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Abstract: An optimal power allocation is a fundamental challenge for massive multiple-input–
multiple-output (MIMO) systems because the power allocation should be acclimated to time-varying
channels and heavy traffic conditions throughout the communication network. Although massive
model-driven algorithms have been employed to solve this issue, most of them require analytically
tractable mathematical models and have a high computational complexity. This paper considers the
metaheuristic algorithms for the power allocation issue. A series of state-of-the-art stochastic algo-
rithms are compared with the benchmark algorithm on network scales. The simulation results demon-
strate the superiority of the proposed algorithms against the conventional benchmark algorithms.
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1. Introduction

The rapid growth in the number of smart devices has led to an explosion in demand for
mobile multimedia services, and traditional cellular networks are facing significant challenges.
The shrinking communication distance between devices due to the dense population in large
cities has created new communication opportunities. The research on multiple-input and
multiple-output (MIMO) systems stands out as a critical technology candidate for 5G. With
the exponentially increasing traffic rates and user density, wireless communication cellular
networks need more system capacity and spectrum effectiveness. The density of access
points (APs) increases with the massive number of terminals connecting to the network.
Dense small-cell deployment is the most popular schema to accommodate the spectrum [1].
The communication network is filled with crowded signals because of dense APs and small
cells. Hence, mitigating intra-cell and inter-cell interference is essential to enhance the
overall capability of the cellular network system [2].

Consequently, the optimal power and wireless resource control in cellular communica-
tion networks have received considerable critical attention in recent decades. To understand
how well the power allocation schema achieves in an industry communication environment
with limited computational resources, it is also essential to study the computational com-
plexity of this issue. It is proved that the utility maximization problem in the MIMO system
is non-deterministic polynomial-time hardness (NP-hard) for a large class of objective
functions [3]. In addition, the power allocation issue investigated by this paper is nonlinear,
non-convex, and NP-hard.

Massive model-driven approaches have been proposed to solve optimal power control
issues with interference management. For instance, fractional programming (FP)-proposed
quadratic transform can significantly facilitate the optimization involving ratios by recast-
ing the original non-convex problem as a sequence of convex problems [4]; the weighted
minimum mean square error (WMMSE) uses the local channel knowledge and converges
to a stationary point of the weighted sum-rate maximization problem [5]. A distributed
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iterative algorithm is proposed in [6] to maximize the weighted sum rate of a wireless cellu-
lar network based on coordinated scheduling and discrete power control. A heuristic joint
proportionally power spectrum adaptation algorithm is proposed in [7] that coordinates
multiple base stations to optimize the system utility. The power allocation mechanism is
proposed based on the unique Nash equilibrium for cellular networks, and the optimal so-
lution maximizes the utility function [8]. Meanwhile, there has been extensive development
of machine learning (ML) algorithms for power control in the wireless communication
system [9]. Through supervised learning, [10] use the neural network to approximate the
given objective algorithms. The deep neural network is trained to learn the map between ge-
ographic locations and policies, and then used to predict the optimal power allocation [11].
ML methods are model free and data driven, the optimal solution is obtained by data
learning rather than systems-oriented modeling and analysis, and the dataset’s quality
limits the performance of these methods.

Most of the existing algorithms revolved around partial optimal or heuristic algo-
rithms. The excellent performance of these methods can be observed through simulation
experiments, but it is still challenging to implement them in industrial scenarios. There are
mainly two components:

• These algorithms highly rely on the analytical and tractable mathematical model. How-
ever, it is hard to construct a perfect mathematical model in practical implementation
scenarios because of the specific user distribution and geographical environment.

• The computational complexities of these approaches are pretty high, especially in
large-scale MIMO systems. Therefore, it becomes impractical to implement these
algorithms with interference optimization.

In recent years, stochastic algorithms have been developed in wireless communications
fields. The metaheuristics algorithms are the most widely used random search methods
to solve intractable problems [12]. Metaheuristic algorithms do not require a perfect
mathematical model and are compliant with the optimization in practical implementation.
Several state-of-art approaches to solving optimal power allocation issues in a MIMO
system are addressed. Adaptive particle swarm optimization (PSO) addressed the issue
of resource allocation in a wireless sensor network [13]. A modified single-level artificial
bee colony (ABC) was provided to handle the resource allocation problem for an underlay
D2D communication network [14].

In this paper, we investigate the communication network in an interfering multiple-
access channel (IMAC) scenario. We concentrate on the global optimization for the power
allocation issues in the MIMO system to maximize the overall sum-rate SINR. This issue
can be classified as a static optimization problem which is an ordinary multivariate func-
tion. Hence, metaheuristic algorithms are implemented to handle intractable issues. We
review a wide range of metaheuristic algorithms and improved an open-source simulation
environment [15] as the black-box simulator, which simulates the set of allocated power
as a given input and the sum-rate SINR as output. Furthermore, we provide a statisti-
cal and significant comparison of the performance of the metaheuristic algorithms and
conventional optimization techniques. The simulation results indicate which algorithm
outperforms the other metaheuristic and benchmark algorithms.

To find an efficient approach for this optimization problem, we consider various
competitions in global optimization to select the best algorithms from feasible techniques.
Moreover, the competitive process generates novel ideas which can be developed into
practical solutions. We consider the Special Session and Competition on Large-Scale
Global Optimization in the past ten years and concentrate on different mathematical
optimization methods with one objective [16]. We select nine metaheuristics algorithms
from the winning rank, such as the artificial bee colony (ABC), self-adaptive differential
evolution (jDE and iDE), particle swarm optimization generational (GPSO), extended ant
colony optimization (EACO), differential evolution (DE), particle swarm optimization
(PSO), simulated annealing (SA), monotonic basin hopping (MBH), and covariance matrix
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adaptation–evolution strategy (CMA-ES). In addition, the contribution of our research
work is twofold:

• We present an optimal power allocation problem under interference management and
propose model-free metaheuristic approaches.

• Through numerical experiments on simulated communication networks and wireless
channels, we substantiate the effectiveness and flexibility of the proposed metaheuris-
tic methods and search for the potentially best algorithms for this open research
problem.

The remainder of the paper is organized as follows. Section 2 provides a detailed
mathematical model of the optimal power allocation problem, and Section 3 describes
the modified metaheuristic algorithms for solving the PA. Section 4 includes a numerical
experiment with an illustrative result. Section 5 provides the conclusions and prospects for
further research.

2. Mathematical Model

We investigate downlink transmission in a homogeneous wireless cellular network
with IMAC. In the wireless cellular network, there is only one base station in the middle of
the cell, and the organization of each cell is approximately the same. Thus, the communi-
cation model in the cell is essentially the same. Similar to [17], the homogeneous wireless
network consists of N cells, and a base station (BS) simultaneously serves K users (UE) by
sharing frequency bands at the center of each cell. A simple example of the communication
network with 3 cells is shown in Figure 1. The notation gn,j,k represents the independent
channel coefficient of the communication link from the n-th BS to k-th user in cell j at time
slot t, which is expressed as follows:

gn,j,k = |ht
n,j,k|

2βn,j,k, (1)

where ht
n,j,k denotes the complex small-scale fading component and βn,j,k denotes the

large-scale fading element which consider both shadow fading and geometric attenuation.
Therefore, the downlink signal-to-interference-plus-noise ratio (SINR) received by user k is
formulated as

γt
n,k =

gt
n,n,k pt

n,k

∑k′ 6=k gt
n,n,k pt

n,k′ + ∑n′∈Dn
gt

n′ ,n,k ∑j pt
n′ ,j + σ2 , (2)

where Dn is set of interference cells of the n-th cell, pt
n,k denotes the transmit power for the

k-th user connected with the n-th BS at time slot t, and σ2 presents the variance of additive
white Gaussian noise. ∑k′ 6=k gt

n,n,k pt
n,k′ and ∑n′∈Dn

gt
n′ ,n,k ∑j pt

n′ ,j express the intra-cell and
inter-cell interference power, respectively. Considering normalized bandwidth, the SINR of
link ln,k between n-th cell and k-th user at time slot t is expressed as

Ct
n,k = log2(1 + γt

n,k) (3)

The objective function is to maximize the sum-rate utility of the whole cellular network
under the power constraint. The problem is formulated as

max
pt

C(gt, pt)s.t. 0 ≤ pt
n,k ≤ Pmax, ∀n, k, (4)

where Pmax is the maximum transmit power; pt = {pt
n,k|∀n, k} is the set of allocated power;

gt = {gt
n′ ,n,k|∀n′, n, k} is the set of channel gain. The sum-rate utility is given as

C(gt, pt) = ∑
n,k

Ct
n,k (5)

For model-driven approaches, it is generally hard to evaluate the performance gap
from the optimal solution, and practical implementation is limited because of the imper-
fect mathematical model. Furthermore, it is hard to adapt the model-based method to
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heterogeneous cellular networks because of the imperfect mathematical model in real
communication scenarios. Thus, model-free metaheuristic algorithms are discussed in the
following section.

Figure 1. An illustrative example of a cellular network with 3 cells.

3. Metaheuristic Approach

In this framework, we consider nine metaheuristic algorithms from four primary types.
A brief description of these algorithms is as follows:

3.1. Swarm Intelligence Algorithms
3.1.1. ABC

The artificial bee colony (ABC) algorithm is a stochastic search technique based on the
intelligent foraging behavior of honey bee swarms [18]. In this algorithm, each candidate
solution indicates the location of the food source in the search space, and the quality of the
food source is employed as a fitness evaluator.

The model involves three essential elements: employed bees, onlookers, and food
sources. The amount of employee bees is equal to the food sources. Employed bees depart
from the hive to search for a food source and collect information about the quality of the
other food sources in the neighborhoods of discovered location. Once back in the hive,
they transmit information about the explored food source to the onlookers. Onlookers
evaluate a new location from the information provided by the employed bees according
to the selection probability of quality and prefer the food source with high fitness value.
Onlooker becomes an employed bee when it selects a new food source to explore. The
employed bee switches to the scout bee and randomly searches for new food resources in
the search space when its explored food source is abandoned. This process is repeated until
the optimal food source is found.

Advantages of ABC: It requires few parameters, performs robustly, converges fast,
and is highly flexible. Disadvantages of ABC: It may converge prematurely in the phase
of its search, and the classification accuracy of the best value it obtains may not meet the
requirement [19].

3.1.2. PSO

Particle swarm optimization (PSO) is a swarm intelligence technique. The initial idea
of PSO is inspired by the population behavior of bird flocking and fish schooling. PSO and
evolutional strategic techniques have many standard features. This algorithm simulates the
behavior of members’ information interaction and collaboration. The difference with the
genetic algorithm is that PSO does not require evolution operators, such as crossover and
mutation. In the model, there is a population of candidate solutions called particles. These
particles move around in the search space over their position and velocity. Each particle’s
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movement is guided toward the best-explored positions in the search space, updated as
other particles find better positions. This is expected to move the swarm toward the best
solutions. The PSO process can be formulated as:

vt+1
id = vt

id + c1 × rand(0, 1)× (pt
id − xt

id) + c2 × rand(0, 1)× (pt
gd − xt

id) (6)

xt+1
id = xt

id + vt
id (7)

where xt
id and xt

id represent the position and velocity of each particle, the parameter d is
the population size, i is the index of the each particle, and t is the number of iterations. c1
and c2 are learning factors. pi represents value explored by ith particle, pg represents value
explored by neighbors of the ith particle. PSO can be implemented as Algorithm 1:

Algorithm 1 Particle Swarm Optimization [20]

Require: Generate initial individual
Ensure: The best vector

while Termination condition not met do do
for Each particle x with position pi do

Calculate fitness value
if fitness value is greater than the current best value pbest then

Set current best value as pbest
end if

end for
Select the particle with the overall best fitness value and set it as gbest
for Each particle do

Calculate particle velocity
Update position of particle

end for
end while

Advantages of PSO: It has a simple calculation without overlapping and mutation.
Disadvantages of PSO: It may fall into local optimum in high-dimensional space and has a
low convergence rate in the iteration [21].

3.1.3. GPSO

Particle swarm optimization generational (GPSO) is a variant of the standard PSO
algorithm. In the PSO algorithm, velocity is one of the most significant parameters; if
particles’ velocity in the swarm is updated effectively, no search effort will be wasted by
searching in the wrong directions. The procedure for PSO is to move the particle to search
for the positions of optimal solutions. The velocity at which the particles change positions
is usually adjusted by multiplying the velocity by a factor. Unlike the standard algorithm,
the velocity is first calculated for all particles; then, the position is updated.

GPSO can handle stochastic optimization problems according to iterative random seed
schema. However, it is not suitable for multi-objective problems [22].

3.1.4. EACO

Ant colony optimization (ACO) is a classical bio-inspired technique based on foraging
behavior of natural ants. The ACO algorithm simulates the process of a colony of ants
seeking for the shortest path from nest to the food source. In the model, a group of
simulation agents imitate the foraging behavior of natural ants to search for the minimum
value of function. Each agent departs from the nest in search of food source and arrives at
the nest as the end of the trial. Each agent leaves a marker called the pheromone on the
path they take in search of food source. The pheromone concentration on each path is used
to evaluate the distance of the path and the quality of the food source. The information
implied by the pheromone on the path plays an important role in the subsequent agent’s
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selection to the path. The higher the fitness value of the path evaluation, the higher the
probability that the path be accepted. Extended ACO improves the original algorithm
by using the multi-kernel Gaussian distribution based on three parameters which are
computed depending on the quality of each previous solution [17]. The objective function
values are ranked through an oracle penalty method. Advantages of EACO: Its parallel
process can search solutions independently and simultaneously [23]. Disadvantages of
EACO: Its probability distribution iteration changes and the convergence time is not stable.

3.2. Differential Evolution Algorithms
3.2.1. DE

The differential evolution (DE) algorithm is one of the most popular techniques for
continuous optimization problems. DE is based on the evolution strategy but not inspired
by the natural paradigm like common ones. It is proposed to search for the minimum value
of non-differentiable and nonlinear continuous functions. Classical DE has two significant
features to be adjusted: the learning strategy and the control parameters. The learning
strategy comprises the primary type of operators in genetic algorithms, such as mutation,
crossover, and selection. A basic variant of the DE algorithm works by having a population
of candidate solutions. These agents are moved around in the search space to combine the
positions of existing agents from the population. If the value of an agent’s new position is
improved, it is accepted and forms part of the population. It is excepted but not guaranteed
that a global optimal solution will eventually be found.

In the mutation, a mutant vector is generated as formula:

vi,G+1 = xr,G + F(xr,G − xr,G) (8)

where F represent the scaling factor, G is the number of iterations. xr1, xr2, and xr3 are
random searched vectors in current iteration. In the crossover, a trail vector is produced by
combining the parent vector with a mutated vector.

ui,G+1 = { vi,G+1 i f randj 6 Cr
xr,G i f randj > Cr

. (9)

where Cr represents the crossover rate. j is random number in the resulting array. vi is
current best value, xi is best searched value. DE can be implemented as Algorithm 2:

Algorithm 2 Differential Evolution [24]

Require: Generate initial population;
Ensure: The best vector;

while Termination condition not met do do
for Each solution xi in population do

Generate new solution si;
if fitness(si) ≥ fitness(xi) then

Retain si in population;
else

Retain xi in population;
end if

end for
Evaluate fitness of the new population
Update the best solution

end while
Return best solution

Advantages of DE: It can handle optimization problems with high computational
complexity. Disadvantages of DE: It requires parameter tuning and its convergence is not
stable [25].
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3.2.2. jDE&iDE

These are two different variants of the DE algorithm based on the mechanism of self-
adaptation. The learning strategies and control parameters involved in the standard DE
algorithm highly rely on the specific optimization problem. This process may cost amount
of time to select the strategy and adjust the parameters to make the model have a good
performance. Many different proposals have been made to self-adapt both the CR and the
F parameters of the original differential evolution algorithm. There are many different
proposals that have been proved to adapt the CR and F parameters. The first variant (jDE)
does not use the DE operators to update parameters F and CR; the procedure is more like
parameter control rather than self-adaptation [26]. The second variant (iDE) uses a variation
of the selected DE operator to update CR and F parameters for each individual [27].

3.3. Random Search Algorithms
3.3.1. SA

Simulated annealing is a stochastic global search optimization technique to search.
This algorithm emulates the statistical annealing procedure of the crystals growing to reach
the global optimal internal energy configuration [28]. The annealing process works by
first exciting the atoms in the material at a high temperature. This step can push atoms to
heat up and accelerate their motion. The next step is to slowly cool down the temperature
to reduce their excitability, making atoms convert into a more stable configuration. The
essential component to implementing this simulated annealing process is to initialize a
random solution in the neighborhood of the current optimal solution and evaluate the
objective functions. Once the fitness value of the cost function is smaller than its current
best value, the solution is accepted, and the new best fitness value is updated. Once the
fitness value is higher than the current best value, the point is accepted or rejected with
probability. A parameter temperature is introduced to calculate the probability. In the
cooling schedule, the temperature is reduced with the acceptance probability converging to
zero. The whole annealing process is terminated after a large number of trials. This strategy
avoids being trapped in the local optimal solution.

Advantages of SA: It can handle the problem with arbitrary systems and cost functions.
Disadvantages of SA: It requires parameter tuning and is possible to be trapped into local
minima.

3.3.2. MBH

Monotonic basin hopping (MBH) is a stochastic global optimization technique. This
algorithm is a two-phase approach that combines the global stepping algorithm with the
local minimization procedure at each iteration [29]. The algorithm model uses random
perturbations to jump basins and a local search algorithm to optimize each basin. The
model iterates as follows: The first phase uses random perturbation to jump basins of
coordinates. The second phase uses a local optimization procedure to evaluate the new
coordinates and decide to accept or reject the coordinates based on the minimized function
value. This algorithm’s original idea is to map the objective function into searching the
local minima from the initial point. This mechanism can significantly improve the efficiency
of problem solving. Main idea of MBH is mapping the objective function f (x0) into the
local minima found starting from x0; MBH can be implemented as Algorithm 3:
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Algorithm 3 Monotonic basin hopping

Require: x0 ←− Generate initial solution
Ensure: optimal x, f (x)

x0 ←− generate initial solution g0 = 0 and d0 = 0
x0 ←−minimize ( f , x0)
repeat

y←− perturb(x)
y←−minimize ( f , y)
x←− acceptance (x, z)

until termination condition met

In this paper, we combine this concept’s original generalization, resulting in a meta-
algorithm that operates on any population using a suitable algorithm. The actual method
is recovered when a population containing a single individual is used and coupled with a
local optimizer.

3.4. Evolution Strategy Algorithms
CMA-ES

Covariance matrix adaptation–evolution strategy (CMA-ES) is a stochastic technique
for involuting nonlinear, non-convex, continuous black-box optimization problems [30].
It is based on the idea of self-adaptation in evolution strategies. The mechanism of this
algorithm is to construct parametric distribution on the searching space in which feature
functions are defined in advance. A population of solution candidates is selected from
this parametric searching distribution. Then, these candidates are evaluated by a black-
box function. Given the function values at the sampled points, updating and storing
the covariance matrix dominates the time and space complexity in each iteration of the
algorithm. The covariance matrix where time and space complexity dominate is updated
and stored at each iteration of the algorithm.

Advantages of CMA-ES: It is suitable for small-scale non-separable optimization
problems Disadvantages of CMA-ES: It has high complexity and premature stagnation.

4. Simulation Environment

Algorithm deployment has a high requirement for low computational complexity,
and it is considered here. The configuration of the simulation platform is expressed as:
CPU Intel i7 10750H and RAM 16 GB. A series of simulation experiments are executed to
compare the performance of these metaheuristic algorithms and to find the best algorithm
for the power allocation issue.

We consider wireless cellular networks of different scales, with cell populations of
2× 2, 3× 3, and 4× 4. In each cell, users distributed randomly and uniformly in range
r ∈ [Rmin, Rmax]. The small-scale fading follows Rayleigh distribution, and the Jakes model
is adopted with fd. The large-scale fading is formula as β = −120.9 − 37.6 log10(d) +
10 log10(z) dB, according to the Long-Term Evolution (LTE) standard, where z is shadow
effect element and d is the transmitter-to-receiver distance (km). Table 1 collects the primary
parameters of the network. The maximum number of iterations is determined as 1000,
based on the simulation results. In general, metaheuristic algorithms use randomized
search techniques, in which optimization performance highly relies on the initial value and
fine parameter tuning. Hence, reproducible optimization results obtained under the same
conditions cannot be guaranteed. Therefore, we conducted 20 repeated trials and performed
a statistical analysis of the results to compare the performance of the proposed algorithms.
The performance of the compared methods is evaluated by averaging 20 trial runs.
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Table 1. Simulation parameters of cellular network.

Notation Simulation Parameter Value

N Number of BS 4, 9, 16
M Average users per cell 2, 4, 8
K Total number of user MN
fd The Doppler frequency 10 HZ

Pmin Minimum allocated power 5 dBm
Pmax Maximum allocated power 38 dBm
Rmin Inner space distance 0.01 km
Rmax Half cell-to-cell distance 1 km

T Time period 20 ms
σ2 Noise power spectral density −114 dBm/Hz
z Shadowing 8 dB standard deviation

5. Simulation Results

In this section, we present the simulation results to indicate the performance of the
metaheuristic algorithms. We use a simple generation–evaluation method for the meta-
heuristic algorithm for tuning the parameters. A set of a priori candidate configurations is
generated. Then, each of these configurations is evaluated to find its optimal configuration.
Furthermore, we explore the computation capability of the above algorithms on different
network scales. The length of the search process is 50,000 evaluations. Meanwhile, three
benchmark algorithms, which are the FP, WMMSE, and random strategy (RAND) stated
before, are tested as the comparisons.

Figures 2–4 indicate the searching process for metaheuristic algorithms with different
N values. The network’s average sum rate is expressed as the value of the objective
function based on the number of fitness evaluations. According to the rate of the rising
fitness value, we intercept two intervals from the searching range, which are [8000, 15,000]
and [37,000, 43,000]. We can observe that the differential evolution algorithms always have
good performance when it is rapidly rising, and the swarm intelligence algorithms always
have a good performance when it is slowly rising. The results statistically indicate that the
performances of the proposed algorithms are similar after fixed generations.

Figure 2. Average rate during fitness evaluation (N = 4).
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Figure 3. Average rate during fitness evaluation (N = 9).

Figure 4. Average rate during fitness evaluation (N = 16).

Table 2 shows the obtained solution of the numerical experiments. We focus on the
average performance of the above algorithms for 20 trials. Based on the previous results,
the swarm intelligence algorithms PSO and GPSO perform the best when N = 4 and
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N = 16, respectively. The differential evolution algorithms jDE&iDE perform the best
when N = 9.

Table 2. Obtained solution (bps/Hz) of the numerical experiments.

Algorithms
N = 4 N = 9 N = 16

Max Mean Std Max Mean Std Max Mean Std

ABC 4.241 3.694 0.224 2.612 2.231 0.197 1.769 1.638 0.067

jDE&iDE 4.747 4.221 0.222 3.002 2.524 0.181 2.063 1.821 0.093

GPSO 4.768 4.238 0.402 2.871 2.456 0.169 2.278 1.867 0.143

EACO 5.153 4.160 0.345 2.695 2.474 0.118 2.026 1.825 0.083

DE 4.670 4.252 0.275 2.750 2.484 0.122 2.058 1.805 0.100

PSO 4.999 4.303 0.313 2.748 2.467 0.151 1.968 1.820 0.089

SA 4.198 3.454 0.268 2.510 2.128 0.177 1.844 1.648 0.090

MBH 4.987 4.147 0.292 2.700 2.458 0.131 1.960 1.825 0.083

CMAES 4.114 3.655 0.216 2.605 2.373 0.103 2.048 1.839 0.086

Figure 5 shows the corresponding distribution of the best fitness for the metaheuristic
algorithms. CMA-ES is the most robust technique based on the average most minor
standard deviation of the best values.

(a) (b)

(c)

Figure 5. Distribution of best fitness over 20 trials. (a) N = 4; (b) N = 9; (c) N = 16.

We also obtain a numerical example result of the experiment trials with different user
densities and scales of the network. Compared with the values of the averaged sum rate in
Figures 6 and 7, the performance of the metaheuristic algorithms is not stable, especially
depending on the specific solution-scale effects. Additionally, the best fitness value of
the metaheuristic algorithms decreases significantly with the increase in the solution’s
computation scale compared to the result of the conventional algorithm. In large-scale
scenarios, this type of approach costs much more than the other algorithms over time,
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which means that there is still potential to improve the performance of the metaheuristic
algorithms.

Figure 6. The average rate versus user number per cell.

Figure 7. The average rate versus number of cells.

6. Conclusions

The optimal power allocation problem in the cellular network with an IMAC has been
investigated, and the model-free metaheuristic approaches have been implemented to han-
dle this problem. To be consistent with the optimization objectives of the PA problem, the
network’s sum-rate SINR is used as the objective function. Then, a range of metaheuristic
algorithms are proposed, and these algorithms work as a black-box solver to search for the
optimal power allocation under constraints with a specific CSI.

The simulation results show that the proposed metaheuristic algorithms outperform
the conventional benchmark algorithms in different scenarios. We can observe that meta-
heuristic algorithms have good generalization abilities with simulated communication
networks. The experiment results statistically demonstrate that it is hard to determine
the overall winner of the algorithms. The metaheuristic methods perform well generally,
and the actual performance gap is related to the solution scales. The covariance matrix
adaptation–evolution strategy (CMA-ES) is the most robust technique. Differential evolu-
tion algorithms (DE and jDE&iDE) and swarm intelligence algorithms (GPSO and PSO)
excel in general scenarios.

In our future research, the heterogeneous network will be further studied to accommo-
date the industry scenarios with specific user distributions and geographical environments.
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