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Abstract: In recent years, with the rapid development of the Internet and information technology,
video websites, shopping websites, and other portals have grown rapidly. However, malicious
webpages can disguise themselves as benign websites and steal users’ private information, which
seriously threatens network security. Current detection methods for malicious webpages do not fully
utilize the syntactic and semantic information in the web source code. In this paper, we propose a
GCN-based malicious webpage detection method (GMWD), which constructs a text graph to describe
and then a GCN model to learn the syntactic and semantic correlations within and between webpage
source codes. We replace word nodes in the text graph with phrase nodes to better maintain the
syntactic and semantic integrity of the webpage source code. In addition, we use the URL links
appearing in the source code as auxiliary detection information to further improve the detection
accuracy. The experiments showed that the proposed method can achieve 99.86% accuracy and a
0.137% false negative rate, achieving a better performance than other related malicious webpage
detection methods.

Keywords: malicious webpage detection; GCN; webpage source code; deep learning; URL

MSC: 68T99

1. Introduction

The Internet has been largely popularized, and more and more users are enjoying di-
verse services. The explosive increase in service types requires various Internet companies
to provide a large number of webpages as service carriers. On the one hand, malicious
webpages have become a means for many attackers to carry out malicious attacks, seriously
threatening our network security. On the other hand, the daily proliferation of webpages
makes it impossible to detect every webpage for maliciousness. The 47th Statistical Report
on China’s Internet Development (February 2021) [1] showed that 38.3% of Internet users
expressed that they had suffered from Internet security problems during their Internet
access in the past six months. In 2020, the National Internet Emergency Response Cen-
ter carried out monitoring and found that the number of tampered websites in China
was 243,709.

At present, attackers use various obfuscation techniques against traditional malicious
web detection methods, which greatly reduce the correct detection rate [2,3]. Traditional
methods cannot sufficiently solve new types of malicious web attacks. Therefore, we
urgently need to develop effective malicious web detection methods, and thus designing
new detection methods has become an important way to solve the problem.

On the one hand, researchers have found that there are still syntactic similarities
among the malicious parts in different malicious webpage source codes, which means
that malicious webpages can still be effectively detected by analyzing the syntax and
semantics [3,4]. On the other hand, as one of the main models of deep learning, graph con-
volutional networks (GCNs) have been widely used for node classification in recent years
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and have shown good performance in text classification [5–7]. In this paper, we propose a
GCN-based malicious webpage source code detection method named GMWD. The GCN
is able to capture global word co-occurrence information in a corpus of non-contiguous
and long-range semantics, making full use of the syntactic and semantic information of the
source code. We also propose a new preprocessing strategy to maintain the integrity of the
syntactic and semantic information of the code. Compared with other malicious webpage
detection methods, this method improves the accuracy of detection.

We make the following contributions:

1. We design a malicious webpage detection method, GMWD, based on a GCN. The
model can fully explore and exploit the syntactic and semantic correlations within
and among webpages to accurately detect malicious webpages.

2. We propose phrase nodes to replace the word nodes in the text graph. Phrase nodes
can effectively maintain the syntactic and semantic information integrity of the source
code, which is beneficial for the GCN to capture the features of the malicious codes.
We slice the source code into phrases based on point-wise mutual information and
left–right entropy.

3. We use the URL links, which are contained in the source code and point to other
websites, as auxiliary detection information and use blacklist detection technology
to quickly pre-detect them, further improving the overall accuracy of the detec-
tion scheme.

A comprehensive evaluation of the proposed method GMWD is provided. We used
52,448 web samples as the dataset for our experiments, containing 26,896 benign samples
and 25,552 malicious samples. The dataset was obtained using a common method of
crawling websites such as the Malware Domain List. The results show that GMWD can
carry out accurate detection, and the accuracy can reach more than 99.8%.

The rest of this paper is outlined as follows: Section 2 introduces related work on
malicious webpage detection and deep learning methods. Section 3 describes the theoretical
background related to GCNs and illustrates how malicious webpage detection can be
performed using GMWD. The experimental results are analyzed in Section 4. Section 5
concludes this paper.

2. Related Work

Machine learning models have been widely used in malicious webpage detection, and
these models can learn the difference between malicious and benign webpages. The authors
of [8] found co-occurring factors to identify malicious websites using various association rule
mining algorithms, not only solving the imbalance in the dataset, but also using feature ranking
techniques to rank the importance of features. The authors of [9] designed a machine learning
model based on logistic regression to detect malicious URLs. The authors of [10] proposed a
malicious webpage detection scheme based on a logistic regression classification algorithm,
which can reach 92% detection accuracy by using webpage redirect link-related information
as features. The authors of [11] recommended an anti-phishing method, which extracts
19 functions from the client to distinguish malicious websites from benign ones by means of
machine learning. The authors of [12] combined feature extraction from abstract syntax trees
with a random forest classifier to detect malicious JavaScript instances. The authors of [13]
proposed a context-sensitive and keyword density-based approach for webpage classification.
In their scheme, three feature extraction methods are used to extract features and information.
However, those studies usually required feature selection operations, which are especially
expensive since they require domain experts [14–16].

Deep learning is a relatively new field of machine learning research that has been
widely used in many scenarios [17], such as target recognition [18] and image classifica-
tion [19]. Many studies have shown that deep learning performs well in malicious webpage
detection. The studies of [12,20,21] detected malicious webpages using neural networks
such as CNNs. They extracted features from static information of malicious webpages in
multiple dimensions and then detected malicious webpages according to different levels of
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features. The accuracy of these methods is generally higher than that of traditional static
detection techniques. However, these methods only consider static features without taking
into account the syntactic and semantic features of the source code, and it is easy for attack-
ers to de-feature malicious webpages based on the static features extracted from webpages,
which greatly reduces the accuracy of detection. There are only a few works similar to ours.
The authors of [3,4] extracted features from the semantic level of JavaScript using LSTM to
detect malicious JavaScript instances. However, these methods only took advantage of the
semantics of partial features, such as local syntax features from JavaScript [4].

Graph convolutional networks (GCNs) have shown extensive performance in node
classification, social recommendation, and link prediction. The authors of [6] first applied
GCNs to text classification. The authors proposed an efficient layer-wise propagation
rule that is based on a first-order approximation of spectral convolutions on graphs and
applied it to graph structure data. Experiments showed that the proposed GCN model
is able to encode both the node features and graph structure in a way that is useful for
semi-supervised classification. Furthermore, [7] improved the work of [6] by constructing
a single large graph from an entire corpus, which contains words and documents as nodes
and captures global word co-occurrence information using a GCN.

As CNNs and LSTM focus on locality and sequentiality, other schemes using these
deep learning models can sufficiently capture semantic and syntactic information in local
consecutive word sequences. However, non-consecutive and long-distance semantic infor-
mation is equally important for learning similarities between malicious webpage source
codes, but capturing this is difficult for models such as LSTM. With the help of a GCN, it
is possible to capture not only local syntactic and semantic information, but also global
syntactic and semantic information, such as global word co-occurrence information, which
could further improve the accuracy of malicious webpage detection.

3. Methodology

Here, we provide the detailed framework design and specific methods of GMWD, a
malicious web detection system based on GCN and blacklist detection. Figure 1 shows the
overall framework of GMWD. It can be seen that the whole detection system is roughly
divided into two stages, namely, blacklist detection and GCN detection. Specifically, our
input dataset is text files, and each sample contains only its webpage source code without
other information, such as its own URL. During the blacklist detection stage, the URL links
pointing to other webpages are first extracted from the webpage source code, and then the
URLs are quickly detected item by item using the blacklist detection method. If the webpage
is judged to be malicious, it is output directly, and if it is unknown, the source code of this
webpage is preprocessed and the sliced phrases are added to the corpus. Next, a large and
heterogeneous text graph is built based on the whole corpus, then graph convolutional text
classification is performed, and, finally, the judgment results are obtained.

We will address each of these two stages in the following two subsections.
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3.1. Quick Detection by Blacklist

The source code of a webpage contains not only the content of this webpage, but also
many links pointing to other webpages, some of which are benign and others malicious.
When a webpage source code contains URL links pointing to other malicious webpages,
we assume that this webpage is probably also malicious or malicious-oriented, and in any
case, it is a very dangerous webpage and should be detected by the detection system.

Therefore, we need to detect each URL link contained in the source code of the
webpage to be detected. On the other hand, it is relatively reasonable to spend a small
amount of time and resources on detecting these URLs, so we choose the blacklist detection
method. The advantage of the blacklisting method is that it has a very high accuracy rate
and a very low resource and time overhead, which makes it very suitable for the first round
of screening in a malicious web detection system.

Firstly, URL links are retrieved from the webpage source code, and then these URLs
are detected by the blacklist item by item. Once a URL is found to be a malicious link, the
webpage is judged as a malicious webpage. If no malicious link is detected, the webpage is
determined as an unknown webpage. After all samples are detected by the blacklist, the
unknown webpages are collectively input to the next GCN-based classification stage. The
blacklist detection is briefly depicted in Algorithm 1.

Algorithm 1. Detection By Blacklist

Input: A set of webpage source codes codes
Output: A set of malicious webpages malicious_webpages, A set of unknown webpages
unknown_webpages
1: for ∀code_i ∈ codes do
2: URLs ← get_url(code_i)
3: if Blacklist(URLs) then
4: Put code_i into malicious_webpages
5: else
6: Put code_i into unknown_webpages
7: end if
8: end for
9: return malicious_webpages, unknown_webpages

3.2. Detection by GCN
3.2.1. Phrase Segmentation

The presentation of code has a more obvious syntactic format. There are many phrases
in code that consist of multiple words together to describe an integrated semantic meaning,
and the collocation of these words is relatively fixed. For example, in CSS, when the words
“display” and “none” appear together, they generally combine to describe a semantic
meaning of “invisible”. One way of attack is to set the “display” attribute in the “style”
of malicious elements and modules to “none”, so that malicious links can be hidden,
making it easier for Internet users to click on malicious links, visit them by mistake, and
then be attacked by the network. Therefore, in order to maintain the integrity of the
syntactic and semantic information of the code and to make full use of the information, it is
more reasonable to divide “display” and “none” into a whole phrase rather than into two
separate words.

According to [22], during the blacklist detection stage, our work performs phrase
slicing based on point-wise mutual information (PMI) and left–right entropy.

The point-wise mutual information reflects the degree of intra-word string binding
tightness and represents the degree of interdependence between two variables. Taking the
binary point-wise mutual information as an example, the PMI value between words i, j is
computed as

PMI(i, j) = log
p(i, j)

p(i)p(j)
, (1)
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p(i, j) =
W(i, j)

W
, (2)

p(i) =
W(i)

W
, (3)

where W denotes the total number of sliding windows, W(i) denotes the number of sliding
windows containing word i in the whole corpus, and W(i, j) denotes the number of sliding
windows containing both word i and word j in the whole corpus. The higher the PMI
value, the higher the correlation between word i and word j, and the higher the possibility
of word i and word j forming a phrase; conversely, the lower the PMI value, the lower the
correlation between word i and word j, and the higher the possibility of a phrase boundary
between word i and word j.

Left–right entropy can determine the unstructured nature of the phrase expression
and can determine the external boundary of the multiword phrase expression. Left–right
entropy is divided into left entropy for the left boundary of a multiword phrase expression
and right entropy for the right boundary, which are computed as

EL(W) = − ∑
∀a∈A

P(aW|W) · log2P(aW|W), (4)

ER(W) = − ∑
∀b∈B

P(Wb|W) · log2P(Wb|W), (5)

where EL and ER denote the left entropy and right entropy of the word string, respectively;
W denotes the N-gram word string, and W = {w1, w2, · · · , wn}; A denotes the set of all
words appearing on the left side of the word string, and a denotes a word appearing on
the left side; B denotes the set of all words appearing on the right side of the word string,
and b denotes a word appearing on the right side. If the values of EL and ER are larger, i.e.,
the more words appear on the left and right of the string W, it is more likely that W is a
complete multiword expression.

The word strings with PMI higher than P and both left entropy and right entropy
higher than N are sliced out as phrases, and the rest are sliced out as words to be used as
phrases (words with independent semantics can also be considered as phrases), where P
and N are preset values. Then, we add all the sliced results of the webpage source code to
a corpus.

3.2.2. Text Graph Building

We build a heterogeneous text graph, which contains two types of nodes: phrase nodes
representing all the phrases in the corpus vocabulary, and document nodes representing
the source code of all webpages in the corpus.

To capture global phrase–phrase correlations and document–phrase correlations, we
build edges among document nodes and phrase nodes (document–phrase edges) and
among phrase nodes (phrase–phrase edges). Document–phrase edges are built based
on phrase occurrence in documents and edge weights computed by the term frequency–
inverse document frequency (TF-IDF) method. Additionally, phrase–phrase edges are
built based on local phrase co-occurrence within sliding windows in the corpus, with edge
weights computed by PMI. We have already introduced PMI in the previous subsection,
which reflects the degree of intra-word string closeness and represents the interdependence
between two variables. Formally, the weights of the edges between nodes i and j are
defined as

Aij =


PMI(i, j) i, j are words, PMI(i, j) > 0
TF-IDFij i is document, j is word
1 i = j
0 otherwise

, (6)
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where the formula for PMI(i, j) is given in Formulas (1)–(3) in the previous subsection. The
TF-IDF value of a phrase i and a document j can be obtained by

TF-IDFij = TFij ∗ IDFi, (7)

TFij = nij, (8)

IDFi = log
|D|∣∣∣{ .

J : tiεd .
J

}∣∣∣ , (9)

where nij denotes the number of occurrences of phrase i in the webpage source code j, |D|
denotes the total number of webpage source codes in the corpus, and

∣∣∣{ .
J : tiεd .

J

}∣∣∣ denotes
the number of webpage source codes that contain the phrase ti.

3.2.3. GCN-Based Classification

Our graph neural network model is adapted from a GCN [6], a semi-supervised
learning model for graph-structured data that can operate directly on graphs. Formally,
consider a graph G = (V, E, A), where V(|V| = n) represents sets of graph nodes, E
represents sets of graph edges, and A ∈ Rn×n is the adjacency matrix of G. Since each node
should be a self-loop, the diagonal element of A is set to 1. In GCN learning, hidden layer
representations are obtained by encoding both features of the nodes and graph structure.
The new k-dimensional node feature matrix can be obtained by

H(l+1) = f
(

H(l), A
)

(10)

where H(l) ∈ Rn×k denotes the feature matrix of the lth layer. Additionally, a commonly
used layer-wise propagation rule is

H(l+1) = f
(

H(l), A
)
= ρ

(
ÃH(l)W(l)

)
(11)

where Ã = D−
1
2 AD−

1
2 is the normalized symmetric adjacency matrix; D is the diagonal

node degree matrix with Dii = ∑j A
i

.
J
; H(0) = X, X ∈ Rn×m is a matrix containing all n

nodes with their m-dimensional initial input features; W(l) ∈ Rdl×dl+1 is a weight matrix,
where dl is the number of features for each node in the lth layer; and ρ is an activation
function, such as ReLU.

In this paper, we build a two-layer GCN model. The second layer is connected to the
softmax classifier to perform node classification, and the second layer’s node embeddings
have the same size as the labels set:

Z = softmax
(

Ã ReLU (ÃXW(0))W(1)
)

, (12)

where softmax(xi) =
1
Z exp(xi) with Z = ∑i exp(xi) . The loss function is defined as the

cross-entropy error over all labeled webpage source code documents:

L = − ∑
w∈yW

F

∑
f=1

Yw f ln Zw f (13)

where YW is the set of labeled webpages, and F is the dimension of the output vector, which
is equal to the number of classes, i.e., 2 (webpages are either malicious or benign).

In summary, we slice the source code into phrases. Then, we build a large text
graph and input it into the GCN. Finally, the GCN model is used to learn the syntactic
and semantic correlations within and among webpage source codes to detect malicious
webpages. The GCN detection is briefly depicted in Algorithm 2.
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Algorithm 2. Detection By GCN

Input: A set of webpage source codes codes // i.e., unknown_webpages in the output of
Algorithm 1
Parameter: Weight matrixes {W(0), W(1)}, initial feature matrix X, The number of training epochs
n_epoch
Output: A set of labels of each webpage Z
1: for ∀code_n ∈ codes do
2: phrases ← get_phrase(code_n)
3: for ∀phrase_i ∈ phrases do
4: phrase_code_pair ← TF-IDF(phrase_i, code_n)
5: for ∀phrase_j ∈ phrases do
6: phrase_phrase_pair ← PMI(phrase_i, phrase_j)
7: end for
8: end for
9: end for
10: V ← phrases + codes
11: E← get_edge(phrase_code_pair, phrase_phrase_pair)
12: A← get_adjacency_matrix(phrase_code_pair, phrase_phrase_pair)
13: for t in range(n_epoch) do
14: put G = (V, E, A) into GCN:
15: Z ← softmax(ÃReLU(ÃXW(0))W(1))

16: L ← −∑w∈yW ∑F
f=1 Yw f ln Zw f

17: Updating W(0) and W(1) using ∂L
∂W(0) and ∂L

∂W(1)

18: end for
19: return Z

4. Experiments

In this section, we analyze the accuracy of the proposed method, GMWD, in different
situations. All experiments were conducted on Windows 10, with a 3.6 GHz Intel i5 CPU,
32 GB of RAM, and 1050 NVIDIA GPU.

4.1. Dataset

There is currently no benchmark dataset in the field of malicious webpage detection
research. Therefore, we collected experimental datasets from the Malware Domain List,
VirusTotal, and other websites by referring to existing research in the field of malicious web
detection [23–26]. This is the same method as their experimental dataset acquisition.

The sample size of the dataset used in this paper was 52,448 webpage samples, in-
cluding 26,896 benign samples and 25,552 malicious samples, as shown in Table 1. The
benign samples included 9458 labeled samples from the dataset of the 2017 China Network
Security Technology Challenge, and 17,438 test samples that were crawled from the benign
platform Chinaz. The malicious samples were all obtained by crawling malicious URLs
from the Malware Domain List. We randomly selected 9458 samples as labeled samples,
which is the same as the number of benign labeled samples. Additionally, the remaining
16,094 samples were used as test samples. The malicious webpage blacklist was picked up
from VirusTotal and contained 300,000 URL data.

4.2. Evaluation Indexes

The purpose of this method is to detect malicious samples, so we consider all malicious
samples as positive samples and all benign samples as negative samples.
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Table 1. Statistical information of the experimental dataset.

Benign Samples Malicious Samples
Blacklist

Labeled
Samples Test Samples Labeled

Samples Test Samples

Source Competition 1 Chinaz 2 Malware Domain List 3 VirusTotal 4

Number 9458 17,438 9458 16,094 300,000
1 2017 China Network Security Technology Challenge; this competition is organized by the National Computer
Network Emergency Response Technical Team/Coordination Center of China (CNCERT/CC). 2 Chinaz, https:
//top.chinaz.com (accessed on 3 March 2021). 3 Malware Domain List, http://www.malwaredomainlist.com/
mdl.php (accessed on 1 March 2021). 4 VirusTotal, https://www.virustotal.com (accessed on 5 March 2021).

In classification tasks [5,7] and in the field of malicious webpage detection [3,4,27,28],
some metrics are commonly used to evaluate the accuracy of detection systems, e.g., ACC,
precision, TPR (also known as recall), TNR, FPR, FNR, and F1. In this paper, we use all
these commonly used evaluation metrics to demonstrate the effectiveness of our method.
Among them, ACC, TPR, and TNR can reflect the detection accuracy of the model to a
large extent. Therefore, these three metrics will be highlighted so as to help better focus on
the variation in the model’s ability to detect malicious and benign samples under different
conditions. Descriptions and calculations of the specific metrics are as follows:

Accuracy = ( TP + TN ) / ( TP + TN + FP + FN ), (14)

Precision = TP / ( TP + FP ), (15)

TPR ( Recall ) = TP / ( TP + FN ), (16)

TNR = TN / ( FP + TN ). (17)

FPR = FP / ( FP + TN ), (18)

FNR = FN / ( TP + FN ), (19)

F1 = 2 ∗ ( Precision ∗ Recall ) / ( Precision + Recall ), (20)

where true positive (TP) is the number of malicious samples that are correctly classified as
a malicious webpage, true negative (TN) is the number of benign samples that are correctly
classified as a benign webpage, false positive (FP) is the number of benign samples that
are incorrectly classified as a malicious webpage, and false negative (FN) is the number of
malicious samples that are incorrectly classified as a benign webpage.

4.3. Detection by Blacklist

The source code of a webpage contains not only the content of the webpage, but
also the URL links pointing to other webpages. This URL information can help us detect
malicious webpages. When the source code of a webpage contains URL links pointing to
a malicious webpage, the webpage is often a malicious webpage as well. Therefore, we
need to extract the URLs from the source code of each webpage and then carry out blacklist
detection for each URL. Blacklist detection has the advantages of high accuracy and fast
detection, which can quickly and correctly detect some malicious webpages. The blacklist
used in this paper was from VirusTotal, with a total of 300,000 malicious URL data.

We performed URL extraction on a total of 33,532 webpages in all test sets and matched
them with the blacklist item by item, detecting 476 malicious samples with a detection rate
of about 2.96%, all of which were detected correctly. This shows that the scheme to detect
malicious webpages based on URL information in webpages is feasible. It is worth noting
that the correctness rate of this experiment is greatly limited by the size and characteristics
(e.g., old or new) of the blacklist. Choosing the right blacklist can effectively increase the
detection rate and thus improve the overall correctness of the detection system.

https://top.chinaz.com
https://top.chinaz.com
http://www.malwaredomainlist.com/mdl.php
http://www.malwaredomainlist.com/mdl.php
https://www.virustotal.com
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4.4. Detection by GCN

The dataset we used was the total dataset of 51,972 samples after removing the
malicious samples screened by the blacklist detection. The source text was first cleaned,
e.g., by removing comments from the code and removing low-frequency phrases that are
contained in less than 0.1% of the total source text. Then, we preprocessed the dataset to
perform phrase slicing on the source text.

Settings. In the construction of the text graph, we set the embedding size of the initial
phrase embeddings to 15 and set the sliding window size for statistical word co-occurrence
to 20, as used in [7]. In the training process, the dropout rate was 0.5. A maximum of
400 epochs and the Adam optimizer with a learning rate of 0.02 were used, and training
was stopped early if the validation loss did not decrease for 10 consecutive epochs.

We used GMWD for malicious webpage detection experiments to verify its perfor-
mance. The experimental results are shown in Table 2. The experimental results show that
GMWD achieved good results in the detection ability of both malicious web samples and
benign web samples, with TPR, TNR, and ACC exceeding 99.8%, which demonstrates the
effectiveness and accuracy of the proposed method in malicious webpage detection.

Table 2. Result of detection by GCN.

Malicious Samples Benign Samples
ACC Precision TPR TNR F1

TP FN TN FP

15,595 23 17,416 22 0.9986 0.9986 0.9985 0.9987 0.9986

The main reasons why GMWD performs well are as follows. (1) The model inherits the
advantages of a GCN for node classification: graph convolution can capture both document–
phrase and global phrase–phrase relationships while combining its own information with
that of its multi-order neighbor nodes through the advantage of information transfer from
the graph model. (2) The single word corrupts the semantic information of the code to a
certain extent, while the phrase better maintains the semantic information of the code text.

Effect of the Number of Labeled Data. To evaluate the effect of the number of labeled
data, we tested GMWD with seven sets of labeled data of different orders of magnitude,
with 30, 500, 2000, 4000, 6000, 8000, and 9458 positive and negative samples each. The test
results are presented in Figure 2. We can see that the overall TPR, TNR, and ACC roughly
show an increasing curve as the number of labeled data increases. Specifically, when there
are only 500 positive and negative samples each, the TPR reaches 99.15%, although the
TNR is only 96.65%, which is still a relatively good result if we consider that the success
rate of detecting malicious webpages is more important in practical applications. When
the labeled data reach 4000 positive and negative samples each, TPR, TNR, and ACC all
exceed 99%. When the number of positive and negative samples reaches 9458, TPR, TNR,
and ACC all exceed 99.85%.

Effect of Different Sliding Window Sizes. In order to evaluate the effect of different
sliding window sizes, we tested GMWD with different sliding window sizes, and to make
the comparison of the results more obvious, the tests were performed under the condition
that the labeled data were 4000 positive and negative samples each. The test results are
presented in Figure 3, which shows that the test accuracy first increases as the window
size becomes larger, but the average accuracy decreases when the window size is larger
than 8. This indicates that too small a window size causes the GCN to acquire semantic
information between phrases ineffectively, while too large a window size may cause the
GCN to overlearn the correlation between less closely related nodes.
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Effect of Using Phrase Nodes. To evaluate the impact of using phrases instead of
words as nodes in malicious webpage detection, we compared GMWD using phrase nodes
with that using word nodes and conducted detection experiments with different orders
of magnitude of markup data. The results are presented in Figure 4. From the results, we
can see that the TPR of the phrase node group is much higher than that of the word node
group when the number of labeled samples is small, and the gap gradually decreases as
the number of labeled samples increases. The TNR of the word node group is much higher
than that of the phrase node group when the number of labeled samples is small, the gap
gradually decreases as the number of labeled samples increases, and the two are almost



Mathematics 2022, 10, 3496 11 of 15

equal after the labeled data reach 8000 positive and negative samples each. The ACC of the
word node group is higher than that of the phrase node group overall.
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The difference between a malicious webpage source code and benign webpage source
code is actually reflected in the presence of malicious code in the malicious webpage, while
the rest of the malicious webpage source code is the same as a general benign source code.
Therefore, to effectively detect malicious webpages, the features of malicious code must be
learned by allowing the GCN to capture the similarities between malicious codes.

The experimental results show that using words as a node causes the system to have a
low false alarm rate but a high miss rate when the number of labeled samples is small. This
means that the GCN is not able to sufficiently capture and learn the features of malicious
code, so it is biased to judge the webpages as benign. Meanwhile, when using phrases
as a node, there is a high false alarm rate, but a low miss rate, which indicates that the
system is better able to capture and learn the features of the malicious code. This proves
our conjecture that slicing the source code into individual words will lose some syntactic
and semantic information, and slicing the source code into phrases can better maintain the
syntactic and semantic information of the source code. This information enables the GCN
to better capture and learn the features of malicious code to detect malicious webpages.

Analysis of Phrases. We used the t-SNE tool [29] to visualize the second layer’s
learned phrase embeddings, as shown in Figure 5. The orange dots represent the nodes of
phrases with higher values classified as malicious than as benign. We note that phrases with
malicious labels are close to each other rather than randomly distributed, which means
that phrases with malicious labels are always closely related to each other rather than
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existing separately. In addition, we show a list of the nine phrases with the largest values
of malicious labels in Table 3. We found that the phrases are interpretable. For example,
“wp-content” is often found in malicious links. According to our statistics on the dataset,
this phrase was present in 21 of the 25,076 benign samples in the dataset, a total of 93 times,
while it was present in 3888 of the 26,896 malicious samples, a total of 12,115 times.
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Table 3. Nine phrases with the largest values of malicious labels.

Top 9 Phrases with Malicious Labels

1. wp-content 2. quot 3. menu-item
4. elementor-element 5. path 6. important
7. data-element_type 8. not 9. border-color

4.5. Comparison of Related Work

We compared GMWD with other related malicious web detection methods. The
authors of [4] proposed a malicious JavaScript detection model based on LSTM. The
model extracts features from the semantic level of bytecode and optimizes the word vector
approach. The authors of [12] combined features extracted from abstract syntax trees with
random forest classes to detect malicious JavaScript instances. The authors of [21] proposed
a multi-dimensional feature phishing detection method based on deep learning, mainly for
webpage URLs and webpage source code. The authors of [25] detected malicious webpages
by operating directly on language-independent token streams that are extracted directly
from static HTML files using simple regular expressions. In order to present the comparison
results more comprehensively, we list all the common evaluation indicators. The details are
as follows.

The result shows that our scheme can accurately perform the malicious webpage
detection task. As shown in Table 4, our scheme outperforms the methods proposed
by [4] [12], and [21] in all metrics. The reason is that the network models they use, such
as LSTM, only capture the local semantic information. In contrast, with the help of the
GCN, we capture not only local semantic information but also global semantic information,
which could further improve the accuracy of malicious webpage detection. The FPR of [25]
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was able to reach 0.1%, which is lower than that of our method. The low FPR of [25] has
to be taken with a grain of salt; like the majority of anti-virus systems, they rather traded
a low false positive rate for a higher false negative rate. In other metrics, our approach
performs better.

Table 4. Accuracy of different malicious web detection models. The best indicates in boldface.

Method ACC (%) Precision (%) FNR (%) FPR (%) F1 (%)

Ref. [4] 99.51 99.55 3.79 —— 98.37
Ref. [12] 99.50 —— 0.54 0.52 ——
Ref. [21] 98.99 99.41 1.43 0.59 99.0
Ref. [25] 97.50 —— —— 0.1 ——
GMWD 99.866 99.859 0.137 0.126 99.860

5. Conclusions and Future Work

With the widespread popularity of the Internet, malicious webpages are becoming
one of the main ways to seriously threaten user information security and privacy. In this
work, we proposed a GCN-based malicious webpage detection method, GMWD. This
method, unlike traditional malicious webpage detection methods, is not interfered with
by attacker obfuscation techniques. We replace word nodes in the text graph with phrase
nodes to better maintain the syntactic and semantic integrity of the webpage source
code. In addition, we also utilize the URLs appearing in the webpage source code as
auxiliary detection information. The experimental results show that GMWD has higher
accuracy and a lower false negative rate compared to other existing malicious webpage
detection schemes.

This paper used the GCN model for detection, which requires preprocessing and
building a text graph of the webpages in the dataset at first. During subsequent detection,
additional pages cannot be dynamically inserted into the graph, which means that pages
not included in the initial dataset cannot be detected. Therefore, one of our future works is
to explore how to detect single webpages outside the dataset. Moreover, there are many
types of malicious codes, and the syntax and semantics of different types of malicious
codes differ. The labeled samples used in our experiments were randomly selected, and
there may be cases where the labeled samples do not contain all malicious types, which
brings certain limitations and difficulties to improving the experimental effect. Generating
a suitable labeled sample dataset, especially when the size of the labeled sample is small, is
a way to improve the accuracy of the model in the future.
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Abbreviations
The following abbreviations are used in our paper:

GCN Graph convolutional network
GMWD The GCN-based malicious webpage detection method proposed in this paper
URL Uniform Resource Location
CNN Convolutional neural network
LSTM Long short-term memory
PMI Point-wise mutual information
TF-IDF Term frequency–inverse document frequency
TP True positive
FN False negative
TN True negative
FP False positive
ACC Accuracy rate
TPR True positive rate
TNR True negative rate
FPR False positive rate
FNR False negative rate
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