. Section 2 presents the literature
review of the previous studies on user authentication using keystroke dynamics. Then,
Section 3 discusses the keystroke dynamics used to collect and extract feature data in order
to increase classification accuracy. The proposed optimization methodology is discussed
in detail in Section 4, which focuses on the proposed algorithm and its guiding concepts.
The conducted experiments and the achieved results are detailed in Section 5, where they
are also contrasted and examined in terms of performance. The conclusions and future
research areas are presented in Section 6.

2. Literature Review

The previous studies on user authentication and categorization using keystroke dy-
namics are covered in this section.

Users are progressively storing sensitive information (such as passwords of bank
accounts, text messages, and PIN codes) on smartphones as they grow more integrated
into our everyday lives. Research on the PIN entry method using random keypads rather
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than the current conventional keypads has been carried out to safeguard and protect such
sensitive information from various dangers. A random keypad in a mobile setting was
used to test the time it required to finish four and eight digit numbers in a research work
from 2010 [11]. This system’s accuracy was compared to that of a standard keypad by
counting how many keystrokes were correctly made. When entering four-digit numbers,
the random keypad took nearly a second longer to complete each input, yet the mistake
rate was just 0.01% higher, indicating a better performance. There was a 0.03% increase
in the mistake rate while typing eight-digit figures, which took an additional 3 seconds to
complete each input.

A common form of behavioral biometrics is “keystroke-dynamics-based authentica-
tion,” and it works by recognizing users based on the patterns and rhythms of their typing.
This information is obtained while the users are typing on computer keyboards or the
touchscreens of their smartphones. Since 1975, the practice of authenticating a person using
keystroke dynamics has been in use [12], when this notion was initially introduced as an
approach to identifying a user based on their typing habits. Classes with a False Rejection
Rate (FRR) and a False Acceptance Rate (FAR) of 12% and 6%, respectively, were achievable
in classification tests using this keystroke-based approach in 1985 [13]. Measured and
retrieved from keyboard inputs, the amount of time between each keystroke was measured
and used as a factor in the authentication process.

Keystroke-data-based user categorization performance can be improved by increasing
the number of training datasets and normalizing the data gathered [14]. After having each
of the thirty people who participated in the test enter 10 characters 20 times, the resulting
data were normalized using user-dependent and user-independent methods. To complete
each classification test successfully, it was essential to use varying amounts of practice
data (5 to 10 data points out of the 20 collected data for each subject). The best results
were obtained when the number of training data sets for each individual was set to 10,
with an Equal Error Rate (EER) of 14.46%. When it comes to user authentication apps, this
keystroke dynamics notion has been applied both on a PC and mobile device. Mobile phone
numbers and four-digit PINs were classified using keystroke dynamics in a smartphone
authentication investigation conducted in 2002 [15]. It was used as a data feature to
determine the average amount of time required to input all of the specified keys and the
standard deviation of the amount of time and the amount of delay time that occurred
between each keystroke, achieving an EER of 15% for the 4-digit PINs.

In a study conducted in 2018, researchers attempted to identify people based on
data collected by a smartphone’s motion sensor [16]. It was found that the motion data
had a significant impact on the outcomes. Three different types of motion sensors were
included in this design, namely, acceleration sensors, angular velocity sensors, and rotation-
vector sensors. Calculations were performed based on the data collected by each sensor
in order to determine the averages, standard deviations, sums of positive and negative
integers, and the root mean square. This approach achieved an EER of 8.94% using user
categorization findings without motion sensor information. The mean feature, which is
based on motion sensors, decreased that amount by 1.05% to 7.89%. The motion sensor-
based features performed best with the mean feature. These findings showed that using
motion sensor feature data to enhance user categorization performance was achievable.

It has recently been used in various contexts in several studies. Keystroke dynamics
studies from free text, as opposed to those that use fixed-length elements such as passwords
or PINs, are among them [17,18]. Others include studies that continuously classify a
user’s keystroke dynamics [18–20] and studies that take into account different types of
typing postures such as relaxing positions, walking, and sitting [21]. There has been a
lot of interest in biometric-based user authentication in addition to keystroke dynamics-
based authentication. Recent attention has been paid to authentication methods based
on electroencephalogram information as part of the attempt to address the limitations of
existing biometric authentication systems, such as biometric information forgery [22] and
Electrocardiogram (ECG) [23] information.
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Keypad side-channel keystroke inference attacks may be mitigated using several
techniques, such as [24]. The keypad buttons might be rearranged and increased in size,
for example. The following are some effective defenses against side-channel keystroke
inference attacks that were proposed in the study: Individual Key Randomization (IKR),
Column Randomization (CR), Row Randomization (RR), and gray-scale IKR are all exam-
ples of keypad button randomization.

As part of an experiment conducted in 2019, test respondents were asked to type
fixed PINs into a random keypad that was supposed to vary every round [25]. Based on
the acquired data, the performance of user categorization was evaluated and examined.
A random keypad was used to generate 10 rounds of PINs for the 30 participants. As a
result of the inputted information, a random forest classifier was used to gather 32 different
features (such as the amount of time it takes to press and release a single button), which
were then used to create a classification model. The EER was found to be 10% as a result.
However, the previous research [11,25], in contrast to our study, which provides a keypad
that gathers unique qualities that reflect just regular humans, random keypad approaches
could not easily acquire data on special features to categorize normal users efficiently. As an
extra precaution against malicious keystroke inference attacks, one research [24] looked at
the effectiveness of randomized keypads. Their goal is to determine whether or not the
usage of distinct keypads helps to distinguish normal users from aberrant ones in a more
accurate fashion.

Keystroke data may be used to identify typical and problematic smartphone users,
according to the current research. An experiment in which participants were requested to
type the four-letter key “abcd” in order to collect time vector data in the form of duration
and interval time took place in [26]. Finally, feature selection strategies were explored
based on the results of a genetic algorithm. Particle Swarm Optimization (PSO) was used
to gather time vector data from 24 participants in a 2007 research as they input the four-
digit key “abcd” [27]. Methods for selecting the best features for categorization were
investigated. Twenty-two test individuals had passwords that were distinct from one
another in [28]. Mean and standard deviations were calculated for each of the features
derived from the gathered data: digraph, latency, and duration. They sought to employ
Ant Colony Optimization (ACO) to enhance user categorization performance based on the
measured data. To test and compare classification performance based on data obtained
from 27 participants in [29], a variety of feature selection approaches were used, including
PSO, ACO, Genetic Algorithm (GA), and Gravitational Search Algorithm (GSA). It was
found that the accuracy ranged from 88.9% to 92.8%, with an EER of 0.063%, to 0.078%,
and to 0.059%. In [30], Several methods were tried to categorize users, including the most
often typed n-graph selection, the fastest typed n-graph selection, the time stability typed
n-graph sample, and the time variation typed n-graph model. The most typically written
n-graph selection strategy produced the best user classification results. In a 2020 study,
feature scores were computed and evaluated using the data’s trimmed mean and variance
coefficients. Low-scoring elements were eliminated to improve classification accuracy [31–
33]. A summary of the relevant studies in the literature addressing the task of smartphone
user authentication is presented in Table 1.

Table 1. Summary of the relevant articles published in the literature.

Ref. Methodology Result

[12] Keystroke dynamics False FRR = 12%, FAR = 6%
[15] Keystroke dynamics EER = 15%
[16] Motion sensors EER = 8.94%
[25] Random keypad EER = 10%
[34] Unique Keypad EER = 4.15%
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3. Keystroke Dynamics

“Keystroke dynamics” refers to the typing patterns or action types that emerge when a
user hits the keys on a computer or smartphone. Keystroke dynamics-based authentication
is a method of classifying people based on their typing patterns. During the authentication
phase, data can be acquired from the user’s repetitive presses and releases of the smart-
phone screen. The time it takes to press and release each key, as well as the movement of
the smartphone while the keys are pressed, are all examples of valuable data. Using the
keystroke data acquired, it is possible to establish keystroke-dynamics-based authentication.
Touch data and motion data may be used to separate keystroke data, which can then be
analyzed based on various parameters.

3.1. Touch Information

Touch data are frequently collected when users touch the smartphone screen (key-
Down) and remove their fingers from the screen (keyUp). We need to know how long it
takes between touches on the smartphone screen, how much pressure the finger applies,
and where the finger is positioned on the screen when the smartphone key is pressed and
released to collect this data.

3.1.1. Dwell Time

The Dwell Time (DT) is a measure of how long it takes for a user to enter a single key,
as shown in Figure 1. According to Equation (1), the DT may be deduced from the recorded
keyDown and keyUp data:

N.Release− N.Press = DTn (1)

Figure 1. Time feature structure [34].

3.1.2. Flight Time

When two keys are pressed, the Flight Time (FT) is calculated using the keyDown and
keyUp data. Equation (2) is used to calculate the FT for each feature, whereas Equation (1)
presents four FT features.

Flight Time = N.Release−Y.Press (2)
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3.1.3. Pressure

Pressure data are captured when a user presses down on the screen and then lifts
their finger off of it. A user’s down pressure data correspond to their finger contacting the
screen, while their up pressure data correspond to removing their finger from the screen.

3.1.4. Coordinates

A coordinate data recorder is activated every time a user pushes on an area of the
screen and then takes their finger off it. It is upX and upY features that are gathered when
a user removes their finger from the screen; downX and downY are collected when a user
pushes the screen.

3.1.5. Motion Data

The smartphone is tracked while the user presses the keys on the screen to gather
motion data. The x-, y-, and z-axis coordinates are used to measure the motion data.
On the x-axis, the smartphone moves to the left and right, while on the y- and z-axes,
the smartphone moves to the left or right, as illustrated in Figure 2. An acceleration,
angular velocity and rotation vector are the three main categories of motion data that may
be found in the data.

Figure 2. Motion data of smartphone reference axis [34].

3.1.6. Accelerometer

Gravitational acceleration is most commonly detected via acceleration sensors, which
may be used to estimate an object’s tilt or vibration level. With this property, the acceler-
ation is quantified. While not in use, a smartphone is still subjected to gravity’s effects,
which must be considered while extracting linear acceleration. The Accelerometer (acc) is
used to denote acceleration, whereas Linear Acceleration (lacc) is denoted by the Linear
Accelerometer (la).
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3.1.7. Angular Velocity

Angles per hour around a certain axis can be measured by using the angular velocity
sensor. The angular velocity may be determined using this feature. Gyroscope is the unit of
measure used to describe the rate of change in the angular velocity.

3.1.8. Rotation Vector

The smartphone’s rotational axes are depicted graphically by the rotation vectors.
A geomagnetic sensor is used to determine the orientation of the smartphone. The north
pole influences the rotation vectors detected by a geomagnetic sensor. Rotation vectors are
computed instead of utilizing geomagnetic sensor measurements to remove the effect of
the north pole. Just like in determining acceleration and angular velocity, the accelerometer
and gyroscope data are employed. The letter rot denotes the rotation vectors, but the word
game rotation represents the vectors for game rotation.

4. The Proposed Methodology

The proposed methodology is based on optimizing the parameters of Bidirectional
Recurrent Neural Network (BRNN) using a modified Dipper Throated Optimization (DTO)
algorithm. This section starts with presenting the basics of BRNN and DTO followed by
presenting the proposed algorithm.

4.1. Bidirectional Recurrent Neural Network (BRNN)

There are two parts to the concept of a Bidirectional Recurrent Neural Network. One
part is responsible for forward states (forward neurons), and the other for backward states
(backward states). Forward states’ outputs are not coupled to backward states’ inputs; the
reverse is also true. According to Figure 3, this leads to the broad structure depicted in
three time steps. This structure may be reduced to a typical unidirectional forward RNN
without the backward states. They are reversing the time axis results in a regular RNN
when forward states are removed. In contrast to the regular unidirectional RNN discussed
above, the objective function can be directly minimized using input data from the past
and future of the currently evaluated time frame without the need for delays to include
future information because the same network handles both time directions citeBDRNN1,
BDRNN2, BDRNN3. Figure 3 displays the typical structure of a BDRNN at three time steps,
t− 1, t, and t + 1, for clarity. In the bottom section, information flows from left to right to
represent the past, while in the top part, information flows from right to left to represent
the future. Ot is based on both the future and the past output symbolized by hb

t and h f
t ,

respectively, at the process of the computation. In order to train BRNN, a specified time
period’s input information is used.

BDRNN can be trained using the same techniques as the traditional RNN because
the two types of neurons in the BRNN architecture do not interact. BRNN’s feed-forward
structure is unfolded as a result of this process. A more complicated process is required
when using back-propagation since the state and output changes cannot be performed one
at a time. A Multi-Layer Perceptron (MLP) network may be updated in a similar way to the
Back-Propagation Through Time (BPTT) networks. For the forward t = 1 and backward
t = T states, the values of the inputs are set to 0.5. The values of the forward and backward
local state derivatives at t = T and t = 1 states, on the other hand, are set to zero since it is
assumed that information beyond this point is not important for the update carried out at
the present state.
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Figure 3. Typical Structure of Bidirectional Recurrent Neural Network shown at step three.

4.2. Dipper Throated Optimization (DTO)

It is assumed that a flock of birds is swimming in search of food through the DTO
algorithm. Each of the following matrices can be used to represent the birds’ locations
(represented by a matrix denoted by P) and velocities (represented by a matrix denoted by
V) [35–37]. DTO can search for the best solution in the given search space based on these
measures. The detailed steps of the traditional DTO algorithm are presented in Algorithm 1.
The following matrices give more insight into the calculations of the DTO algorithm.

Algorithm 1 The Dipper Throated Optimization algorithm

1: Input population, size, fitness function
2: Output best agent position
3: Initialize positions Pi(i = 1, 2, . . . , n), velocities Vi(i = 1, 2, . . . , n), and fitness function h.
4: Initialize iterations Mt, r1, r2, K1, K2, K3, K4, K5, R, t = 1
5: Get h for each agent Pi
6: Find best solution Pbest
7: while t ≤ Mt do
8: for (i = 1 : i < n + 1) do
9: if R < 0.5 then

10: Update agent position
11: else
12: Update agent velocity
13: Update agent position
14: end if
15: end for
16: Get h for each agent Pi
17: Update K1, K2, R
18: Set PGbest = Pbest
19: end while
20: Return PGbest
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P =


P1,1 P1,2 P1,3 . . . P1,d
P2,1 P2,2 P2,3 . . . P2,d
P3,1 P3,2 P3,3 . . . P3,d
. . . . . . . . . . . . . . .

Pm,1 Pm,2 Pm,3 . . . Pm,d

 (3)

V =


V1,1 V1,2 V1,3 . . . V1,d
V2,1 V2,2 V2,3 . . . V2,d
V3,1 V3,2 V3,3 . . . V3,d
. . . . . . . . . . . . . . .

Vm,1 Vm,2 Vm,3 . . . Vm,d

 (4)

where the ith bird in the jth dimension is denoted by P(i,j) for i ∈ 1, 2, 3, . . . , m and j ∈
1, 2, 3, . . . , d. The bird’s speed in the jth dimension for i ∈ 1, 2, 3, . . . , m and j ∈ 1, 2, 3, . . . , d is
referred to as V(i,j). There is a uniform distribution of the initial positions of P(i,j). For each
bird, the values of the fitness functions f = f1, f2, f3, . . . , fn are determined using the
array below:

f =


f1(P1,1, P1,2, P1,3, . . . , P1,d)
f2(P2,1, P2,2, P2,3, . . . , P2,d)
f3(P3,1, P3,2, P3,3, . . . , P3,d)

...
fm(Pm,1, Pm,2, Pm,3, . . . , Pm,d)

 (5)

where each bird’s quest for food is reflected in its fitness score, and the mother bird is the
superior value. Sorting is performed by ascending the values. Pbest has been proclaimed
the first-best solution. Normal birds Pnd are meant to be used as follower birds. PGbest has
been named the world’s best solution. The optimizer’s first DTO technique for updating
the swimming bird’s position is based on the following equations that update the position
and speed of the individuals in the population:

X = Pbest(i)− K1.|K2.Pbest(i)− P(i)| (6)

Y = P(i) + V(i + 1) (7)

P(i + 1) =

{
X if R < 0.5
Y otherwise

, (8)

V(i + 1) = K3V(i) + K4r1(Pbest(i)− P(i))

+ K5r2(PGbest − P(i))
(9)

where i is the iteration number in which P(i) is the average bird position, Pbest(i) is the
position of the best bird, and V(i + 1) is the bird’s speed at iteration i + 1. K1, K2, and K3
are weight values, and K4 and K5 are constants. r1, r2, and R are random values in the range
[0, 1].

4.3. The Proposed Dynamic Weighted DTO Algorithm

The proposed modified DTO optimization algorithm is based on Dynamic Weighted
DTO and is referred to as (DWDTO) algorithm. The proposed algorithm divides the
population into two groups: the exploration group and the exploitation group. In the
traditional DTO, the exploration group is based on only one leader solution that explores
the search space for finding the best solution. In the proposed algorithm, the leader
solution works in collaboration with three other solutions to improve the exploration
group’s performance and reach the best solution faster. The detailed steps of the proposed
algorithm are listed in Algorithm 2, and the coming sections discuss the main parts of the
proposed algorithm.
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Algorithm 2 The Proposed DWDTO Algorithm

1: Input population Xi, (i = 1, 2, . . . , n), size n, and objective function Fn
2: Output best agent position
3: Initialize DWDTO configuration parameters
4: Function Fitness_Func (Solution P)
5: Calculate and return fitness of P
6: End Function
7: Set t = 1
8: while t < iter_Num do
9: Calculate objective function Fn for each agent Xi

10: Set N = best agent position
11: Randomize g1, g2, g3

12: Update
−→
f (t + 1) using Equation (10).

13: Decrease h exponentially from 1 to 0
14: In each group: Update the number of solutions
15: if the best fitness from the previous 4 iterations did not improve then
16: Increase in the exploration group solutions number
17: end if
18: for each solution in the exploration group do
19: update f g1, f g2, f g3 and N
20: The best solutions were elitism
21: if N < any of the best solutions then
22: Mutate the solution by
23: f(t+1) = k + ∑(( f g1)+(z∗ f go2)+(k∗ f g3))

2k

24: k = 1− zt2

iters_count2

25: k decreases exponentially from 2 to 0 over the course of iterations,
26: else
27: Search around current solution

28: P(i + 1) =

{
Pbest(i)− K1.|K2.Pbest(i)− P(i)| if R < 0.5
P(i) + V(i + 1) otherwise

29: end if
30: end for
31: for each solution in the exploitation group do
32: The best solutions were elitism
33: update f g1, f g2, f g3 and N
34: if N < any of the best solutions then
35: Move towards the best solution
36: f (t + 1) = (g1 ∗ f o1(t) + z ∗ g2 ∗ ( f g2(t)− f g3(t))) + (1− h) ∗ g3 ∗ (leader(t)−

xr1(t))
37: else
38: Search around the best solution
39: V(i + 1) = K3V(i) + K4r1(Pbest(i)− P(i)) + K5r2(PGbest− P(i))
40: end if
41: end for
42: Update fitness
43: Update solutions
44: end while
45: Return best agent position N

4.3.1. Exploration Group

This group is responsible for the exploration task for finding a promising point in the
search space. In addition, it is responsible for avoiding becoming stuck in local optima,
and to achieve that, the DWDTO uses two strategies. This step is applied to guarantee the
population’s diversity, allowing the DWDTO to search in different search spaces. In this
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step, three random solutions are generated and guided by the leading solution to provide a
better exploration of the search space. In this case, the objective function is measured using
the following equations:

−→
f (t + 1) = (−→g1 ∗

−→
f o1(t)

+−→z ∗ −→g2

∗ (
−→
f o2(t)−

−→
f o3(t)))

+ (1−
−→
h ) ∗ −→g3

∗ (leader(t)−
−→
f o1(t))

(10)

where h decreases exponentially from 1 to 0, and f g1, f g2, and f g3 are three random
solutions:

−→g1 = rand(−1, 1),−→g2 = rand(0, 1),−→g3 = rand(−2, 2). (11)

The candidate searching around the promising areas in the search space is performed
by finding the best fitness using the following equations:

−→
D = r1(

−→
V (t)− 1) (12)

−→
V (t + 1) =

−→
V (t) +

−→
D (2−→r 2 − 1) (13)

P(t + 1) =

{
Pbest(i)− K1|K2Pbest(i)− P(i)| if R < 0.5
P(i) + V(i + 1) otherwise

(14)

4.3.2. Exploitation Group

This group is responsible for finding the candidate solutions around the best solutions
found so far. Searching around the best solution targets finding a much better solution.
This search process is performed using the following formulation:

−→
D =

−→
P (t) ∗ (−→K − r4) (15)

−→
V (t + 1) =

−→
V (t) +

−→
D .(2−→r 5 − 1) (16)

−→
K = 1− 2k ∗ Xt2

Solutions− count2 (17)

V(i + 1) = K3V(i) + K4r1(Pbest(i)

− P(i)) + K5r2(PGbest − P(i)) (18)

where i is the iteration number, in which P(i) is the average bird position, Pbest(i) is the
position of the best bird, and V(i + 1) is the bird’s velocity at iteration i + 1. K1, K2, and K3
are weight values, and K4 and K5 are constants. r1 and r2 are random values in the range
[0, 1].

4.3.3. Balance between Exploration and Exploitation

Maintaining the proper balance between exploration and extraction is critical to the
success of the proposed DWDTO algorithm. After assigning 50% of the population to
exploration and the other 50% to exploitation, the algorithm adjusts accordingly in the
beginning. Figures 4 and 5 depict the dynamic balancing between the exploration and
exploitation groups in the proposed approach. To begin with, having a large number of
persons in the exploration group helps with discovering new areas of the search space.
Exploitation individuals grow in quantity over time, whereas exploration persons decrease
dynamically over time. This allows more people to enhance their overall fitness by allowing
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additional exploitation of individuals to improve their overall fitness. It also utilizes an
elitism method to keep the process’s leader in place if no better solution can be found for
fresh populations, assuring convergence. A DWDTO exploration group may expand to
include more members when the leader’s fitness level does not improve enough to prevent
local optima and stagnation issues after three consecutive runs.

Figure 4. The exploration exploitation balance during the optimization process.

Figure 5. The balance dynamic between exploration and exploitation groups in the proposed opti-
mization algorithm.
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4.3.4. Binary Optimizer

In order to choose the best set of features to improve the classification accuracy,
the output of the proposed DWDTO is transformed into binary {0, 1} using the sigmoid
function represented by the following equation:

P(t+1)
b =

{
1 if Sigmoid(PBest) ≥ 0.5
0 otherwise

,

Sigmoid(PBest) =
1

1 + e−10(PBest−0.5)

(19)

where PBest refers to the best position, and t is the iteration number. The fitness func-
tion employed to measure the goodness of the candidate solution of selection features is
represented by the following equation:

Fn = w1Error(P) + w2
Number o f selected f eatures

Total number o f f eatures
(20)

where P is a solution, w1 ∈ [0, 1], and w2 = 1 − w1, which are used to manage the
importance of the number of the selected feature for population with size n and the
classification error rate. The steps of the proposed feature selection algorithm are presented
in Algorithm 3.

Algorithm 3 The proposed feature selection algorithm (binary bDWDTO)

1: Input population, size, fitness function
2: Output best set of features
3: Initialize Set DWDTO parameters
4: Calculate objective function and select best solutions
5: Convert solutions to binary {0, 1}
6: Train k-NN and calculate error
7: Set t = 1, Maxiter = 100
8: while t ≤ Maxiter do
9: Apply DWDTO algorithm

10: Convert solutions to binary
11: Calculate Fitness
12: Update Positions
13: end while
14: Return X∗

5. Experimental Results

The assessment of the proposed algorithms is performed in terms of two datasets.
Firstly, the mobile KeyStroke Dynamics (KSD) Data Set [38] of which the first scenario
denotes the experimental results. Secondly, the touch-screen-phone-based keystroke dy-
namics dataset [39], of which the second scenario represents the experimental results.
The following sections discuss the achieved effects in both scenarios.

5.1. Evaluation Criteria

The performance measures in Table 2 are used to assess how well the the proposed
algorithms perform. For the first set of measurements, the performance of the feature
selection process is measured. On the other hand, the second set of measures is utilized
to evaluate the performance of the proposed optimized BRNN classification. The best
solution at run j is represented by g∗j , and size(g∗j ) refers to the size of the best solution
vector. The number of optimizer runs is shown in the table as M. There are a total of N
points in the test set, and Ci is the output label result from the used classifier. The point i’s
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class label is Li, and the total number of features is D. True Positive, True Negative, False
Positive, and False Negative are referred to as TP, TN, FP, and FN, respectively.

Table 2. Metrics used in evaluating the proposed algorithms.

Metric Equation

Average fitness 1
M ∑M

i=1 gi
∗

Worst Fitness maxM
i=1gi

∗
Best fitness minM

i=1gi
∗

Average Error 1
M ∑M

j=1
1
N ∑N

i=1 mse(Ci, Li)

Average select size 1
M ∑M

i=1 size(gi
∗)

Standard deviation
√

1
M−1 ∑M

i=1
(

gi∗ −Mean
)2

Accuracy TP+TN
TP+TN+FP+FN

N-value (NPV) TN
TN+FN

p-value (PPV) TP
TP+FP

Sensitivity (TPR) TP
TP+FN

Specificity (TNR) TN
TN+FP

F1-Score TP
TP+0.5(FP+FN)

5.2. Results of the First Scenario

The first set of experiments recorded from the first dataset targets measuring the
performance of the proposed feature selection algorithm. The results are presented in
Table 3. In this table, the proposed bDWDTO algorithm achieves the best results compared
to eleven other feature selection algorithms. These results show the superiority of the
proposed feature selection algorithm.

Table 3. Evaluation results of the feature selection results achieved by the proposed algorithm and
other competing algorithms when applied to the first dataset (D1).

Algorithm Avg. Error Avg. Select Size Avg. Fitness Best Fitness Worst Fitness Std Fitness

bDWDTO 0.510 0.654 0.537 0.442 0.637 0.345
bGWO 0.523 0.718 0.573 0.462 0.656 0.364

bGWO_PSO 0.516 0.713 0.556 0.539 0.617 0.348
bPSO 0.514 0.848 0.560 0.462 0.675 0.372
bSFS 0.522 0.672 0.574 0.523 0.597 0.364

bWAO 0.511 0.943 0.561 0.500 0.675 0.359
bMGWO 0.520 0.764 0.539 0.490 0.656 0.355

bMVO 0.511 0.818 0.561 0.520 0.636 0.352
bSBO 0.528 0.833 0.568 0.520 0.636 0.360

bGWO_GA 0.532 0.793 0.532 0.520 0.636 0.357
bFA 0.517 0.853 0.567 0.500 0.695 0.363
bGA 0.511 0.813 0.561 0.462 0.636 0.363

The convergence of the feature selection algorithm is recorded and represented by
the plot shown in Figure 6. As shown in this figure, the proposed algorithm achieves the
fastest convergence, which makes it superior to the other feature selection methods.

In addition, the time profile of the proposed feature selection algorithm compared
to the other competing algorithms is presented in Table 4 for the datasets D1 and D2.
In this table, the processing time using the proposed feature selection algorithm con-
sumes the smallest timestamp, which gives another perspective of the superiority of the
proposed algorithm.
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Figure 6. The convergence plot based on the proposed and other competing feature algorithms when
applied to the first dataset (D1).

Table 4. Time profile (in seconds) of the proposed feature selection algorithm and other algorithms.

Algorithm D1 D2

bDWDTO 12.534 12.952
bGWO 13.178 14.883

bGWO_PSO 12.77 14.02
bPSO 12.86 14.455
bSFS 14.26 14.21

bWAO 12.667 13.788
bMGWO 12.95 13.49

bMVO 13.121 14.395
bSBO 13.59 14.42

bGWO_GA 13.31 14.69
bFA 13.888 14.472
bGA 13.134 14.408

On the other hand, selecting the proper machine learning model is realized by evalu-
ating the performance of three machine learning models and then determining the best per-
forming model. Table 5 presents the results of user authentication using Neural Networks
(NN), K-Nearest Neighbors (KNN), and BRNN. The best results are achieved using BRNN
for all evaluation criteria and thus adopted for further steps of the proposed approach.

Table 5. Performance evaluation of the machine learning models applied to the first dataset (D1).

Metric NN KNN BRNN

Accuracy 0.917 0.922 0.939
Sensitivity (TPR) 0.862 0.870 0.901
Specificity (TNR) 0.980 0.980 0.980

Pvalue (PPV) 0.980 0.980 0.980
Nvalue (NPV) 0.862 0.870 0.901

F-score 0.917 0.922 0.939
Time (seconds) 137 125 102
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On the other hand, the evaluation of the proposed DWDTO algorithm is measured
in terms of optimizing the BRNN network and analyzing the results. Table 6 presents the
statistical analysis of the recorded results based on the proposed optimization algorithm
and five other optimization algorithms. In this table, the proposed optimization algorithms
are proven to achieve better performance than the other competing algorithms for the
20 samples in the test set. The maximum accuracy achieved by the proposed algorithm is
(98.89%), whereas the best accuracy achieved by the other algorithms is (96.12%), which is
achieved by GWO when used to optimize the BRNN model.

Table 6. Statistical analysis of the achieved results using the proposed DWDTO applied to the first
dataset (D1).

Metric DWDTO + BRNN GWO WOA PSO GA GSA

Num. Values 20 20 20 20 20 20
Minimum 0.9889 0.9612 0.9378 0.9598 0.9523 0.9563

25% 0.9900 0.9712 0.9578 0.9685 0.9623 0.9563
Median 0.9900 0.9712 0.9578 0.9685 0.9623 0.9563

75% 0.9900 0.9712 0.9578 0.9685 0.9623 0.9563
Maximum 0.9927 0.9812 0.9698 0.9798 0.9723 0.9763

Range 0.0038 0.0200 0.0320 0.0200 0.0200 0.0200
Mean 0.9901 0.9712 0.9574 0.9686 0.9623 0.9582
Std. 0.0007 0.0032 0.0053 0.0033 0.0032 0.0050

Std. Error 0.0001 0.0007 0.0012 0.0007 0.0007 0.0011
Skewness 3.289 5.703 × 10−14 −2.171 1.263 0 3.014
Kurtosis 14.79 9.5 11.74 10.25 9.5 9.335

Sum 19.8 19.42 19.15 19.37 19.25 19.16

The significance of the proposed algorithm is measured using the Wilcoxon signed rank
test and one-way Analysis of Variance (ANOVA) test. The results of these tests are presented
in Tables 7 and 8, respectively. To prove that the proposed DWDTO algorithm is significantly
different from all the other competing algorithms, we calculate the p-values between
the two algorithms. This study uses Wilcoxon’s rank-sum test. This test has two basic
hypotheses: the null and the alternative hypotheses. µDWDTO = µGWO, µDWDTO =
µWOA, µDWDTO = µPSO, µDWDTO = µGA, and µDWDTO = µGSA are the mean, µ,
values of the null hypothesis represented by H0. However, the H1 hypothesis does not
take into account the algorithms’ capabilities when comparing the results. The Wilcoxon
rank-sum test results are shown in Table 7. The suggested algorithm’s p-values are less
than 0.05 compared to those of the other methods. These findings show that the suggested
feature selection strategy is better and statistically significant. The ANOVA test examines
the statistical differences between the proposed DWDTO algorithm and the other methods.
The null hypothesis’s mean values, indicated by H0, include µDWDTO = µGWO =
µWOA = µPSO = µGA = µGSA. Table 8 shows the results of the ANOVA test as assessed.
As illustrated in Figure 7, we have the residual plot, followed by the homoscedasticity plot
and the QQ plots. The residual error and homoscedasticity values are both within -0.03
and +0.025, as shown in the plots of the figure, indicating the robustness of the suggested
technique. The QQ figure also demonstrates that projected outcomes match actual values,
which confirms that the proposed algorithm is robust. The heat map plot, on the other hand,
indicates how the algorithm stacks up against other competing methods in the literature.
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Table 7. Wilcoxon signed-rank test of the achieved results using the first dataset (D1).

Metric DWDTO + BRNN GWO WOA PSO GA GSA

Theo. median 0 0 0 0 0 0
Act. median 0.99 0.9712 0.9578 0.9685 0.9623 0.9563
Num. Values 20 20 20 20 20 20

Sum ranks 210 210 210 210 210 210
Sum +ranks 210 210 210 210 210 210
Sum −ranks 0 0 0 0 0 0

p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Significance Yes Yes Yes Yes Yes Yes
Discrepancy 0.99 0.9712 0.9578 0.9685 0.9623 0.9563

Table 8. One-way analysis of variance test of the achieved results using the first dataset (D1).

SS DF MS F (DFn, DFd) p Value

Treatment 0.01246 4 0.003115 F (4, 95) = 256.8 p < 0.0001
Residual 0.001152 95 0.00001213

Total 0.01361 99

Figure 7. Visual representation of the results achieved by the proposed optimization algorithm in
terms of the first dataset (D1).

5.3. Results of the Second Scenario

Similarly, the evaluation of the proposed algorithms using the second dataset, D2, is
performed in terms of the feature selection and the optimization algorithms. The results
of the assessment of the feature selection algorithm are presented in Table 9 based on the
adopted evaluation criteria. In addition, the convergence curve of the feature selection
using the proposed and other competing algorithms is shown in Figure 8. These results
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emphasize the superiority of the proposed feature selection algorithms in terms of the
second dataset.

Table 9. Evaluation results of the feature selection results achieved by the proposed and other
competing algorithms when applied to the second dataset (D2).

Algorithm Avg. Error Avg. Select Size Avg. Fitness Best Fitness Worst Fitness Std Fitness

bDWDTO 0.447 0.449 0.459 0.407 0.558 0.345
bGWO 0.460 0.579 0.494 0.424 0.568 0.355

bGWO_PSO 0.461 0.603 0.461 0.449 0.517 0.351
bPSO 0.488 0.803 0.521 0.458 0.576 0.346
bSFS 0.467 0.627 0.467 0.414 0.600 0.387

bWAO 0.473 0.644 0.507 0.433 0.593 0.355
bMGWO 0.449 0.567 0.491 0.457 0.576 0.350

bMVO 0.482 0.784 0.515 0.416 0.559 0.352
bSBO 0.468 0.743 0.468 0.441 0.543 0.350

bGWO_GA 0.507 0.737 0.507 0.492 0.602 0.359
bFA 0.478 0.800 0.512 0.407 0.610 0.360
bGA 0.468 0.703 0.502 0.441 0.619 0.360

Figure 8. The convergence plot based on the proposed and other competing feature algorithms when
applied to the second dataset (D2).

Moreover, the best machine learning model that fits the keystroke data in the second
dataset is applied by evaluating three machine learning models and selecting the best-
performing model. Table 10 presents the evaluation of the three models. In this table,
the best performing model is BRNN and thus selected for optimization and categorizing
smartphone users based on keystroke data.

Table 10. Evaluation of the performance of machine learning models applied to the second
dataset (D2).

Metric NN KNN BRNN

Accuracy 0.932 0.941 0.955
Sensitivity (TPR) 0.857 0.895 0.895
Specificity (TNR) 0.989 0.989 0.993

p-value (PPV) 0.984 0.988 0.988
N-value (NPV) 0.900 0.900 0.938

F-score 0.916 0.939 0.939
Time (seconds) 118 107 97
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Similar to the analysis performed on the results of optimizing BRNN using the pro-
posed algorithm on the first dataset, the same analysis is performed on the results achieved
on the second dataset (D2). Tables 11–13 present the statistical analysis, Wilcoxon signed-
rank test and ANOVA test. The results presented in these tables confirm the superiority
and effectiveness of the proposed optimization algorithm.

Table 11. Statistical analysis of the achieved results using the proposed DWDTO applied to the
second dataset (D2).

Metric DWDTO + BRNN GWO WOA PSO GA GSA

Num. Values 20 20 20 20 20 20
Minimum 0.9899 0.9689 0.9465 0.9599 0.9700 0.9471

25% 0.9934 0.9789 0.9665 0.9689 0.9800 0.9571
Median 0.9934 0.9789 0.9665 0.9689 0.9800 0.9571

75% 0.9934 0.9789 0.9680 0.9689 0.9800 0.9571
Maximum 0.9934 0.9889 0.9767 0.9729 0.9900 0.9771

Range 0.0034 0.0200 0.0301 0.0130 0.0200 0.0300
Mean 0.9932 0.9788 0.9673 0.9686 0.9800 0.9581
Std. 0.0008 0.0033 0.0061 0.0023 0.0032 0.0055

Std. Error 0.0002 0.0007 0.0014 0.0005 0.0007 0.0012
Skewness −4.472 0.0496 −1.694 −2.964 −5.703 × 10−14 2.164
Kurtosis 20 9.379 7.402 13.36 9.5 8.21

Sum 19.86 19.58 19.35 19.37 19.6 19.16

Table 12. Wilcoxon signed-rank test of the achieved results using the second dataset (D2).

Metric DWDTO + BRNN GWO WOA PSO GA GSA

Theo. median 0 0 0 0 0 0
Act. median 0.9934 0.9789 0.9665 0.9689 0.98 0.96
Num. Values 20 20 20 20 20 20

Sum ranks 210 210 210 210 210 210
Sum +ranks 210 210 210 210 210 210
Sum −ranks 0 0 0 0 0 0

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Significance Yes Yes Yes Yes Yes Yes
Discrepancy 0.9934 0.9789 0.9665 0.9689 0.98 0.96

Table 13. One-way analysis of variance test of the achieved results using the second dataset (D2).

SS DF MS F (DFn, DFd) p Value

Treatment 0.008733 4 0.002183 F (4, 95) = 170.9 p < 0.0001
Residual 0.001214 95 0.00001278

Total 0.009946 99

Moreover, the visual plots shown in Figure 9 represent the performance of the pro-
posed algorithm in categorizing smartphone users based on the second dataset (D2). These
plots are the residual, homoscedasticity, QQ, and heatmap. The results represented by these
plots emphasize the effectiveness of the proposed optimization algorithm.
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Figure 9. Visual representation of the results achieved by the proposed optimization algorithm in
terms of the second dataset (D2).

5.4. Classification Results

The classification results using the optimized BRNN are recorded and measured in
terms of the adopted evaluation criteria mentioned in the previous section. The results
are presented in Table 14. As shown in this table, the proposed optimization algorithm
could achieve a promising performance with accuracy greater than (99%) on both D1 and
D2. The other evaluation criteria recorded in the table confirm the effectiveness of the
proposed algorithm.

Table 14. The performance of the BRNN after optimization using the proposed DWDTO applied to
the two datasets, D1 and D2.

Metric D1 D2

Accuracy 0.990182803 0.993208829
Sensitivity (TRP) 0.946547884 0.965909091
Specificity (TNP) 0.998003992 0.998003992

p-value (PPV) 0.988372093 0.988372093
N-value (NPV) 0.990491284 0.994035785

F-Score 0.967007964 0.977011494
Time (seconds) 77 59

5.5. Comparison with Other Methods

To emphasize the superiority of the proposed optimization algorithm, a set of experi-
ments was conducted to prove the expected findings. Figure 10 shows the average time
over the two datasets. In this figure, the proposed feature selection algorithm achieves the
shortest average time, represented by a red star.
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Figure 10. Average processing time (in seconds) using the proposed optimization algorithm and the
other competing optimization algorithms. The red star refers to the minimum average processing
time which is achieved by the proposed bDWDTO algorithm.

In addition, Figures 11 and 12 show the histograms of the accuracy achieved by
optimizing BRNN using the proposed optimization algorithm and other five optimization
algorithms on both D1 and D2. As shown in this figure, the proposed algorithm achieves
the best performance for almost all the test samples. These results show the superiority of
the proposed optimization algorithm.

Figure 11. Histogram of the accuracy achieved by the proposed approach and other optimization
approaches in terms of the first dataset (D1).
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Figure 12. Histogram of the accuracy achieved by the proposed approach and other optimization
approaches in terms of the second dataset (D2).

Moreover, the plots shown in Figure 13 present an additional comparison between
the proposed optimization algorithm and other algorithms in terms of the accuracy and
ROC curves. These plots confirm the expected findings and prove the superiority of the
proposed algorithm.

Figure 13. Comparison between the performance of the proposed optimization algorithm and the
other competing algorithms applied to the two datasets, D1 and D2.
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6. Conclusions

Keystroke-dynamics-based smartphone user authentication can by improved by using
meta-heuristic optimization. Using the proposed optimization algorithm, referred to as
DWDTO, a Bidirectional Recurrent Neural Network is optimized to boost the categoriza-
tion accuracy of smartphone users. The optimization algorithm was put to the test to
see if it could accurately reflect the authenticated user while also performing better than
standard optimization methods in terms of user categorization. In order to evaluate the
categorization performance of the proposed algorithm, two datasets were compared. Three
classifiers were also assessed for utilizing the optimization algorithm to evaluate their
user categorization performance. The data features obtained via smartphone and feature
selection algorithm were all set to the same for accurate comparison of categorization
performance with other competing methods. Consequently, it was discovered that the
proposed optimization algorithm provided superior classification performance over the
existing methods. Classification of datasets using the optimized classifier was validated.
The data collection approach described in this study has a high potential for use as one
of the data collecting methods for keystroke-data-based authentication systems based on
the principal findings of this investigation. In addition, a statistical analysis is performed
to measure the stability and effectiveness of the proposed algorithms. The results con-
firm the superiority and stability of the proposed algorithms when compared with other
competing algorithms.
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