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Abstract: To study the mapping relationship between girder deformation and rail deformation for
the CRTS III slab ballastless track (SBT) multi-span simply supported bridge, this study derived
a simplified analytical solution, and the corresponding ANSYS finite element model (AFEM) was
established. Compared with the fine analytical model (FAM) and the AFEM, the calculation results of
the three models under the conditions of pier settlement and girder vertical fault were compared,
which verified the universal properties of the simplified analytical model (SAM). Based on the
verified SAM, the influence of pier settlement, fastener stiffness, girder span, and girder vertical
fault on rail deformation was studied. The results show that the rail deformation is approximately
proportional to pier settlement and girder vertical fault. With the increase in fastener stiffness, the
fastener internal force increases, the rail mapping deformation increases, and the length of the rail
mapping deformation area decreases. With the increase in girder span, the rail deformation curve
becomes smooth, the length of the rail mapping deformation area becomes longer, and the fastener
internal force is significantly reduced.

Keywords: CRTS III SBT system; mapping deformation; principle of stationary potential energy;
analytical model; numerical simulation

MSC: 37N15

1. Introduction

Ballastless track structure is commonly used in China’s high-speed railways to meet the
requirements of high levelness and stability [1]. In the past few years, the structural forms
of ballastless track structures include CRTS I SBT, CRTS II SBT, and CRTS III SBT [2]. CRTS
III SBT inherits the advantage of CRTS I SBT and CRTS II SBT, which is the optimization
and integration of the existing ballastless track [2]. Nowadays, CRTS III SBT is widely used
in high-speed railway systems. Due to the special geological conditions and environmental
factors in China, “replacing roads with bridge” is widely adopted [3]. Therefore, the length
of high-speed railways in special areas, such as active seismic zones, foundation settlements,
and extreme climates are getting longer and longer [4,5]. The bridge structure will inevitably
suffer from pier tilt, girder vertical fault, girder corner, and bearing damage [6,7]. When the
bridge deformation occurs, the various layers of the ballastless track will undergo a certain
follow-up settlement under the action of gravity, which will cause the rail deformation [8].
In severe cases, it may cause the train to derail, affecting the riding comfort and driving
safety [9–11].

It is obvious that one of the key factors affecting the change in rail surface geometry
is girder deformation. The important prerequisite of studying the influence of girder
deformation on the safety and stability of high-speed trains is exploring the mapping
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relationship between the girder and rail. Varandas et al. [12], Galvín et al. [13] and Ju
et al. [14] established a novel computer implementation that can consider nonlinear contact
relations between CRTS SBT components, focusing on the estimation of ballast and sub-
ballast long-term deformations. The actual behavior of the structure can be easily and
accurately reproduced. Feng et al. [15] describes a study of the mapping relationship
between the girder vertical deformation and rail deformation. The results show that the
mapping coefficient between girder vertical deformation and rail deformation showed a
nonlinear increase with the increasing of girder vertical deformation. The shape of the rail
deformation curve has obvious “followability”; with the increase in fastener stiffness and
girder span, the rail mapping deformation curve tends to flatten out, and the length of
the mapping deformation area of the rail increases. Gou et al. [16] established an analysis
model of the mapping relationship between bridge deformation and rail deformation
based on the balance of classical mechanics, and verified it with finite elements. The key
parameters affecting the rail geometry are analyzed. The results show that the analytical
method of rail mapping deformation derived from the theory can predict the rail geometry
accurately. Rail mapping deformation increases with the increase in pier settlement and
girder vertical fault. The greater the stiffness of the fasteners or mortar layer is, the greater
the mapping deformation of the rails is and the smaller the smoothness of the track is, the
greater the danger to the running safety and ride comfort of the high-speed railway is.
Al Shaer et al. [17] designed an experiment in order to investigate the dynamic behavior
and the settlement of ballasted tracks. The results show that the stiffness of the track
changes during the experiment. Settlement deformation is a function related to acceleration.
Lai et al. [18] presented an analytical method to describe the geometry status of the track.
The contribution of system parameters to rail geometry was investigated. The results
show that the effect of shear grooves on the mapped deformation of rails is significant.
The stiffness of the cemented asphalt layer and sliding layer contribute significantly to
the rail mapping deformation. Ahmari et al. [19] adopted the Hamilton principle to
derive the vibration control equations for a linearly supported orthotropic anisotropic
thin plate under the action of moving vehicles. The effect of the foundation settlement on
the train–bridge dynamic interaction was investigated by correcting for the forces caused
by bridge deck deformation. The results show that the influence of bearing settlement
deformation on the train–bridge dynamic interaction is significant. Chen et al. [20] derived
the mapping relationship between rail deformation and pier settlement theoretically, and
verified it by finite element analysis. The rail unevenness caused by bridge pier settlement
is superimposed on the track’s random initial unevenness, and the superimposed rail
unevenness is input to the train–track–bridge model as an excitation, and the influence law
of bridge pier settlement amplitude on vehicle dynamic indexes is analyzed. Based on the
limits of running safety and the ride comfort indexes of high-speed trains, the proposed
threshold value of bridge pier settlement deformation is proposed.

In summary, the mapping relationship between bridge structure deformation and track
surface deformation is very significant for the study of driving safety [21–23]. At present,
there is little research on the mapping relationship between bridge structure deformation
and the rail surface deformation of the CRTS III SBT system at home and abroad. In order to
study the mapping relationship between bridge structure deformation and rail deformation,
this paper uses the CRTS III SBT multi-span simply supported bridge as the research object,
based on the principle of stationary potential energy, and deduces an analytical model of
the mapping relationship between bridge structure deformation and rail deformation [1].
Further, the corresponding ANSYS finite element model is established for verification.
In addition, a parametric analysis of the influencing factors affecting rail unevenness is
carried out.
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2. The Mapping Relationship between Girder Deformation and Rail Deformation
2.1. Mechanism Analysis of Rail Deformation Caused by Girder Deformation

This study takes the CRTS III SBT simply supported bridge system as the research
object. The CRTS III SBT simply supported bridge system is shown in Figure 1. The CRTS
III SBT is composed of three layers of concrete slabs, namely: the bidirectional prestressed
concrete track slab (concrete strength grade is C60); self-compacting concrete filling layer
(SCCFL) (concrete strength grade is C40); and the concrete base slab (concrete strength
grade is C40). An isolation layer is formed between the composite slab and the base slab by
laying a 4 mm thick geotextile. The track system connects the girder with the concrete base
slab through pre-embedded steel bars. Each base slab is provided with two grooves, with a
rectangle section of 1000 × 700 mm and a groove depth of 100 mm. The SCCFL is poured
on site. During the pouring process, two limit convex platforms are formed at the lower
part of the SCCFL corresponding to the groove of the base slab. The inside of the groove
is closely attached to the 8 mm rubber pad, and the 4 mm-thick geotextile is laid between
the base slab and the SCCFL. U-shaped connecting steel is set to strengthen the connection
between the SCCFL and the track slab. According to the structural characteristics of the
CRTS III SBT system, it is known that when the simply supported bridge is vertically
deformed due to the external environment, such as foundation settlement, earthquake,
and so on, the CRTS III SBT system, which is laid on the deformed girder, will produce
following deformation under the action of interlayer force and gravity.
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Figure 1. Schematic diagram of the CRTS III SBT structure.

2.2. Basic Assumptions

In order to establish the mapping relationship model between girder deformation and
rail deformation of the CRTS III SBT system, the following assumptions are made:

(1) The gravitational equilibrium state of the system is taken as the initial state and the
gravity effect is neglected during the calculation.

(2) The base slab and the girder are connected by pre-embedded steel bars, which have
a strong inter-layer restraint effect, and the CRTS III SBT system forms a composite
plate due to its own strong inter-layer connection. Therefore, it is assumed that the
CRTS III SBT system is coordinated with the deformation of the girder.

(3) This paper ignores the influence of CRTS III SBT structure on the girder deformation,
because the vertical bending stiffness of the girder is extremely large.
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(4) The rails in the subgrade are reduced to simply supported boundaries, and the
boundary effect of the rail is eliminated by taking enough effective length of the
subgrade.

(5) The fastener is considered as a linear spring uniformly distributed along the centerline
of the rail.

2.3. The Basic Equation of Mapping

Assuming that the number of CRTS III SBT is M, each span and subgrade are arranged
with six CRTS III SBT, and each CRTS III SBT has N fasteners, then there are MN fasteners
and M

6 − 2 simply supported girders.

2.3.1. Rail Displacement

According to the above assumptions, it can be known that the mechanical model of
the rail is shown in the Figure 2.
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Figure 2. Mechanical model of rail.

Assuming that when the pier settles, the vertical deformation of the rail with the
pier settlement is ω1. So, the simply supported boundary condition of the rail can
be expressed as: 

ω1(x=0) = 0
ω1(x=lg) = 0
ω1
′′
(x=0) = 0

ω1
′′
(x=lg) = 0

(1)

where lg is the total length of the rail.
Further, taking the sine function as the basis function, the deformation curve of the

rail with the pier settlement can be approximately expressed as follows:

ω1(x) =
n

∑
m=1

Am sin(
mπx

lg
) (2)

where Am(m = 1, . . . , n) is any constant.
Further, the total potential energy of the rail under a fastener force can be expressed as

follows:

Π =
Eg Ig

2

∫ lg

0
(

d2ω1(x)
dx2 )2dx−

MN

∑
i=1

1
2

Fiω1(xi) (3)

In addition:
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where Fi(i = 1, 2, . . . . . . , MN) is the fastener force, Eg is the elastic modulus of the rail and
Ig is the equivalent cross-sectional moment of inertia of the rail [24].

According to the Rayleigh Ritz method ∂Π
∂Am

= 0, can be obtained:

Eg Igπ4

2l3
g

m4 Am −
MN

∑
i=1

Fi sin
mπxi

lg
= 0 (6)

Then, the following conclusion can be deduced from the above formula:

Am =
2l3

g

Eg Igπ4m4

MN

∑
i=1

Fi sin
mπxi

lg
(m = 1, 2, . . . . . . , n) (7)

The above formulas can be arranged as follows:

ω1(xj) =
MN

∑
i=1

Fi

n

∑
m=1

2l3
g

Eg Igπ4m4 sin
mπxi

lg
sin(

mπxj

lg
)(j = 1, 2, . . . . . . , MN) (8)

2.3.2. Girder Displacement

The mechanical model of the bridge is shown in Figure 3.
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If the kth pier settles, the displacement function ω2,k,k of the kth span girder (the left
span of the settlement pier) can be expressed as follows:

ω2,k,k(x) =
x− k(ll + sl)

ll
d (9)

The displacement function ω2,k,k+1 of the (k + 1) h beam (right span of the settlement
pier) can be expressed as follows:

ω2,k,k+1(x) =
(k + 2)ll + (k + 1)sl − x

ll
d (10)

where ll is the length of a single span, d is the settlement of the pier, and sl is the girder space.

2.3.3. Analytic Expression of Mapping Relationship

Let ks be the equivalent stiffness of the fastener, then the ith fastener force can be
expressed as:

Fi = ks[ω2(xi)−ω1(xi)] (11)

The fastener force is expressed in matrix form as follows:

F = ks(H · d−A · F) (12)

where: F is the fastener force matrix; A is the influence coefficient matrix of the fas-
tener force on rail displacement; H is the influence coefficient matrix of settlement on
bridge displacement.

According to the Equations (12), the fastener force matrix can be expressed as a single
value function of settlement:

F =

(
A +

E
ks

)−1
H · d (13)

where E is the identity matrix of the same dimension as A [25].
The mapping deformation of the rail with the pier settlement can be obtained by

substituting Equation (13) into Equation (8).

W1 = A
(

A +
E
ks

)−1
H · d (14)

where: W1 is the rail displacement matrix of all fastener positions.

3. Analysis of Examples

In order to verify the accuracy of the analytical expressions, this paper selects two typical
deformations: the pier settlement and the girder vertical fault. SAM, FAM [26], and AFEM were
used to calculate the mapping relationship curve of the rail with girder deformation.

First of all, based on ANSYS finite element software, an AFEM of 6-span-32 m simply
supported bridge CRTS III SBT system was established. The rails, track slabs, girder, and
bridge piers are all simulated by BEAM 3 elements. Fasteners, SCCFL, and bearing are
simulated by COMBINE 14 spring elements. The material properties of each component are
shown in Table 1. Secondly, the corresponding forced displacement (the pier settlement and
the girder vertical fault) is applied to the bridge structure, the displacement convergence
criterion is defined as 0.05, and the sub-step is defined as the automatic time step. Ultimately,
the static analysis is carried out.
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Table 1. The materials and properties of the bridge and CRTS III SBT system.

Components Materials Height/mm Elastic
Modulus/GPa Poisson’s Ratio Vertical Spring

Stiffness/(N/m)

Rail U71Mn(K) 176 206 0.3 -
Fasteners WJ-8C 38 - - 3.5 × 107

Track slab C60 concrete 200 36 0.2 -
Filling layers C40 SCC 90 32.5 0.2 1.8 × 109

Base slab C40 concrete 200 32.5 0.2 -
Girder C50 concrete 3050 34.5 0.2 -

According to the mapping relationship between bridge vertical deformation and
geometrical morphology of the rail surface, the program of the mapping relationship is
compiled by using the MATLAB software (R2018a version from MathWorks, USA). The
calculation processes of the SAM and the FAM are shown in Figure 4. The main parameters
of the two models are as follows: the span length and span number of the simply supported
bridge are consistent with AFEM; the length of both ends of the subgrade section is a
single span length; the beam spacing is 20 mm; the track slab spacing is 70 mm, and other
parameters are consistent with Table 1.
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3.1. Mapping Relationship between Pier Settlement and Rail Deformation

According to the limit value of girder deformation, the pier settlement is set as 5 mm,
as shown in Figure 5. Case 1: the settlement of pier 3 is 5 mm. Case 2: the settlement of pier
2 is 5 mm and that of pier 3 is 3 mm. Case 3: the settlement of pier 2 is 5 mm and that of
pier 4 is 3 mm.
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value of the fifth girder is 2 mm. 

Figure 5. Deformation diagram of the bridge during pier settlement. (a) The settlement of a single pier.
(b) The uneven settlement of two adjacent piers. (c) The uneven settlement of two separated piers.

The mapping deformation curve of a rail with a pier settlement calculated by the three
models is shown in the Figure 6. It can be seen that in the three cases, the peak value of
the mapping deformation curve obtained by AFEM is slightly larger than that of the SAM
and FAM, but the difference between the three peak values is no more than 1%, which
shows that the SAM is in good agreement with the AFEM and FAM, indicating that the
three models can be used to calculate the mapping deformation of the rail with the pier
settlement, and the correctness of the SAM is demonstrated. In the settlement area, the rail
deformation occurs with the pier settlement; when far away from the settlement area, the
rail deformation decreases in the form of microwave; when in and out of the settlement area,
the rail slightly upwarps; at the settlement pier location, the rail mapping deformation has
a gentle and continuous transition curve; and the peak value of the rail deformation curve
obtained by the three models is slightly less than that of the pier settlement. Compared
with the three models, the SAM has certain advantages. It can not only directly describe
the factors affecting rail deformation, but also clearly expresses the relationship between
each factor and rail deformation. Further saving the modeling time of ANSYS.
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Figure 6. Mapping deformation of the rail with the pier settlement. (a) The #3 pier settlement; (b) #2
and #3 pier settlement; and (c) the #2 and #4 pier settlement.

3.2. Mapping Relationship between Girder Vertical Fault and Rail Deformation

According to the provision of the girder vertical fault, the girder vertical fault value
is set as 3 mm, as shown in Figure 7. Case 1: the vertical fault value of the third girder is
3 mm. Case 2: the vertical fault value of the third girder is 3 mm, and the vertical fault
value of the fifth girder is 2 mm.
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Figure 7. Deformation diagram of bridge under vertical girder fault. (a) The vertical fault of the
single girder. (b) The uneven vertical fault of two separated girders.

The mapping deformation curves of the rail with the girder vertical fault calculated by
the three models are shown in Figure 8. It can be seen that under the two cases, the rail
mapping deformation curves calculated by the three models basically coincide. The down-
ward deformation peak values of the rail of the AFEM is larger than that of the FAM, and
that of the SAM is the minimum. The difference between the three peak values is not more
than 1%. This shows that the rail deformation curve obtained by the SAM is relatively safe,
and proves the practicability of the SAM under the condition of girder vertical fault. Due to
the girder vertical fault, the rail has a significant deformation. It can be seen from Figure 8a
that the rail mapping deformation curve has symmetry when the single girder has vertical
fault. It can be seen from Figure 8b that the overall rail mapping deformation curve is
asymmetric when the girder vertical fault occurs between two separated girders. However,
the rail deformation curve within the area of the deformation girder still has symmetry.
Outside the area of the deformation girder, the rail deformation rapidly decreases until
it is zero. When in and out of the girder deformation area, the rail mapping deformation
curve presents upward warping and a downward concave phenomenon, which will have
adverse effects on the driving safety and riding comfort of a high-speed train. In the area
of the girder vertical fault, the rail deformation increases rapidly, and the maximum of the
rail deformation is slightly less than the maximum of the girder vertical fault, but the rail
deformation curve is generally consistent with the girder vertical fault deformation curve.

Through the verification of pier settlement and girder vertical fault, it can be seen that
the rail deformation curves obtained by SAM and FAM are almost identical and slightly
smaller than AFEM, which fully shows that the simplified analytical solution can achieve
high accuracy. The reason why the simplified analytical solution can reach the precision
of the fine analytical solution is that the SCCFL is equivalent to winker linear springs
distributed uniformly along the center line of the rail in the fine analytical solution. In
fact, due to the high strength of the SCCFL, when the girder undergoes linear deformation,
because of the large equivalent spring stiffness, the spring hardly deforms. Additionally,
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because the connection between the base slab and the girder is strong, this paper regards
the CRTS III SBT system as a composite plate. Therefore, this paper assumes that the
deformation of the CRTS III SBT system and the girder is coordinated. The simplified
analytical solution derived has higher accuracy, less parameters involved, more convenient
calculation, and efficiency.
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Figure 8. Mapping deformation of the rail under the vertical girder fault. (a) third girder vertical
fault of 3 mm; (b) third girder vertical fault of 3 mm and fifth girder vertical fault of 2 mm.

4. Influencing Factors of Rail Deformation
4.1. The Influence of Pier Settlement Amplitudes on Rail Deformation

According to the verified SAM of the mapping relationship between girder deformation
and rail deformation, the key factors affecting the bridge–rail mapping relationship can be
summarized as pier settlement, bridge span, settlement type, and fastener stiffness. Based on
the verified SAM, the influence of key parameters, such as pier settlement, fastener stiffness,
bridge span, and girder vertical fault amplitude on rail mapping deformation is studied.

Taking the 6-span 32 m simply supported bridge model as an example, without
changing the structure and parameter of bridge, subgrade, and CRTS III SBT, the verified
SAM is used to calculate the settlement of pier #3 with 3 mm, 5 mm, 10 mm, 15 mm, and
20 mm, respectively, and the calculation results of the rail mapping deformation curve and
the fastener internal force under different pier settlement amplitudes are obtained. It can
be seen in Figure 9.
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From Figure 9a, it can be seen that when the pier settlement is different, the shape of
the rail mapping deformation curve with the pier settlement is similar. The greater the pier
settlement is, the greater the rail mapping deformation amplitude is in the settlement area,
the more obvious the upward warping degree of the rail mapping deformation curve is in
and out of the settlement area, and the greater the “bending angle” formed.

It can be seen from Figure 9b that when the pier settlement with different amplitudes
occurs, the curve of the fastener force is similar [27]. The fastener force amplitude increases
with the increase in the pier settlement amplitude. At the settlement pier and its two
adjacent piers, the fastener force changes dramatically. The fastener force amplitude at
the settlement pier is slightly larger than that of the adjacent pier, and the fastener force
amplitude at the two adjacent piers is similar. At the two adjacent piers, the girder on both
sides of the settlement pier is upward warped, resulting in the rail bulge deformation at
the adjacent pier, so the direction of the fastener force at the adjacent pier position and the
settlement pier position is opposite.

The area where the rail deformation exceeds 0.001 mm is defined as the rail mapping
deformation area. When the ratio of rail mapping deformation amplitude (the sum of
positive amplitude and negative amplitude) to the length of the rail mapping deformation
area is defined as the rail unevenness, then the rail unevenness can be expressed as:

Rr =
D+ + D−

Lr
(15)
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In the Equation (15), D+ represents the rail positive mapping deformation ampli-
tude(m); D− represents the rail negative mapping deformation amplitude(m); Lr represents
the rail mapping deformation area length(m); and Rr represents the rail unevenness.

The rail mapping deformation area length and rail unevenness are shown in Table 2.
The relationship between the rail mapping deformation amplitude, deformation area length
and rail unevenness, and settlement amplitude of the bridge pier is shown in Figure 10. As
can be seen from Figure 10, with the increasing settlement amplitude of the bridge pier, the
length of the rail mapping deformation area increases continuously, the rail unevenness
increases gradually, and the mapping deformation amplitude of rail positive and negative
increases linearly [28]. It means that when the bridge pier settlement deformation is too
large, it will seriously affect the safety and smoothness of train operation.

Table 2. Rail mapping deformation area length and rail unevenness of pier settlement.

Settlement
Amplitude of

Pier (mm)

Girder
Length (m)

Rail Positive Mapping
Deformation Amplitude

D+(m)

Rail Negative Mapping
DeformationAmplitude

D−(mm)

Rail Mapping
Deformation Area

LengthLr(m)

Rail
Unevenness Rr

3 32 2.961 0.004 70.800 0.042
5 32 4.935 0.006 71.000 0.070

10 32 9.869 0.013 71.200 0.139
15 32 14.804 0.019 71.400 0.208
20 32 19.738 0.026 71.600 0.276
25 32 24.700 0.031 71.800 0.344
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4.2. The Influence of Fastener Stiffness on Rail Deformation

As an important joint structure, a fastener has a great influence on rail deformation.
Therefore, this paper still takes the 6-span 32.6 m simply supported bridge model as an
example to study the influence of fastener stiffness on rail mapping deformation. Without
changing the structure and parameter values, when the 5 mm settlement occurs for pier #3,
the SAM is used to calculate the mapping deformation curve of the rail under 5 fastener
stiffness (10 kN/mm, 25 kN/mm, 35 kN/mm, 45 kN/mm, and 55 kN/mm). The mapping
deformation curve of the rail is shown in Figure 11a and the variation curve of the fastener
internal force is shown in Figure 11c.
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Figure 11. The influence of fastener stiffness. (a) Mapping deformation of the rail under different
fastener stiffnesses; (b) mapping deformation amplitude of the rail under different fastener stiffnesses;
and (c) fastener force under different fastener stiffnesses.

It can be seen from Figure 11a that the fastener stiffness is different and the shape of
rail mapping deformation curve is generally consistent when 5 mm settlement occurs at
pier #3. It can be seen from Figure 11b that at the critical point in and out of the settlement
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area [29], with the increase in fastener stiffness, the positive deformation amplitude of the
rail gradually decreases. At the pier settlement, with the increase in fastener stiffness, the
negative deformation amplitude of the rail gradually increases. From Figure 11c, it can be
seen that the shape of the fastener internal force curve is generally consistent, which fully
shows that the rail mapping deformation has a good follow-up with the settlement of the
pier [30]. In conclusion, with the increase in the fastener stiffness, the fastener internal force
increases, the rail mapping deformation also increases, and the length of the rail mapping
deformation area decreases gradually, which fully shows that the smaller the fastener
vertical stiffness is, the smoother the mapping deformation curve of the rail is. From this
conclusion, it can be concluded that the track–bridge system with low stiffness fasteners is
more conducive to resist the influence of pier settlement within a reasonable range.

4.3. The Impact of the Girder Span Length on Rail Deformation

In order to study the influence of the girder span length on rail mapping deformation
and fastener internal force, this study uses the 6-span simply supported bridge model with
a girder span length of 16 m, 20 m, 24 m, and 32 m as an example. Without changing the
structure and parameter values, the rail mapping deformation curve and fastener internal
force curve were calculated by using the verified SAM when the #3 pier has five different
settlements of 3 mm, 5 mm, 10 mm, 15 mm, and 20 mm. The calculation results are shown
in Figure 12.
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Figure 12. The influence of girder span length. (a) Rail deformation of simply supported bridges with
different span lengths. (b) Fastener stiffness of simply supported bridges with different span lengths.

It can be seen from Figure 12 that when the pier settlement is within the range of
3–20 mm [31], the increase in girder span length has no obvious effect on the rail mapping
deformation. When the same pier settlement occurs for a different girder span length, the
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upward deformation amplitude of the rail at the adjacent pier’s position decreases with the
increase in girder span length. That is to say, the upward deformation amplitude of the
rail at the adjacent pier position of the 16 m span simply supported bridge is the largest,
and the upward deformation amplitude of the rail at the adjacent pier position of the 32 m
span simply supported bridge is the smallest. The results show that, with the increase
in girder span, the bending angle of the adjacent pier position caused by pier settlement
is smaller, and the influence on the track–bridge system is smaller. With the increase in
girder span length, the change in the rail mapping deformation curve at the settlement pier
position is not obvious. That is to say, under the condition of pier settlement, the following
deformation capacity of rail is better. It can be seen from Figure 12 that when the bridge
pier settlement is within the range of 3–20 mm [31], the increase in girder span length has a
significant impact on the fastener internal force. When the same pier settlement occurs in
different girder span length, with the increase in girder span length, the fastener internal
force at the settlement pier position and adjacent pier position decreases significantly, which
indicates that with the decrease in girder span length, the influence of pier settlement on
the track–bridge system will be greater.

4.4. The Impact of the Girder Vertical Fault Amplitudes on Rail Deformation

In order to study the influence of the girder vertical fault on rail mapping deformation,
a 6-span 32 m simply supported bridge is taken as an example. Without changing the
structure and parameter values, the verified SAM is used to calculate the girder vertical
fault when the girder vertical fault deformation is 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm,
and 5.0 mm [32]. The results are shown in Figures 13 and 14. The rail mapping deformation
area length and rail unevenness are shown in Table 3.
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Table 3. Rail mapping deformation area length and rail unevenness of girder vertical fault.

Fault
Amplitude

(mm)

Girder
Length (m)

Rail Positive
Mapping Deformation

Amplitude D+(m)

Rail Negative Mapping
Deformation Amplitude

D−(mm)

Rail Mapping
Deformation Area

Length Lr(m)

Rail Unevenness
Rr

0.5 32 0.016 0.516 38.94 0.014
1 32 0.033 1.033 39.14 0.027
2 32 0.066 2.066 39.34 0.054
3 32 0.099 3.099 39.54 0.081
4 32 0.132 4.132 39.64 0.108
5 32 0.165 5.165 39.72 0.134

From Figure 13a, it can be seen that the geometry of the rail mapping deformation
curve is the same under different girder vertical fault conditions, and the rail mapping
deformation geometry and girder deformation shape always keep a good follow-up in the
girder vertical fault area. With the increase in vertical fault value, the amplitude of rail
mapping deformation in the vertical fault deformation area also increases, and the more
obvious the rail upward warping and downward concave phenomenon when in and out
of the vertical fault deformation area. It can be seen from Figure 13b that the shape of the
fastener internal force curve is consistent when the value of the vertical fault deformation
is different, which mainly concentrates on both sides of the girder seam center line at both
ends of the girder where the vertical fault occurs. The amplitude of the fastener internal
force and the corresponding rail deformation increases significantly with the increase in
vertical fault value. It can be seen from Table 3 that with the increase in fault amplitude,
the amplitude of upward and downward rail deformation increases [33]. It can be seen
from Figure 14a that with the increase in fault amplitude, the length of deformation area
increases. It can be seen from Figure 14b that with the increase in fault amplitude, the rail
unevenness increases [34].

5. Conclusions

The analytical solution of the mapping relationship between girder deformation and
rail deformation in the CRTS III SBT multi-span simply supported bridge system is derived
and verified. The influence of key parameters, such as pier settlement, fastener stiffness,
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girder span length, and girder vertical fault on rail mapping deformation is studied, and
the results are as follows:

(1) The mapping deformation of the rail calculated by SAM, FAM, and AFEM is basically
consistent, which proves the correctness of SAM in this paper. Compared with the
AFEM, the SAM can better describe the key parameters affecting the rail deformation,
save the modeling time of ANSYS, and improve the calculation efficiency.

(2) The mapping deformation geometry of rails is different for different girder deforma-
tion modes. The mapping deformation geometry of rails has good “followability” and
the mapping deformation geometry of rails depends on the girder deformation mode.

(3) The mapping deformation amplitude of rails (maximum and minimum values) and
the deformation amplitude of girders are positively linearly correlated; the positive
deformation amplitude of rails gradually decreases with the increase in fastener stiff-
ness, and the negative deformation amplitude gradually increases with the increase
in fastener stiffness. The influence of girder length on the mapping deformation
amplitude of rails is not obvious.

(4) The length of mapping deformation area increases with the increase in girder de-
formation amplitude, and all of them are slightly larger than the length of two
girders. The rail unevenness increases significantly with the increase in girder
deformation amplitude.

(5) The internal force of the fastener is mainly concentrated on girder gap, with abrupt
changes at the starting position of the girder deformation and symmetry. The ampli-
tude of the internal force of the fastener is positively correlated with the amplitude
of the girder deformation and the fastener stiffness, and negatively correlated with
the girder length. The shape of the rail mapping deformation curve is related to the
shape of the internal force curve of the fastener.
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