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Abstract: How specific features of the environment are represented in the mammalian brain is an
important unexplained mystery in neuroscience. Visual information is considered to be captured
most preferentially by the brain. As one of the visual information elements, motion direction in the
receptive field is thought to be collected already at the retinal direction-selective ganglion cell (DSGC)
layer. However, knowledge of direction-selective (DS) mechanisms in the retina has remained only
at a cellular level, and there is a lack of complete direction-sensitivity understanding in the visual
system. Previous studies of DS models have been limited to the stage of one-dimensional black-
and-white (binary) images or still lack biological rationality. In this paper, we innovatively propose
a two-dimensional, eight-directional motion direction detection mechanism for grayscale images
called the artificial visual system (AVS). The structure and neuronal functions of this mechanism are
highly faithful to neuroscientific perceptions of the mammalian retinal DS pathway, and thus highly
biologically reasonable. In particular, by introducing the horizontal contact pathway provided by
horizontal cells (HCs) in the retinal inner nuclear layer and forming a functional collaboration with
bipolar cells (BCs), the limitation that previous DS models can only recognize object motion directions
in binary images is overcome; the proposed model can solve the recognizing problem of object motion
directions in grayscale images. Through computer simulation experiments, we verified that AVS is
effective and has high detection accuracy, and it is not affected by the shape, size, and location of
objects in the receptive field. Its excellent noise immunity was also verified by adding multiple types
of noise to the experimental data set. Compared to a classical convolutional neural network (CNN), it
was verified that AVS is completely significantly better in terms of effectiveness and noise immunity,
and has various advantages such as high interpretability, no need for learning, and easy hardware
implementation. In addition, activation characteristics of neurons in AVS are highly consistent with
those real in the retinal DS pathway, with strong neurofunctional similarity and brain-like superiority.
Moreover, AVS will also provide a novel perspective and approach to understanding and analyzing
mechanisms as well as principles of mammalian retinal direction-sensitivity in face of a cognitive
bottleneck on the DS pathway that has persisted for nearly 60 years.

Keywords: artificial visual system; motion direction detection; direction-selective ganglion cell;
retinal direction-selective pathway

MSC: 68T07

1. Introduction

The human brain optimizes and governs the next activities of the human body by
processing inputs from nature and actively accesses specific external information needed
through learning, creating a continuous closed loop of positive feedback with significant
importance for biological activity. The brain is an excellent complex system, composed of
approximately 1011 neurons with more than 1015 connections between them, continually
creating complex patterns. Collective actions of single nerve cells linked by a dense web
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of intricate connectivity guide behaviors, shape thoughts, form and retrieve memories,
organized into the brain; thus, behaviors, thoughts, memories, and consciousness become
possible. Understanding these integrative functions of the brain requires an understanding
of neural networks in the brain and the complex dynamic patterns they create [1]. How
specific features of the environment are represented in the brain is an important unsolved
mystery in neuroscience. The visual system in the brain assists in processing more than
80% of the external information and is an extremely important branch of the brain neural
networks. Visual information is thought to be captured and utilized more preferentially by
brain activity [2,3]. Therefore, the study of the visual system is widely considered a sure
way to reveal the mystery of the brain.

The elements of visual information are light, dark, and change. Color brings light and
dark contrast while highlighting shape distinctions; the temporal dimension brings their
change. Thus color perception, shape perception, and direction perception are the basic
functions of the visual system [4,5]. A striking array of highly organized laminar neural
circuits exists in the mammlalian retina for the detection, processing, and extraction of
these critical visual features. In 1963, Barlow and Hill first identified direction-selective
ganglion cells (DSGCs) in the rabbit retina which assist the recognition of the global motion
direction, and the circuits dedicated to direction detection were uncovered. The global
motion direction is the motion direction in which mostly occurs in the global receptive field.
It is important information that can be used to indicate the most obvious changes in the
environment. Compared to the color and shape, the direction is a higher dimensional infor-
mation perception function because of the addition of a temporal dimension. Such higher
dimensional visual information is already extracted by the retina at the very beginning of
the visual system before it enters the visual cortex, which has led to a long-term study and
exploration of the function of the highly organized laminar structure of the retina [6,7].

Various in vivo and in vitro studies have been performed on DSGCs in the mammalian
retina. Experiments in mice and rabbits have shown that DSGCs are present in a consider-
able proportion of the cells in the output layer of the retina, i.e., retina ganglion cells [8–10].
However, as with various other neural systems in the brain, a single nerve cell alone cannot
perform any of even slightly more complex visual tasks, including DSGC.

The frontal neural pathway of DSGCs starts from the initial light input layer and runs
through the entire retinal layers. This highly distinctive functional pathway is also known
as the “DSGC vertical pathway”. It includes photoreceptor cells (PCs) in the outer nuclear
layer (ONL), horizontal cells (HCs), bipolar cells (BCs), and amacrine cells (ACs) in the inner
nuclear layer, and DSGCs in the ganglion cell layer [11]. In the vertical pathway, layers
form interactable connections through synapses, and after completing their respective
cellular functions, share the output signals successively to neighboring cells connected
through synapses thus reaching intercellular information sharing and cooperation and
constituting a functional vertical pathway. Photoreceptors do not respond specifically to
motion phenomena in the global receptive field, but DSGCs downstream of the retina
exhibit a selection of different directions. What neural computational processes exist
between them, and how is this computation implemented in terms of neural circuits and
membrane biophysics? This question has become a classic example of neural computation,
which has been the focus of intensive research for decades and has attracted a large number
of researchers from different fields.

Mammalian retinal circuits that confer unique tuning characteristics to DSGCs have
been extensively investigated [5,7,12]. Several related models of motion detectors have
been proposed in the past to calculate the direction of motion from the changes in lumi-
nance captured by the photoreceptors. Srinivasan proposed a gradient model by using a
high-pass filter and calculating the spatial gradient of the luminance information received
by a local neighboring receptor and the temporal gradient through the distance between
them and dividing the two gradient values. A velocity estimate that excludes the spatial
structure interference of motion patterns is obtained [13]. However, although it avoids
the interference of luminance differences in adjacent spaces on the detection estimates by
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physical concepts and mathematics methods, making it looks attractive, most of the pro-
posed models do not involve the computational process of spatial and temporal gradients
in motion images. Instead, these models directly or indirectly invalidate the motion in
other directions by exploiting the temporal differences of neighboring receptors in space,
thus yielding cleverly correct direction detection results without complex operations. The
pioneer of correlation detectors was proposed by Hassenstein et al. based on experimental
studies of insects’ optokinetic behavior [14–16]. This type of correlation detector is often
referred to as a Reichardt detector [17]. It consists of two mirrored subunits that multiply
each of the two inputs processed by the temporal low-pass filter with the adjacent input
before processing, and then the difference between the two is used as the output. the
Reichardt detector has also been used to explain motion detection mechanisms in various
vertebrates, including humans [18]. The simplest correlation detector was proposed by
Barlow and Levick, and it is the first reasonable explanatory model for this experiment
since the discovery of DSGCs in the rabbit retina. The model takes one of two inputs
carrying luminance information and, after time delaying it, interacts with the other in an
inhibitory manner. The input with time delay in the nonpreferred direction is activated
first, and the delayed inhibitory signal arrives just as the adjacent input is activated and
denies the excitatory output of the adjacent end; conversely, the input without time delay
in the preferred direction is activated first and pre-empts the output before the inhibitory
signal is generated at the other end, and the inhibitory effect fails while completing the
task of outputting the preferred motion signal. Structurally, the model is equivalent to a
subunit of the Reichardt model. In addition, another mechanism known as the motion
energy model is often applied to human psychophysics and motion-sensitive neurons in
the mammalian cortex [19]. Interestingly, even if the internal structures are different when
the Reichardt model is equipped with the same temporal and spatial filters at the input, it
presents at the output a functional characteristic equivalent to the motion energy model,
and the process is mathematically equivalent.

Directional information is not explicitly encoded at the level of a single photoreceptor.
Instead, it must be computed from at least two photoreceptors at the level of spatiotemporal
excitation. Thus, although these motion direction detection models are not designed in the
same way, there is a necessary consistency in their underlying principles, which can be
summarized in three elements:

1. the existence of at least two spatially separated light intensity detectors;
2. the existence of asymmetry in the temporal gradient based on spatial separation;
3. the existence of at least one nonlinear computational unit.

Over the past two decades, thanks to advances in optical and genetic methods, we have
made great progress in understanding direction-selective cellular and subcellular mecha-
nisms. This includes the understanding of the presence of dendrites in direction-selective
(DS) circuits, asymmetric structures [20–24] and the understanding of the non-negligibility
of dendritic internal nonlinear computations exhibited at the ultrastructural level [25,26].
Moreover, it is a surprising fact that researchers have been enthusiastically discussing
and working for almost 60 years on how the visual system accomplishes directional se-
lection in a single direction to reach the current level of cognition. This problem is still
far from the complex intelligence of humans in terms of computation and information
processing. The existing understanding of motion direction selectivity remains at the level
of cellular functions of various cellular units in the visual pathway. Meanwhile, existing
proposed motion direction detectors based on the mammalian visual system can only
perform the directional selection task for a single point in a black-and-white image in a
single-dimensional direction. There is no doubt that the neural computational principles
of directional selection in the mammalian visual system remain unknown. As with other
neural mechanisms in the brain, the goal of revealing the principles through traditional
biological experiments alone seems to be out of reach. Therefore, we have taken a slightly
different approach to this problem, i.e., if we can use the cellular functions in the neural
pathway to construct a biologically sound model of the neural computational pathway
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based on the known intercellular structure, so that it can have the same two-dimensional
global direction-selectivity as the mammalian visual system, with the best result that its
output state is similar to the biological experiments, it will provide a powerful clue to
our ultimate understanding of direction-selective computation in the visual system. To
this end, several new studies have recently made similar efforts. Han et al. modeled the
inhibitory model conjecture proposed by Barlow et al. [27]. In their work, the previous
one-dimensional approach was successfully extended to an efficient two-dimensional,
eight-way mechanism for direction detection in a black-and-white (binary) environment
after exploiting the light-sensitive properties of PC with the time-delayed action of HC.
However, in this model, the function of BC, which is a mandatory pathway of the DS
circuit, fails to be considered. Therefore, the model is only able to identify the direction of
object motion in a black-and-white (binary) environment. Thereafter, Tang et al. modeled a
postsynaptic dendritic DSGC model conjecture proposed by Taylar et al. [28]. This model
is a more complete development of the proposed circuit based on the Han et al. model.
It eliminates the HC from the Barlow model and introduces the BC and the AC at the
back end of the BC; this is the first time that the ON/OFF response mechanism of the BC
appears in the direction detection model. The model utilizes the structural features of AC
to interfere with BC through continuous forward inhibition to achieve the inhibition of null
direction motion, thus assisting PC and BC to identify the direction of motion. However,
the model lacks the functional properties underlying the sensitivity of BC cells to light
changes in biological characteristics in terms of the definition of ON response. At the same
time, the lateral regulation function of HC cells at the initial stage is skipped, which may
result in the DS pathway losing a part of its performance by loss of a necessary opportunity
for information collation, such as the ability to detect the direction of object motion in
rich color environments or noise immunity in various complex environments. In addition,
despite the new introduction of AC and BC into the model, it still only solves the direction
selection problem in black-and-white (binary) environments. Thus, although these recent
advances in modeling the DS pathway have been quite novel and productive, and have
had a positive impact on the understanding of the retinal DS pathway, these models still
fail to approach the real retinal directional selection principles.

In this paper, we address the aforementioned dilemmas by proposing an innovative
motion direction detection mechanism as the Artificial Vision System (AVS) that is in close
agreement with the biological knowledge of the DS pathway in terms of cellular function,
model structure, overall function and performance of the implemented model. Based on
the existing understanding of the biology and cellular physiology of the DSGCs vertical
pathway in the mammalian retina, AVS uses a dendritic neuron model to implement a two-
dimensional, eight-way motion direction detection mechanism that can work efficiently
in a grayscale environment. It uses PCs for light signal perception; the concept of local
receptive fields to delineate the photoreceptive range of a single DSGC; defines local motion
direction detection neurons to collect information from local receptive fields; defines global
motion direction detection neurons (GMDNs) to collect the output of local motion direction
detection neurons (LMDNs) and infer the global motion direction. Relative to previous
studies:

1. We innovatively introduced both BCs and HCs;
2. We faithfully defined their original biological properties and connection structures;
3. Because not necessary to further rely on any other cell function to complete the

motion direction detection task, we temporarily eliminated the AC located in the
posterior inner plexiform layer (IPL) considering that it can be used in a non-basic
more advanced information integration mechanism such as being a post filter to help
improve the noise immunity;

4. We achieved a breakthrough in its limitations of black-and-white (binary) detection
without adding any non-essential cellular structure and constructed a set of DS
pathway model for grayscale images that are faithful, reasonable, and complete in
both cellular function and model structure.
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We implemented AVS in computer simulations. In grayscale images motion direction
detection experiments with no noise and multiple signal-to-noise ratio noises, we used a
series of instances of objects with random shapes and different sizes moving in eight direc-
tions and compared the activation phenomena with the prior biological experiments. The
experimental results show that activating occurring in global motion direction detection
neurons is very similar to that in the brain visual cortex [29,30] in both of the activation
characteristics and the inference methods. AVS achieves high accuracy with 100% in the
noiseless and noisy environment. To demonstrate its high efficiency, we let the conventional
convolutional neural network take on the same detection task; the experimental results
show that the mechanism maintains an absolute significant superiority over CNN regard-
less of the presence or absence of noise or the amount of noise, which proves the model’s
high efficiency and high noise immunity. In addition, the model maintains its irreplaceable
advantages over CNN in many aspects, including the interpretability of its principles,
biosimilarity, high hardware implementation possibilities, simplicity without learning, the
flexibility of the model for further learning, and the availability of excellent initial parame-
ters. We also found that the mechanism can naturally be an edge detector in the condition
of motion, which coincides with the edge-sensitive nature of the visual system [31,32]. This
study also represents bold conjecture and reverse validation of the principles of neural
computation in further understanding the motion direction selection pathway of the visual
system. We hope that a comprehensive understanding of this direction-selective neural
computation will, while providing a novel computer vision technique, also provide an
important stepping stone to our understanding of the more complex functions of the brain
neural networks [33].

This work spans two completely different fields of biology and engineering, more
specifically, neuroscience and computer science. It makes the following contributions
to both.

In terms of biology, contributions as follows.

1. This work gives an advanced quantitative way and mechanism for the DS circuit in the
visual system of mammals (note that including human) brain. It offers a reasonable
interpretation to solve the important problem that has plagued us for decades.

2. This work can be extended as a framework for understanding a variety of basic visual
phenomena, including shape orientation, motion direction, and motion velocity, as
well as that in stereo vision.

3. Because of the first success and effectiveness in interpretation of the visual system,
the AVS can probably be used to help us understand other mammalian perception
systems that also encode in cortical circuits, such as olfaction, taste, and touch.

In terms of engineering, contributions as follows.

1. A very biologically based dendritic neural network algorithm for grayscale motion
direction detection, namely AVS, is proposed for the first time.

2. The AVS is verified to be an advanced and very efficient motion direction detector
based on the mammalian DS circuit. It first achieves the detection for grayscale images
and has a extremely high accuracy.

3. The other superiorities are also verified, such as, high noise immunity in some high
complex environments, no need for learning, no parameter, easy to hardware imple-
ment, and high interpretablility.

The rest of this paper is organized as follows. Section 2 introduces the fundamental
structures and functions of the utilized dendritic neuron model and how used to construct
AVS as well as the related biological basis. Section 3 shows the experimental results for
verifying the effectiveness and noise immunity with comprison of the convolutional neuron
network. Section 4 discusses and draws a conclusion for this work.
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2. Material and Method

In this section, we discuss and develop the AVS. In the AVS, the structure and function
of eight local motion direction detection neurons (LMDNs) and corresponding global
motion direction detection neurons (GMDNs) that are sensitive to different specific motion
directions are defined separately using a dendritic neuron model. The LMDN collects visual
information from a local area in the global receptive field, which is called the local receptive
field, through PCs at the front end of the pathway. PCs, HCs, BCs, and ACs in the DS
pathway collect and process visual information from the local receptive field, and output
by their corresponding LMDN. Then, the GMDNs collect all the outputs from each of the
eight corresponding sensitive LMDNs and sum them up at the membrane layer at the end
of dendrites. Finally, the sensitive direction corresponding to the GMDN with the strongest
output signal (i.e., the highest activation) was inferred as the global motion direction.

2.1. Dendritic Neuron Model

Considering the existence and necessity of cellular dendritic structures and intercellu-
lar nonlinear computations in this circuit, we utilize a set of biologically sound unsuper-
vised learnable nonlinear dendritic models called Dendritic Neuronal Models to implement
the relevant operations [34]. Numerous studies have shown that brain computing is
similar to computer computing in that electrical signals are transmitted in a large number
of simple units that can only perform simple calculations [35]. Koch, Poggio, and Torre
found that in the dendrites of retinal nerve cells, excitatory synapses are intercepted if
activated inhibitory synapses are closer to the soma than excitatory synapses. They sug-
gested considering the role of synapses with branching turning points from the perspective
of logical operations [36,37]. Some experimental examples, whether the subject of this
study, direction selectivity of retinal ganglion cells [38], or others such as coincidence
detection of the auditory system [39], provide strong circumstantial evidence for a den-
dritic nonlinear model based on logical operations. Using the dendritic neuron model, we
implemented the intercellular interaction architecture of PCs, BCs, and HCs in the retinal
vertical pathway of DSGCs, and defined eight LMDNs for DSGCs with different directional
sensitivity for local direction recognition within the local receptive field; and also defined
eight corresponding GMDNs.

The dendritic neuron model (DNM) was first proposed in 2014 [40]. This is a neuronal
model that takes into account the nonlinear interaction between synapses and aims to com-
pensate for the part of dendritic nonlinear computation that is not considered in traditional
artificial neural network models. In this model, the synaptic layer receives the output
signals from other neurons and processes these signals separately with a sigmoid function;
the dendrite layer processes the output signals from the synaptic layer’s processing with a
multiplication function; the membrane layer processes the output signals from each branch
in the dendrite layer with a summation function; the somatic layer processes the output
signals from the membrane layer with another sigmoid function, and thus the output signal
of the whole dendritic neuron model is obtained. The functions of each part of the model
are described in detail below, and the model structure is shown in Figure 1.

2.1.1. Synaptic Layer

A synapse is a structure of mutual contact between one neuron and another neuron
that connects the dendrites of the postsynaptic neuron to the axons of the presynaptic
neuron and is functionally used to feedforwards transmit output signals from cell bodies in
the presynaptic neuron, excitatory or inhibitory to influence the postsynaptic potential and
thus the biological response of the postsynaptic neuron. The connection function of the ith
(i = 1, 2, . . . , N) synapse on the jth (j = 1, 2, . . . , M) synaptic layer is given as:

Si,j =
1

1 + e−k(ωi,jXi,j+θi,j)
(1)
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where Si,j is the output of the ith synapse on the jth synaptic layer. k is a positive constant.
xi,j reflects the input signal of the ith synapse on the jth synaptic layer. The weights ωi,j and
the threshold θi,j are the connection parameters planned for learning. The combination of
the parameters ωi,j and thetai,j final learning outcomes can be grouped into four connection
types, constant 0, constant 1, excitatory and inhibitory. As shown in Figure 2, where
the horizontal coordinates indicate the output signal from the neuron at the presynapse
and the vertical coordinates indicate the output of the synaptic layer in the neuron at the
postsynapse. Since the range of X is [0, 1], only the part that meets the requirement needs
to be focused on.

Figure 1. The structure of Dendritic Neuron Model.

The case where the output is always close to 0 regardless of how the input varies
between 0 and 1 is called a constant 0 connection (when ωi,j < 0 < θi,j or 0 < ωi,j < θi,j);
the case where the output is always close to 1 regardless of how the input varies between
0 and 1 is called a constant 1 connection (when θi,j < ωi,j < 0 or θi,j < 0 < ωi,j); the case
where the output is always positively correlated with the input regardless of how the input
varies between 0 and 1 is called excitatory connection (when 0 < θi,j < ωi,j); and the case
where the output is always negatively correlated with the input regardless of how the input
varies between 0 and 1 is called inhibitory connection (when ωi,j < θi,j < 0). Notably, these
four synaptic connection types are particularly important for inferring the morphology of
neurons by specifying the location of dendrites and the type of synapses.
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Figure 2. Four types of connection in the synaptic layer.

Furthermore, in the case where the input is binary, the four types of connections in the
synaptic layer can be approximated and simplified as follows.

Constant 0 connection:
Si,j(Xi,j) = 0 (2)

Constant 1 connection:
Si,j(Xi,j) = 1 (3)

Excitatory connection:

Si,j(Xi,j) =

{
0, Xi,j = 0
1, Xi,j = 1

(4)

Inhibitory connection:

Si,j(Xi,j) =

{
1, Xi,j = 0
0, Xi,j = 1

(5)

2.1.2. Dendrite Layer

The dendrite layer processes the output from multiple synapses in the synaptic layer
through a multiplicative function. The multiplicative equation is chosen for dendritic
branches because it reproduces the nonlinear relationship between synapses on the dendrite
layer of a neuron. In the case where the inputs and outputs of a dendrite layer correspond
to binary, the multiplicative equation is equivalent to a logical AND operation. In Figure 1,
the symbol π denotes the multiplication operator. The output of the dendrite layer branch
of the jth one can be written as:

Dj =
n

∏
i=1

Si,j (6)

where Dj is the output of the jth dendritic branch.

2.1.3. Membrane Layer

The membrane layer processes the output of each branch in the dendrite layer through
a summation function, which is similar to the logical OR operation in binary. The output of
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the membrane layer will be input and affect the soma layer. The function of the membrane
layer can be expressed as follows.

M =
m

∑
j=1

Dj (7)

where M is the output of the membrane layer.

2.1.4. Soma Layer

The soma is the last part of the neuronal model. Biologically, it is connected to the
axon, and the soma transmits output signals to the axon and through synapses at the end of
the axon to the dendritic layer of the next level of the neuron. If the output of the membrane
layer exceeds the threshold of the soma, the soma will fire; conversely, the soma outputs an
inhibitory signal. The soma function is expressed as a sigmoid function, and its value is the
final output signal of such a dendritic neuron model.

O =
1

1 + e−kS(M−θS)
(8)

where O refers to the output of the soma, i.e., that of the dendritic neuron model. kS is a
positive constant. θS is the firing threshold of the soma, which ranges from [0, 1].

In addition, the biological functions of soma can also be realized with step functions
in cases where the magnitude of neuronal signal strength does not need to be considered.
This approach realizes the soma functions in neurons more concisely and can be expressed
as follows.

O =

{
0, M ≤ θS

1, M > θS
(9)

where when the output of the membrane layer exceeds the threshold of the soma, the
neuron fires, and the firing signal is denoted by 1; conversely, the neuron does not fire and
is denoted by 0.

2.1.5. Structure of Dendritic Neuronal Model

Figure 1 completely depicts the structure of DNM, which contains four layers. A series
of input signals X from presynaptic neurons are first processed by four types of connections
in the synaptic layer to obtain the synaptic layer outputs. The synaptic layer outputs on
the same dendritic layer branch are multiplied nonlinearly to obtain a series of dendritic
layer outputs. The dendritic layer outputs are summed over the membrane layer to obtain
the membrane layer output. Finally, the cell body computes the final output signal of this
neuron and transmits the output signal to the next level neuron via axonal and synaptic
structure.

2.2. Direction-Selective Pathway and Visual Cortex Responses

The core of the retinal DS pathway is the DSGCs, and each of the different species of
DSGCs has a specific sensitivity to motion phenomena occurring in a particular direction
in its local sensory field. In the pre-pathway of DSGCs, four types of cells are known to
exist, including PCs, which are perceptrons with photoelectric conversion function, HCs
and ACs in the lateral information exchange function structure, and BCs, which are vertical
information transmitters between PCs and DSGCs; where HCs implement lateral regulation
of electrical signals immediately after the completion of photoelectric conversion by PCs,
and ACs implement posterior lateral regulation of information after processing by HCs
and BCs. The ACs implement the back-end lateral regulation of the information processed
by the HCs and BCs. In conclusion, in the perceptual recognition of motion direction in the
brain, the light visual signals from the external world rely on the PCs to be converted into
electrical signals to be recognized by the retina, and the layers of cells in the DS pathway
sort out the recognition signals layer by layer to produce the motion direction selectivity of
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the DSGC. Ultimately, the activation state output by the DSGC is transmitted to the cortex
and is integrated. Figure 3 depicts the outline process and structure by which a particular
motion direction information is extracted as the visual signal is collated from the external
world through the retina and integrated into the visual cortex. The eight DSGCs defined
in this paper correspond to eight sets of DS model pathways with the same structure but
different functions as shown in Figure 3 In the proposed model, the integration link of ACs
(represented by fading in Figure 3 is temporarily eliminated in this research stage because
it is non-essential in the underlying direction selection function. Since it is responsible for
the lateral information exchange at the end of the DS pathway, we believe it will perform
other higher-level information integration functions rather than simply participating in or
repeating the work already done at the front end of the pathway.

Figure 3. The structure of direction-selective pathway in the visual system.

It was found that for global motion in a certain direction, neurons in the primary
visual cortex that are selective for the corresponding direction are strongly activated. At the
same time, neurons sensitive to other directions were also activated to varying degrees, but
the activation intensity was less than that of the neuron selective for the same direction as
the global motion [30]. The one-dimensional statistical graph on the right side in Figure 3
shows a example activation phenomena in the visual cortex triggered by rightward global
motion. We expect that our GMDNs in the cortex can activated as a similar way.

2.3. Local Motion Direction Detection Neurons

We propose eight LMDNs and their corresponding local receptive fields to define
DSGCs sensitivities to different motion directions; using the cellular distribution structure
shown in Figure 3, we scan the light signals in the global receptive field and collect the
motion direction information in the local receptive fields.

2.3.1. Local Receptive Fields

The concept of local receptive fields was described by Hubel and Wiesel as follows:
individual optic nerve fibers respond only when a specific area of the retina is illuminated,
and these areas are referred to as local receptive fields [30]. In 1938, Hartline found that the
local receptive field, although small, was still at an observable level and that its location on
the retina was fixed [41]. He also noted that a retinal ganglion cell can receive excitatory
influences over many convergent pathways; its axon is the final common path for nervous
activity originating in many sensory elements [31]. Thus, the front end of each LMDN is
connected to a local receptive field consisting of multiple PCs.
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In AVS, the local receptive field is defined as a 3× 3 square region with nine pixel
points as in Figure 4, which includes one central point and eight edge points. The center
pixel position of the local receptive field is denoted by (i, j) in the global receptive field,
and so on for the edge pixels.

Figure 4. The structure of motion direction-selective pathway in the visual system: (1) the local
receptive field and its position coordinate code when scanning; (2) the LMDN model based on DNM
(black synapse: excitatory connection; red synapse: inhibitory connection); (3) DS circuits for eight
types of LMDNs with different motion direction-sensitivities.

2.3.2. Implement of Dendritic Neuronal Model

Figure 4(2) shows how DNM is applied to the LMDN. XBC is the output signal from
the BC axon and XHC is the output signal from the HC axon, which are two inputs on
a dendritic branch of the LMDN; the synaptic layers are connected in excitatory (black)
and inhibitory (red) forms (corresponding to the physiological properties of BC and HC,
respectively). XBC and XHC are located in the same dendritic branch, and the output of
the dendrite layer is obtained directly by the multiplication function; this collaborative
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relationship is equivalent to the logic AND operation under the binary condition. Since
there is only one output of the dendrite layer, the membrane layer input is equal to the
output. The soma determines whether the size of the input value exceeds the firing
threshold θ of the neuron. If so, it outputs 1, otherwise 0.

2.3.3. Eight Types of Local Motion Direction Detection Neurons

We defined eight types of LMDNs (corresponding to DSGCs with different direction-
sensitivities) and the function of each cell in their forward pathways (including PC, BC,
and HC) based on DNM and the real physiological structure and function of each cell for
collecting local information on different motion directions. As shown in Figure 4(3), the
PCs in LMDN forward pathway receive light grayscale information from the center pixel
of its local receptive field, and the edge pixel in a particular direction.

PCs, as the most anterior photoreceptors in the DSGCs pathway, convert light signals
into neuroelectrical signals with their unique photoelectric converting function. In AVS,
each PC is responsible for detecting grayscale information of one pixel. the function of a
PC is defined as follows.

Pi,j,t = xi,j,t, x ∈ [0, 255] (10)

where Pi,j,t is the output of the corresponding position PC at the moment t. xi,j,t is the
greyscale value at the moment t, corresponding to the pixel position (i, j), which is ranged
to [0, 255].

In the DS pathway, the BC is only connected to the central PC. It should be noted
that although Hartline argued that ON and OFF responses existed in separate regions of
the local receptive field [31], i.e., the central region could be only one of the two feedback
modes, subsequent experiments by Barlow confirmed that motion in any area within the
boundary of the local receptive field leads to a simultaneous response of both [42]. This
indicates that the activation of BC depends only on whether the light information detected
by its corresponding PC changes, and is not limited to one of dark-to-light or light-to-dark,
which is contradicted by the definition of BC function in the model proposed by Tang et al.
The BC in such a model is divided into two functions according to ON-response and
OFF-response, and they are not fully complementary, which affects the rationality and
efficiency of the model. Therefore, BC function should be defined in a more comprehensive
but simpler form as follows.

Bi,j =

{
0, Pi,j,t − Pi,j,t−∆t ≤ θ

1, Pi,j,t − Pi,j,t−∆t > θ
(11)

where Bi,j,t is the output produced by the BC connected to (i, j), which represents the
central pixel position in the local receptive field, at moment t. (t− ∆t) and t denote the
two adjacent moments captured during the object motion, respectively. ∆t represents the
value of the interval between the two moments. θ is the activation threshold, which is a
positive number, and the pair of light information is considered to have no difference if
their differential value does not exceed this threshold.

HC spans the local receptive field’s center and edge. It plays a pivotal role in mod-
ulating cone output via reciprocal feedback. In addition, HCs can release GABA (an
essential related synaptic transmitter) [43] and GABA receptors have been found on BC
dendrites [43–45]. Hence, depending on the local chloride equilibrium potential in BC
dendrites, HCs can provide these cells with feedforward inhibition [11,46–48]. HCs are
widely thought to be involved in global signal processing, for example in the context of
contrast. The basic principle is lateral inhibition and the subtraction is included [49]. The
spatiotemporal modulation by inhibitory feedback affects the input of BC [48] and thus
indirectly affects the output of BC [50,51]. Therefore, we use the subtraction function of HC
to determine whether there is a difference between the outputs of the cells connected at its
ends, and thus extract information about the difference in the horizontal dimension. As
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HC’s inhibitory connection can be presented in the LMDN’s synaptic layer later. The HC
intracellular function is expressed generally as follows.

Hi,j =

{
0, Pedge,t − Pi,j,t−∆t ≤ θ

1, Pedge,t − Pi,j,t−∆t > θ
(12)

where Pedge,t represents the grayscale value at the moment t on an edge pixel in the LMDN’s
local receptive field. Corresponding to LMDNs of different direction-sensitivities, the eight
types of HCs’ spatiotemporal intercellular functions can be defined in detail as follows.

First HC for LMDNs with the sensitivity of upper leftward motion:

Hi,j,1 =

{
0, Pi−1,j−1,t − Pi,j,t−∆t ≤ θ

1, Pi−1,j−1,t − Pi,j,t−∆t > θ
(13)

First HC for LMDNs with the sensitivity of upper leftward motion:

Hi,j,2 =

{
0, Pi,j−1,t − Pi,j,t−∆t ≤ θ

1, Pi,j−1,t − Pi,j,t−∆t > θ
(14)

Third HC for LMDNs with the sensitivity of upper rightward motion:

Hi,j,3 =

{
0, Pi+1,j−1,t − Pi,j,t−∆t ≤ θ

1, Pi+1,j−1,t − Pi,j,t−∆t > θ
(15)

Fourth HC for LMDNs with the sensitivity of rightward motion:

Hi,j,4 =

{
0, Pi+1,j,t − Pi,j,t−∆t ≤ θ

1, Pi+1,j,t − Pi,j,t−∆t > θ
(16)

Fifth HC for LMDNs with the sensitivity of lower rightward motion:

Hi,j,5 =

{
0, Pi+1,j+1,t − Pi,j,t−∆t ≤ θ

1, Pi+1,j+1,t − Pi,j,t−∆t > θ
(17)

Sixth HC for LMDNs with the sensitivity of downward motion:

Hi,j,6 =

{
0, Pi,j+1,t − Pi,j,t−∆t ≤ θ

1, Pi,j+1,t − Pi,j,t−∆t > θ
(18)

Seventh HC for LMDNs with the sensitivity of lower leftward motion:

Hi,j,7 =

{
0, Pi−1,j+1,t − Pi,j,t−∆t ≤ θ

1, Pi−1,j+1,t − Pi,j,t−∆t > θ
(19)

Eighth HC for LMDNs with the sensitivity of leftward motion:

Hi,j,8 =

{
0, Pi−1,j,t − Pi,j,t−∆t ≤ θ

1, Pi−1,j,t − Pi,j,t−∆t > θ
(20)

where Hi,j,k(k ∈ {1, 2, 3, 4, 5, 6, 7, 8}) denotes the output produced by the corresponding
HC at the kth type of LMDN scanning (i, j) position. (t− ∆t) and t denote the two adjacent
moments during the object motion, respectively. θ is also used for BC; the sensitivity of the
cells to recognize light changes will peak when θ equals 0. Therefore, in the experiments of
this paper, we make θ equal to 0.
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In the anterior synapse connection of BC, there are axons of both PC and HC, and it is
in this particular synaptic gap that HC can have the opportunity to receive signals from
PCs and regulate BC laterally [11]. HC indirectly regulates the output of BC by influencing
the input of BC. This process is equated to the nonlinear interaction of HC with BC in the
dendrite layer, before which are the excitatory and inhibitory synaptic layer connections
of BCs and HCs respectively. The synaptic layer and dendrite layer of the LMDN can be
defined together as follows.

Di,j,k = Bi,j × Hi,j,k, k ∈ {1, 2, 3, 4, 5, 6, 7, 8} (21)

where Di,j,k is the output of the kth type of LMDN dendrite layer branch, which is subse-
quently fed into the membrane layer. Hi,j,k is the output of the HC corresponding to the
kth type of LMDN. The overline indicates the inhibitroy connection function that Hi,j,k = 1
causes Hi,j,k = 0 and Hi,j,k = 1 if Hi,j,k = 0.

Since there is only one dendrite layer branch of the LMDN, the output of the membrane
layer is equivalent to that of the dendrite layer.

Mi,j,k = Di,j,k (22)

The membrane layer output is the input of the soma. The soma compares the input
value with the firing threshold, and if the input value exceeds the threshold, the soma fires
and outputs 1; conversely, the soma does not fire and outputs 0. The function of the LMDN
soma is defined as:

Yi,j,k =

{
0, Mi,j,k ≤ θS

1, Mi,j,k > θS
(23)

where Yi,j,k is the output of soma at the kth type of LMDN scanning (i, j) position. θS is
the firing threshold of the soma, due to the membrane layer output of 0 or 1. In the model
for the experiments in this paper, the parameter θS can take any value of (0, 1) without
affecting the results because the simplest neural calculation, i.e., the logic operation, is used.

2.3.4. Scan

We call the entire receptive space in the visual field the global receptive field. Rep-
resenting the global receptive field as a rectangular two-dimensional space consisting of
a series of arranged pixels of size M × N, there are 8 × M × N LMDNs in the model;
LMDNs of the same sensitivity are spread across the global receptive field, corresponding
to the presence of M× N. To facilitate understanding, Figure 5 shows a scanning exam-
ple; the same LMDNs spread across the global receptive field scan the field of size 4× 4.
The position of the central pixel in the local receptive field is represented in the form of
coordinates.

Generally, during the scanning process, we denote the position of the center of
the LMDN local receptive field in the global receptive field by (i, j)(i = 1, 2, . . . , M;
j = 1, 2, . . . , N), as shown in Figure 4(1). Thereby, the positions of the pixel points in
the upper-left, up, upper-right, right, lower-right, down, lower-left and left of the local
receptive field in global receptive field during the scanning process can be represented
by (i − 1, j − 1), (i, j − 1), (i + 1, j − 1), (i + 1, j), (i + 1, j), (i + 1, j + 1), (i, j + 1) and
(i− 1, j + 1), respectively.



Mathematics 2022, 10, 2975 15 of 32

Figure 5. The scanning process of LMDNs. The center pixel of the local receptive field crosses each
pixel of the global receptive field in turn. For the situations on scanning the edge pixels, padding of
any constance affects few to AVS performance.

2.4. Global Motion Direction Detection Neurons

In a global receptive field of size M× N, the same type of LMDNs will get (M× N)
local motion direction feature values after one scan, which can be represented by a matrix of
M×N, i.e., local motion direction feature maps. eight types of LMDNs will get (8×M×N)
feature values after scanning a global receptive field of M×N, which can be represented by
8×M×N local motion direction feature maps. In the visual cortex, the eight corresponding
GMDNs collect all the local motion direction information from each of the eight feature
maps to obtain the global feature values for a specific motion direction. The function of the
GMDN is defined as an average pooling process.

Gk =
∑M

i=1 ∑N
j=1 Yi,j,k

M× N
(24)

where Gk is the output of the kth GMDN, corresponding to the characteristic map of
local motion directions output by the same sensitive LMDNs. Gk is used to represent
the intensity of the occurrence of the kth local motion direction at the global scale and is
therefore subsequently used to calculate the probability of the occurrence of global motion
in a particular direction.

Pk =
Gk

∑8
k=1 Gk

(25)

where Pk refers to the probability that the kth motion direction is the global motion direction.
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Eventually, GMDNs infer the motion direction corresponding to the largest Pk value as
the global motion direction. Eight GMDNs process the eight feature maps scanned by the
corresponding group of LMDNs in the global range, calculate the activation intensity by
average pooling, and infer the actual motion direction of the object in the global receptive
field accordingly, and the process is shown in Figure 6.

Figure 6. The global motion direction inferring process of GMDNs. Eight feature maps are given
by scanning the input images using the eight corresponding LMDNs. GMDNs finnally give the
probabilities by average pooling to eight feature maps.

For easier understanding to the whole procedure, AVS is summarized in a pseudo-
code manner in Algorithm 1. Figure 7 shows a case of detection of an “L” shaped object in
a 5× 5 global receptive field of 25 pixels, moving lower rightwards. In the two images at
(t− ∆t) and t, the grayscale values of each pixel of the object are the same. The grayscale
values of all pixel points in the background are randomly selected. For ease of observation,
the pixel points covered by the object in Figure 7 are highlighted in red.

Algorithm 1: AVS.
Input: 2 grayscale images
Output: the global motion direction occuring in the input images

1 Local information collection: scan the 2 images by the 8 LMDNs, thus obtaining
8 local motion direction feature maps

2 Global information collection: average pooling processing by the 8 GMDNs
3 Recognition result: infer the corresponding sensitive direction of the GMDN with

the highest activation intensity to the present global motion direction.
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Figure 7. An detection example of AVS for an “L” shaped object. First step, the two grayscale images
occurring a lower rightward global motion direction are input into the AVS. Second step, the eight
types of LMDNs scan the input images. Third step, eight local motion direction feature maps are
generated from LMDNs recording the local motion direction information (the activated local areas are
marked by red “1”). Fourth step, eight corresponding GMDNs statistically collect and give a average
pooling output. Final step, the direction corresponding to the GMDN with the highest activation
intensity is inferred to have the most probability to be the global motion direction.

3. Experiment
3.1. Performance

A grayscale image of size 32× 32 with 1024 pixels is used as input; the image content is
obtained by sequentially generating the background and the object. Each pixel point in the
background has the same grayscale value, which is generated randomly. The object consists of
several randomly positioned but continuous pixel points with random and consistent grayscale
values. The object is randomly placed at a random position above the background, and then
the object is allowed to move in one of eight directions (↑,↗,→,↘, ↓,↙,←,↖), and two
successive frames of the motion are extracted and input to AVS. In multiple types of instances,
comparing the actual object motion direction with the detection results of AVS, statistical
detection accuracy is used to analyze its effectiveness. Considering that different object sizes
may affect the detection performance, the motion instances of objects of 10 different sizes (pixel
scale of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512) in 8 directions are implemented separately; different
sizes of objects are tested 125 times in each motion direction, so a total of 10 sizes of objects in 8
motion directions are 10,000 testing experiments.

The experimental results are reported in Table 1 using AVS to detect the motion
direction of objects in different instances. The results show that AVS can achieve a 100%
detection accuracy for the motion of 10 different sizes of objects in grayscale images in
different directions. This indicates that AVS is able to effectively detect the direction of
object motion through successive grayscale image frames in the video, regardless of the
size and shape of the objects and regardless of where they are located in the image.

Figure 8a shows an instance of AVS motion direction detection in the theoretical
image condition. It shows two successive grayscale images of a randomly shaped object
consisting of 16 pixels moving downward in an image field consisting of 1024 pixels in
32× 32. Figure 8b depicts the number of times the eight LMDNs were activated using
the one-dimensional statistics used in neuroscience studies. It was shown in mammalian
visual cortex that, for a motion direction occuring in the global receptive field, neurons
also have direction-sensitivities. The global motion direction corresponds to the GMDN
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with the highest activation intensity which is highly similar to phenomina in the primary
cortex shown in Figure 3. LMDNs were activated 12, 9, 11, 6, 12, 7, 21, and 7 times,
which indicates the activation intensity of the corresponding GMDNs, respectively, in the
time of ∆t, with the neuron sensitive to the downward motion being activated 21 times
and the density of the corresponding activation bar being significantly higher than any
of the others, the corresponding direction is consistent with the actual motion direction
of the object in the image, and thus a successful detection. Figure 8c counts the sum
number of activations of each LMDNs, i.e., the corresponding GMDNs response strength,
with a bar chart. Figure 8d marks the pixel locations that caused the LMDNs to activate
during the ∆t in blue, a region that clearly depicts the general outline of the moving object,
due to the particular sensitivity of the LMDNs to the edges of moving objects within
the local receptive field. Thus, the model can also perform edge tracking of objects in
motion, dynamically displaying the direction in which a moving object is located in the
global receptive field in real-time. LMDNs naturally demonstrate the edge-sensitivity
in animal vision along with the local motion direction selectivity where the response
to non-preferred directions is null. Furthermore, the LMDN has the ability to correctly
extract directional information in object motion phenomena at arbitrary greyscale, which
is consistent with Barlow’s basic experimental conclusion that changes in light do not
interfere with directional selectivity. The result also excludes the significant resistance to
the interpretation of the motion detection mechanism posed by the opposite functions of
the ON and OFF response regions in the same local receptive field. In conclusion, all the
properties of AVS correspond highly to the core physiological experimental findings.

Table 1. Experimental results of AVS on motion direction detection with different scales of object.

Object Scale Motion Direction ↑ ↗ → ↘ ↓ ↙ ← ↖ Total

1-pixel
No. of samples 1250 1250 1250 1250 1250 1250 1250 1250 10,000

Correct No. 1250 1250 1250 1250 1250 1250 1250 1250 10,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

2-pixel
No. of samples 1250 1250 1250 1250 1250 1250 1250 1250 10,000

Correct No. 1250 1250 1250 1250 1250 1250 1250 1250 10,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

4-pixel
No. of samples 1250 1250 1250 1250 1250 1250 1250 1250 10,000

Correct No. 1250 1250 1250 1250 1250 1250 1250 1250 10,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

8-pixel
No. of samples 1250 1250 1250 1250 1250 1250 1250 1250 10,000

Correct No. 1250 1250 1250 1250 1250 1250 1250 1250 10,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

16-pixel
No. of samples 1250 1250 1250 1250 1250 1250 1250 1250 10,000

Correct No. 1250 1250 1250 1250 1250 1250 1250 1250 10,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

32-pixel
No. of samples 1250 1250 1250 1250 1250 1250 1250 1250 10,000

Correct No. 1250 1250 1250 1250 1250 1250 1250 1250 10,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

64-pixel
No. of samples 1250 1250 1250 1250 1250 1250 1250 1250 10,000

Correct No. 1250 1250 1250 1250 1250 1250 1250 1250 10,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

128-pixel
No. of samples 1250 1250 1250 1250 1250 1250 1250 1250 10,000

Correct No. 1250 1250 1250 1250 1250 1250 1250 1250 10,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

256-pixel
No. of samples 1250 1250 1250 1250 1250 1250 1250 1250 10,000

Correct No. 1250 1250 1250 1250 1250 1250 1250 1250 10,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

512-pixel
No. of samples 1250 1250 1250 1250 1250 1250 1250 1250 10,000

Correct No. 1250 1250 1250 1250 1250 1250 1250 1250 10,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%
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Figure 8. An AVS motion direction detection instance in the theoretical image condition: (a) two
successive frames of a downward motion of an 16-pixel object; (b) activation map of the eight LMDNs
during scan; (c) LMDNs activations are counted by a bar chart; (d) activated pixels by all the LMDNs
during detection process are marked by blue.

3.2. Comparing the Performance of CNN

The traditional CNN is considered to be the most effective algorithm in pattern
recognition. To verify the superiority of AVS, we let CNN undertake the same detection
task for comparing the performance. We use a classical and representative CNN method
called LeNet-5 [52], and the optimizer uses Adam [53]. The network structure is shown
in Figure 9, where two grayscale images of the object motion process are input into two
channels of the CNN. We generate a total of 10,000 sets of motion instances, 1000 sets for
each of the 10 different sizes of objects, which contain another 125 sets for each of the 8
directions. Since there is a model learning optimization process for the CNN, we divide the
data of the same category in 10,000 sets into a learning set and a test set by 8:2. The test
set was also used to test AVS. to eliminate the randomness in the optimization process for
learning as much as possible, the CNN was allowed to learn 30 times independently, and
the mean accuracy was used for experimental analysis. In the learning of CNN, epochs and
batches value are both 100; the best model in the epochs process is selected for subsequent
testing based on the largest accuracy value.
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Figure 9. The structure of CNN.

The experimental results are reported in Table 2. CNN can achieve more than 90%
correct rate in detecting object motion only at the scale of 256 pixels or more. Meanwhile,
AVS shows 100% error-free superior accuracy in detecting object motions of all sizes
including the single-point object. In terms of the mean value, ARVS achieves 100% accuracy,
while CNN is only 81.98%. Figure 10 records the accuracy trends of the different methods
with object size. The smaller the object size, the lower the detection accuracy of CNN; for
single-point object motion, the detection accuracy is the lowest, only 65.48%. While for each
different object size, AVS is significantly higher than CNN and shows excellent robustness.
Therefore, AVS has a surprising superiority over CNN in the motion direction detection
task.

Table 2. The experimental results of AVS and CNN in motion direction detection on different scales
of objects.

Object Scale AVS CNN

1-pixel 100% 65.48%

2-pixel 100% 71.58%

4-pixel 100% 76.73%

8-pixel 100% 77.92%

16-pixel 100% 83.07%

32-pixel 100% 86.22%

64-pixel 100% 89.63%

128-pixel 100% 86.8%

256-pixel 100% 90.4%

512-pixel 100% 91.97%

Mean 100% 81.98%
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Figure 10. The detection accuracy trends of AVS and CNN to motion direction of different scales
of object.

3.3. Performance in Complex Environments

Although AVS is able to achieve error-free in the theoretical conditions, some random
and unknown interference information might affect the AVS performance in complex
environments. To demonstrate more comprehensively the performance of AVS in complex
environments. We experiment with static and dynamic noise separately. In addition, we
further classify them as in the background or being on top of the image. Thus, four types
of noise are given, namely static background noise, dynamic background noise, static
full-image noise, and dynamic full-image noise. In the experiments, the grayscale value
of each noise pixel is randomly given. By controlling the number of noise pixels added,
we tested 3 progressive levels of complexity for this noise environment. The number of
noise pixels was set to 10%, 20%, and 30% of the total number of picture pixels, respectively.
The purpose was to examine the noise immunity trend of AVS in each type of complex
environment.

The first type of complex environment, static background noise. From the background
of each theoretical image, a number of pixels at the same position are selected and they are
replaced with an equal number of noise pixels. This noise can make the static background
of the moving object more cluttered, thus increasing the complexity of the environment.
Figure 11a shows an detection example of AVS under static background noise. It shows
two successive images of a randomly shaped object consisting of 128-pixel points moving
downward in an image consisting of 1024 pixel points in 32× 32. In these two images,
some pixel points in the noiseless background are replaced by new random grayscale pixel
points with fixed positions. Figure 11b records the responses of the LMDNs in an intuitive
one-dimensional statistical method used in neuroscience studies, the sum of which is the
activation intensity of each corresponding GMDN. LMDNs were activated 47, 32, 35, 38,
44, 35, 83, and 40 times, respectively, during ∆t, with the LMDN preferring downward
motion being activated 83 times and its bar density was significantly higher than any of
other neurons and thus was inferred as the global motion direction; the sensitive direction
of this class of neurons was consistent with the actual motion direction of the object in the
image, and thus a successful detection. The histogram in Figure 11c records the response
strength of GMDNs. The pixels activated by either neuron in ∆t time are highlighted in
blue in Figure 11d.
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Figure 11. An AVS motion direction detection instance in static background noise: (a) two successive
frames of a downward motion of an 128-pixel object; (b) activation map of the eight LMDNs during
scan; (c) LMDNs activations are counted by a bar chart; (d) activated pixels by all the LMDNs during
detection process are marked by blue.

The second type of complex environment, dynamic background noise. From the
background of each theoretical image, a number of pixels at different positions are inde-
pendently selected and replaced with an equal number of noise pixels. This noise can
make the background of a moving object more cluttered while also containing real-time
changes, thus further increasing the complexity of the environment. Figure 12a shows
an detection example under dynamic background noise. It shows two successive frames
of a randomly shaped object consisting of 64-pixel points moving upper leftward in an
image consisting of 1024 pixel points in 32× 32. In these two frames, some pixel points
at different locations in the background are replaced by random grayscale noise points. It
can be seen from the figure that the noise points are present only in the background and
change dynamically during the motion of the object. Figure 12b depicts the number of
activations of LMDNs, i.e., the activation intensity of each corresponding GMDN. LMDNs
were activated 81, 88, 90, 116, 89, 92, 81, and 84 times, respectively, during ∆t, with the
LMDN preferring upper leftward motion being activated 116 times and the density of
activation bars being significantly higher than any of the others. The sensitive direction
of this class of neurons is consistent with the actual motion direction of the object in the
image, and thus a successful detection. The bar graph in Figure 12c records the response
strength of GMDNs. The pixels activated by either neuron in ∆t time are highlighted in
blue in Figure 12d.
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Figure 12. An AVS motion direction detection instance in dynamic background noise: (a) two
successive frames of an upper leftward motion of an 64-pixel object; (b) activation map of the eight
LMDNs during scan; (c) LMDNs activations are counted by a bar chart; (d) activated pixels by all the
LMDNs during detection process are marked by blue.

The third type of complex environment, static full-image noise. From each theoretical
image, a number of pixels at the same position are selected and replaced with an equal
number of noise pixels. This type of noise not only has the characteristics of static back-
ground noise, but also obscures object pixels, causing clutter everywhere in the full image.
Figure 13a shows an example of detection under static full-image noise. It shows two
successive frames of a randomly shaped object consisting of 32-pixel points moving lower
rightward in an image consisting of 1024 pixels in 32× 32. The uppermost pixel points
at the same location in both images are covered by random grayscale noise points. It can
be seen that the noise acts on the uppermost layer of the image and that the noise point
locations do not change during the object’s motion. Figure 13b depicts the number of
times the LMDNs were activated, i.e., the response strength of each corresponding GMDN.
LMDNs were activated 12, 6, 9, 6, 7, 14, 11, and 24 times during the time interval of ∆t. The
LMDNs preferring lower rightward motion were activated 24 times with a significantly
higher activation bar density than any of the others. The sensitive direction of this neuron
is consistent with the actual motion direction of the object, and thus a successful detection.
The bar graph in Figure 13c records the response intensity of the GMDNs. The pixels
activated by either neuron in ∆t time are highlighted in blue in Figure 13d.

The fourth complex environment, dynamic full-image noise. From each theoretical
image, a number of pixels at different positions are independently selected and replaced
with an equal amount of noise pixels. This noise not only has the characteristics of static full-
image noise, but also contains real-time changes. This type of noise has the characteristics
of the three aforementioned noise types in parallel, and thus is the most complex noise
type. Figure 14a shows an example of detection under static full-image noise. It shows
two successive frames of a randomly shaped object consisting of 256-pixel points moving
lower leftward in an image consisting of 1024 pixel points in 32× 32. Some pixel points at
different locations of the two images are covered by random grayscale noise points. We can
see that the noise acts on the uppermost layer of the images, and the noise point positions
are dynamically changing during the object’s motion. Figure 14b depicts the number of
activations of LMDNs, i.e., the response strength of each corresponding GMDN. LMDNs
were activated 113, 116, 118, 117, 119, 201, 138, and 127 times, respectively, in the time of
∆t, where the LMDNs preferring the lower rightward motion were activated 201 times.
The density of activation bars is significantly higher than any of the others, the sensitive
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direction of this neuron is consistent with the actual motion direction of the object, and
the detection is successful. The bar graph in Figure 14c records the response intensity of
the GMDNs. The pixels activated by either neuron in ∆t time are highlighted in blue in
Figure 14d.

Figure 13. An AVS motion direction detection instance in static full-image noise: (a) two successive
frames of a lower rightward motion of an 32-pixel object; (b) activation map of the eight LMDNs
during scan; (c) LMDNs activations are counted by a bar chart; (d) activated pixels by all the LMDNs
during detection process are marked by blue.

Figure 14. An AVS motion direction detection instance in dynamic full-image noise: (a) two successive
frames of a lower leftward motion of an 256-pixel object; (b) activation map of the eight LMDNs
during scan; (c) LMDNs activations are counted by a bar chart; (d) activated pixels by all the LMDNs
during detection process are marked by blue.

The above four different types of noise are added to the noise-free object motion
examples to generate four noise test sets to examine the noise immunity performance
of AVS. The percentage of noise points amount to the total number of image pixels is
set to 10%, 20%, and 30%, and the detection accuracy is counted. To further verify the
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noise immunity performance of AVS, the CNN is also employed to complete the direction
detection task in such four noisy environments for comparison.

For each of the above noises, 10,000 sets of motion instances are generated by computer
simulation respectively. All other experimental conditions are the same as the CNN
comparison experiments without noise. The detection accuracies of objects of different
sizes in the four noise environments are calculated separately. The experimental results are
shown in Tables 3–6.

Table 3. The experimtental results of AVS and CNN under the static background noise.

Noise Type 10% 20% 30%

Proportion AVS CNN AVS CNN AVS CNN

1-pixel 92.5% 13.18% 89% 13.37% 82% 13.13%
2-pixel 94.5% 13.15% 91.5% 13.08% 86.5% 12.82%
4-pixel 97.5% 16.40% 94% 13.83% 96.5% 13.35%
8-pixel 100% 17.78% 99.5% 15.53% 99% 15.70%
16-pixel 100% 20.65% 100% 18.65% 100% 15.67%
32-pixel 100% 26.03% 100% 21.82% 100% 18.35%
64-pixel 100% 32.68% 100% 27.70% 100% 23.70%

128-pixel 100% 42.70% 100% 33.20% 100% 27.80%
256-pixel 100% 55.20% 100% 42.47% 100% 37.65%
512-pixel 100% 69.70% 100% 55.88% 100% 52.22%

Mean 98.45% 30.75% 97.4% 25.55% 96.4% 23.04%

Table 3 statistically shows the detection accuracies of AVS and CNN under static
background noise. In the 10% noise environment, AVS can achieve 100% detection accuracy
in all situations when detecting objects of scale larger than 4 pixels; however, a small
number of detection errors occur when the object scale is smaller than 8 pixels. This is due
to the fact that under a certain amount of noise, the smaller the object size, the greater the
relative interference of the noise. the same trend exists for CNN detection, i.e., the accuracy
is higher for objects of larger size. However, the CNN achieves only 69.70% for the largest
scale object of 512 pixels in the test set, which is just not as good as the AVS for the smallest
scale 1-pixel object, i.e., 92.5%. As the object size decreases, the accuracy of CNN reduces
rapidly, and the accuracy of 1-pixel object detection is only 13.18%. When the noise ratio
increases to 20%, the accuracy of both methods reduce to some extent relative to a 10%
noisy environment, with AVS having an all-100% error-free detection capability in tasks for
scales larger than 8 pixels, while the accuracy falls from 100% to 99.5% in tasks for 8-pixel
objects. The detection accuracy was reduced by 3.5%, 3%, and 3.5% in the tasks of 1, 2, and
4-pixel objects, respectively, while the accuracy of CNN showed a significant reduction
in tasks of each object size except for 1 and 2-pixel objects. In the 30% noise condition,
AVS still maintains all-100% error-free detection performance for objects larger than 8,
while the accuracy reduction is 7%, 5% and 0.5% for 1, 2, and 8-pixel objects, respectively,
relative to the 20% noise environment. Although the accuracy in doing the 4-pixel object
task becomes lower in the 20% noise environment, this increase should be considered as a
singular value due to experimental randomness, because the overall trend shows that the
error-free detection range of AVS becomes narrower as the background noise proportion
increases, and the accuracy becomes worse overall in tasks with detection errors. CNN, on
the other hand, similarly becomes worse on all scales excluding the 8-pixel object. The small
accuracy increase of 8-pixel objects should also be considered as a singular value due to
experimental randomness. In the experiments with three different noise concentrations of
static background noise, AVS maintains high accuracy performance of 100% for all objects
larger than 16 pixels. The mean values of AVS are 98.45%, 97.4%, and 96.4%, which are
much higher than CNN, i.e., 30.75%, 25.55%, and 23.04%, respectively. It is obvious from
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the line graph of the mean values in Figure 15a that the accuracy of both methods reduces
as the noise percentage becomes larger, but AVS significantly outperforms CNN in all cases.

Table 4. The experimtental results of AVS and CNN under the dynamic background noise.

Noise Type 10% 20% 30%

Proportion AVS CNN AVS CNN AVS CNN

1-pixel 29.00% 12.68% 18.50% 12.22% 19.00% 12.45%
2-pixel 37.00% 13.58% 27.50% 13.45% 24.00% 12.72%
4-pixel 61.00% 14.42% 30.00% 13.17% 29.50% 12.75%
8-pixel 78.50% 16.13% 46.50% 14.33% 39.00% 14.05%
16-pixel 93.00% 18.95% 78.00% 16.78% 62.00% 14.80%
32-pixel 99.50% 22.72% 96.00% 19.08% 83.50% 17.17%
64-pixel 100.00% 29.33% 100.00% 23.18% 98.50% 18.45%

128-pixel 100.00% 40.70% 100.00% 28.80% 99.50% 25.53%
256-pixel 100.00% 45.83% 100.00% 39.28% 100.00% 33.03%
512-pixel 100.00% 64.13% 100.00% 53.00% 100.00% 46.23%

Mean 79.80% 27.85% 69.65% 23.33% 65.50% 20.72%

Table 4 provides statistics on the detection accuracy of AVS and CNN under dynamic
background noise. In the 10% noise environment, AVS can achieve 100% accuracy for
all objects larger than 32 pixels; however, detection errors occur for objects smaller than
64 pixels. CNN is also easier to recognize the object’s motion with larger object scales.
Both the two methods had the lowest accuracy rates for the 1-pixel object, which is 29.00%
and 12.68%, respectively; the mean accuracy values for the 10 different sizes of objects
were 79.80% and 27.85%, respectively, with a decrease, compared to the static background
noise, but AVS still significantly outperformed CNN. When the noise ratio increases to
20%, the detection accuracy of both methods reduce relative to the 10% noise environment,
but AVS still maintains all-100% error-free detection capability in tasks for object scales
larger than 32 pixels; in tasks for smaller scales, the accuracy decreases naturally. CNN, on
the other hand, has decreased for all the object scales. AVS maintains all-100% error-free
performance for those larger than 128 pixels in the 30% noise condition, while the accuracy
decreases significantly for the smaller object, except for 1-pixel objects (which should be
considered as singular values due to experimental randomness), relative to the 20% noise
environment. The CNN similarly decreases at all object scales except for 1-pixel objects
(which should be considered as singular values due to experimental randomness). In
the three experiments with different concentrations of dynamic background noise, AVS
maintains high accuracy performance of 100% for all the objects larger than 128 pixels.
The mean accuracy of AVS is 79.80%, 69.65%, and 65.50%, respectively, which is much
higher than that of CNN at 27.85%, 23.33%, and 20.72%. It is obvious from Figure 15b that
the accuracy of both methods decreases as the noise percentage becomes larger, but AVS
significantly outperforms CNN in all cases. Relative to static background noise, dynamic
background noise produces stronger interference in the motion direction recognition task.

Table 5 statistically shows the detection accuracies of AVS and CNN under static
full-image noise. In a 10% noise environment, AVS can achieve 100% detection accuracy
for all objects larger than 8 pixels; however, a small number of detection errors occur for
objects smaller than 16 pixels. CNN obtains the highest accuracy for the largest scale
512-pixel object in the test set, but it is only 55.15%, which is even far less than the accuracy
of AVS when detecting 1-pixel objects, i.e., 77.5%. Both the two methods have the lowest
accuracy for the task of 1-pixel objects, which is 77.5% and 13.22%, respectively; the mean
accuracy values for 10 different scales of objects are 94.4% and 27.29%, respectively, with
AVS significantly outperforming CNN. When the percentage of noise increases to 20%,
the accuracy of both methods decreases relative to the 10% noisy environment, but AVS
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still maintains an all-100% error-free detection capability in object detection tasks larger
than 16 pixels; the accuracy decreases in tasks of smaller sizes. The AVS maintains all-100%
error-free performance for objects larger than 64 pixels in the 30% noise condition, while the
accuracy decreases in the smaller object tasks compared to the 20% noise environment, and
the CNN also decreases in tasks at all object scales. In the three experiments with different
concentrations of static full-image noise, AVS maintains a high accuracy performance
of 100% for all objects larger than 64 pixels. the mean accuracy of AVS is 94.4%, 88.4%,
and 83.35%, respectively, which is much higher than that of CNN at 27.29%, 21.35%, and
17.79%. It is obvious from Figure 15c that the accuracy of both methods decreases as the
percentage of noise becomes larger, but AVS is significantly better than CNN in all cases.
Static full-image noise is a stronger noise compared to static background noise.

Table 5. The experimtental results of AVS and CNN under the static full-image noise.

Noise Type 10% 20% 30%

Proportion AVS CNN AVS CNN AVS CNN

1-pixel 77.5% 13.22% 51% 12.98% 43% 12.80%
2-pixel 77.5% 13.60% 64% 13.20% 50.5% 12.42%
4-pixel 93% 15.18% 79% 14.53% 67% 12.67%
8-pixel 96% 17.93% 91.5% 15.38% 79.5% 13.88%

16-pixel 100% 20.03% 98.5% 16.97% 95% 14.80%
32-pixel 100% 24.28% 100% 18.83% 99% 17.22%
64-pixel 100% 30.87% 100% 21.57% 99.5% 18.28%

128-pixel 100% 36.35% 100% 27.17% 100% 22.63%
256-pixel 100% 46.25% 100% 32.88% 100% 25.38%
512-pixel 100% 55.15% 100% 39.95% 100% 27.77%

Mean 94.4% 27.29% 88.4% 21.35% 83.35% 17.79%

Table 6. The experimtental results of AVS and CNN under the dynamic full-image noise.

Noise Type 10% 20% 30%

Proportion AVS CNN AVS CNN AVS CNN

1-pixel 23% 12.87% 18.5% 13.23% 10% 12.32%
2-pixel 36% 13.27% 19.5% 12.75% 16% 13.02%
4-pixel 51.5% 13.75% 29% 13.55% 29.5% 13.47%
8-pixel 73.5% 15.40% 43.5% 14.40% 31% 12.87%

16-pixel 93.5% 17.57% 65.5% 15.60% 50% 13.50%
32-pixel 98.5% 22.13% 89.5% 16.63% 65.5% 14.33%
64-pixel 100% 27.53% 100% 19.85% 89.5% 16.53%
128-pixel 100% 31.48% 100% 21.28% 98.5% 17.42%
256-pixel 100% 41.87% 100% 30.53% 100% 22.57%
512-pixel 100% 46.45% 100% 33.53% 100% 28.43%

Mean 77.6% 24.23% 66.55% 19.14% 59% 16.45%

Table 6 statistically shows the detection accuracies of AVS and CNN under dynamic
full-image noise. The accuracy of the CNN is also easier to recognize the movement of
objects on a larger scale. Both the two methods had the lowest accuracy rates in the 1-pixel
object task, at 23% and 12.87%, respectively; the mean accuracy values for the 10 different
sizes of objects were 77.6% and 24.23%, respectively, which were lower compared to the
three noise types mentioned above, but AVS still significantly outperformed CNN. When
the noise ratio increases to 20%, the accuracy of both methods decreases relative to the
10% noise environment, but AVS still maintains all-100% error-free detection capability
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for the task of objects larger than 32 pixels; in smaller object tasks, the accuracy decreases,
while CNN decreases in all different sizes in experiments. AVS maintains all-100% error-
free performance for objects larger than 128 pixels in the 30% noise condition, while the
accuracy decreases significantly in the smaller object tasks compared to the 20% noise
environment, and the CNN also decreases in tasks of all object sizes except for 2-pixel
objects (which should be considered as singular values due to experimental randomness). In
three experiments with different concentrations of dynamic full-image noise, AVS maintains
high accuracy. In three experiments with different concentrations of dynamic full-image
noise, AVS maintains high performance of accuracy of 100% for objects larger than 128
pixels. the mean accuracy values of AVS are 77.6%, 66.55%, and 59%, respectively, which is
much higher than that of CNN at 24.23%, 19.14%, and 16.45%. It is obvious from the mean
value line graph in Figure 15d that the accuracy of both methods decreases as the noise
percentage gets larger, but AVS significantly outperforms CNN in all cases. Relative to the
first three types of noise, the dynamic full-image noise produces the strongest interference
in the motion direction recognition task. In different concentration environments of the
four types of noise, the accuracy of both detection methods decreases gradually with the
decrease of object size.

Figure 15. The motion direction detection accuracy trends of AVS and CNN to progressive propor-
tions of diifferent noise types: (a) accuracy trends in static background noise; (b) accuracy trends
in dynamic background noise; (c) accuracy trends in static full-image noise; (d) accuracy trends in
dynamic full-image noise.
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Figure 15 depicts the relationship between different noise ratios and the detection
accuracy of the two methods under the four types of noise environments with line graphs,
respectively. From the figure, it can be seen that for both methods, the impact of static noise
on detection difficulty is smaller than that of dynamic noise under the same other noise
conditions, and the impact of background noise is smaller than that of full-image noise.
However, when compared to CNN for each type of noise, AVS demonstrates superior noise
immunity performance and also a significantly higher noise-free detection capability.

The experimental results show that AVS achieves very high detection accuracy and
robustness under both noise-free and four different types of noise compared to the CNN
method. At the same time, since the design of AVS is based on the real function of each
corresponding cell in the retina to reproduce the physiological collaboration phenomenon
of the relevant direction-sensitive pathway, there is no learning optimization process, no
teaching data import, and no need to introduce any parameters in AVS. Compared with
CNNs, which require a huge model parameter optimization task for a large amount of data
during the learning process, AVS has the inherent advantage of being an extremely efficient
motion direction detector even if the learning process is skipped, thus saving significant
computational resources. This is because AVS has a strong physiological background, which
makes it fully interpretable; whereas CNN has been considered a black-box optimizer with
a lack of interpretability. Moreover, in terms of hardware implementation, AVS is designed
based entirely on the physiological computational properties of relative neurons, requiring
only three simple operation modes: comparison, summation, and logic operations, and is
therefore extremely easy to implement in hardware, allowing for a very high computational
speed while greatly liberating the scope of application scenarios. In summary, AVS has
four important characteristics of high effectivity, robustness, efficiency, and rationality at
the same time.

4. Discussion and Conclusions

The aim of this study is to construct a novel computer vision technique using the
known cellular functional properties of the retinal direction-selective neural pathway. It
also provides an innovative explanation for the mechanism underlying the operation of
the DS vertical pathway in mammalian visual system to help understand the functional
principles of DSGCs and the visual system in general. We propose a novel structure and
principle conjecture for the entire retinal direction-selective pathway, construct a new
two-dimensional eight-direction motion detection mechanism and verify its effectiveness,
efficiency, and robustness using the following key knowledge:

1. BCs have ON-OFF response feedback mechanisms that can respond instantly to the
changing phenomenon of local light sources;

2. HCs have asymmetric lateral connection structures and inhibitory signal feedback
communication mechanism, which can complete the exchange of light information
between the central PC and the surrounding PCs;

3. The dendritic neurons of the DS pathway in the retina have nonlinear computational
properties;

4. According to neuroscientific knowledge, neurons can only complete extremely simple
computations;

5. The existence of local receptive fields;
6. The superposition of excitation from local to global neurons;
7. A known highly biologically sound dendritic neuron model for modeling the DS pathway;
8. Specific neurons in the brain cortex respond more strongly to specific directions of

motion occurring in the receptive field than to other directions.

In this mechanism, the judgment of global motion direction is determined by the acti-
vation strength of GMDNs. The response of GMDNs in the experiments is highly consistent
with physiological activation phenomena actual in the mammalian retina (LMDN) and
brain cortex (GMDN); thus, we have reasons to believe that this mechanism can provide a
new cognitive perspective for the mammalian DS pathway as well as the visual system.
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Additionally, except for the LMDN and GMDN sensitive to the present global motion
direction, the other LMDNs and GMDNs are also activated during detection. LMDNs
record the occurrence of different sensitive directions for each pixel and GMDNs record
the total intensity of different directions in the global receptive field. Therefore, not only
the main motion direction in the whole global receptive field but that in any local area can
be derived by the GMDN calculation method. In other words, mammals can supervise
motion directions occurring in any area of the visual field, except that the global motion
direction is easier to notice because the correlated neurons are most strongly activated.

Experiments have shown that AVS performed excellent resistance ability to interfer-
ence under a wide range of noise conditions while detecting the motion direction occurs
noise-free grayscale images including single, multi-point, and large objects with no er-
ror. AVS makes correct motion direction determination regardless of the shape, size, and
location of the moving object in the global receptive field. Its structure is a collection of den-
dritic neuron models that can detect the motion direction of objects in the global receptive
field by only three very simple operations: comparison, summation, and logic operations,
making AVS extremely easy to be hardwareized. This confirms the fact that the brain can
perform complex tasks by performing simple nonlinear operations on a large number of
neurons with dendrite, and also brings us, for example, a very low device threshold, very
fast detection speed, and a very wide range of application scenarios. Coupled with the
structural independence of the eight LMDNs, the mechanism allows for parallel operations
to further achieve faster detection speed. In addition, the edge-sensitive property of the
mechanism also naturally matches the visual properties of the brain. Therefore, AVS is in
high agreement with the relevant physiological experiments in terms of various details of
structural functions, as well as in terms of its high accuracy, high anti-interference ability,
and various other characteristics (e.g., computational approach, computational efficiency,
edge sensitivity, and output intensity pattern) exhibited during the detection process. This
suggests that AVS can be a useful forward-looking approach to the current cognitive bottle-
neck of the DS pathway faced by researchers. It is also a fresh way of thinking to analyzing
the mechanisms and principles of DS neural pathways and even the whole brain neural
networks. At the same time, AVS also proposes a new and efficient method for motion
direction detection.

The AVS used in this study is also compatible to solve the problem of object motion
direction detection in two-dimensional eight-directional black-and-white binary conditions.
In the future, the mechanism can be extended in the following ways. First, the grayscale
motion detection mechanism is an indispensable basis for developing a color motion
detection mechanism; designing the color motion direction detection mechanism to fully
implement the retinal motion direction detection function and to cope with the widest
range of color data in the real world; second, for the other additional motion directions, the
current version of AVS can only output a result in the given eight directions. However, by
adjusting and expanding the structure and scale of AVS to enable it to detect more types of
motion directions (not just the basic eight). The detail method is that expand the 3× 3 local
receptive field to larger. For example, 5× 5 for 16 directions and 7× 7 for 24 directions;
third, expanding it to direction detection mechanism in the three-dimensional environment
in order to further implement the human eye stereoscopic function; fourth, the velocity
or acceleration detection mechanism can also be implemented based on the current AVS.
Fifth, although the current AVS does not require learning and maintains a high level of
interpretability, we do not rule out developing a learnable AVS and trying to apply it to
more than just direction-selective tasks. For learnable AVS, the existing AVS can provide
an excellent set of initial parameters to greatly improve the learning efficiency. With AVS
as the cornerstone, all these future works will ensure high efficiency while being highly
physiologically consistent and interpretable.
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