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Abstract: The paper is concerned with h-pure-N-high submodules of QTAG-modules. Here, we
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ules are bounded. We also discuss some interesting properties of subsocles and consequently give a
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1. Introduction and Backgrounds

Many authors interested in module theory have worked on generalizing the theory of
abelian groups. In fact, the theory of torsion abelian groups is one of the principal motives of
new research in module theory. Among many generalizations of torsion abelian groups, the
notion of TAG-modules and their related properties have attracted considerable attention
since 1976 (see, for example, [1,2]). A module M over a ring R is called a TAG-module [3]
if it satisfies the following two conditions while the rings are associated with unity.

(i) Every finitely generated submodule of any homomorphic image of M is a direct sum
of uniserial modules.

(ii) Given any two uniserial submodules U and V of a homomorphic image of M, for any
submodule W of U, any non-zero homomorphism f : W → V can be extended to a
homomorphism g : U → V, provided the composition length d(U/W) ≤ d(V/ f (W)).

A module M over a ring R satisfying only condition (i) is called a QTAG-module
(see [4]). Since then, many papers have been written investigating the various notions
and structures of QTAG-modules. It was seen that many of the developments of these
modules very closely paralleled the theory of torsion abelian groups. One of the problems
of detecting finite direct sums of uniserial modules was considered in ([5], Theorem 4). This
problem has been explored in several papers (see, for instance, [6,7]). Some generalizations
in this theme for other important sorts of QTAG-modules and related results have recently
been established in [8,9]. The purpose of the present work is to generalize, in this direction,
some new results of abelian p-groups to obtain a parallel theory for QTAG-modules.

Some basic definitions used in this paper have already appeared in one of the co-
authors’ previous works from [8,10], which is necessary for our successful presentation
because of its significance to the mentioned topic here.

“Throughout our discussion all the rings R here are associative with unity (1 6= 0) and
modules M are unital QTAG-modules. A uniserial module M is a module over a ring R,
whose submodules are totally ordered by inclusion. This means simply that for any two
submodules N1 and N2 of M, either N1 ⊆ N2 or N2 ⊆ N1. An element x in M is called
uniform if xR is a non-zero uniform (hence uniserial) module. For any module M with
a unique decomposition series, d(M) denotes its decomposition length. For any uniform
element x of M, its exponent e(x) is defined to be equal to the decomposition length d(xR).
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For any 0 6= x ∈ M, HM(x) (the height of x in M) is defined by HM(x) = sup{d(yR/xR) :
y ∈ M, x ∈ yR and y uniform}. For k ≥ 0, Hk(M) = {x ∈ M| HM(x) ≥ k} denotes the
submodule of M generated by the elements of height at least k and for some submodule N
of M, Hk(M) = {x ∈ M| d(xR/(xR ∩ N)) ≤ k} is the submodule of M generated by the
elements of exponents at most k. The set of modules {Hk(M)}k=0,1,...,∞ forms a base for
the neighborhood system of zero. This gives rise to a topology known as h-topology. The
closure of a submodule N ⊂ M is defined as N = ∩∞

k=0(N + Hk(M)) and it is closed with
respect to the h-topology if N = N.”

“The module M is h-divisible if M = M1 = ∩∞
k=0 Hk(M), where M1 is the submodule

of M generated by uniform elements of M of infinite height, and it is h-reduced if it does
not contain any h-divisible submodule. In other words, it is free from the elements of
infinite height. The module M is called separable if M1 = 0. Moreover, M is said to be
bounded if there exists an integer k such that HM(x) ≤ k for every uniform element x ∈ M.
A submodule N of M is h-pure in M if N ∩ Hk(M) = Hk(N), for every integer k ≥ 0.
A submodule B of M is called a basic submodule of M, if B is an h-pure submodule of
M, B is a direct sum of uniserial modules and M/B is h-divisible. The sum of all simple
submodules of M is called the socle of M, denoted by Soc(M) and a submodule S of Soc(M)
is called a subsocle of M. A module M is called h-pure-complete, if for every subsocle of M
supports an h-pure submodule of M.”

It is worthwhile noticing that several results that hold for TAG-modules are also valid
for QTAG-modules [11]. Many results stated in the present paper are clearly generalizations
from the papers [12,13]. For a better understanding of the topic mentioned here, one must
go through reference [14]. The terminologies and notations are well-known and followed
by [15,16]; for the specific ones, we refer the readers to [17].

2. h-Pure-N-High Submodules

Though this section contains a discussion of the subclass of QTAG-modules named h-
pure-N-high submodules, we pause for a few general observations on N-high submodules
from [18,19], respectively.

“If N is a submodule of a QTAG-module M, then a submodule K of M is N-high
in M, if it is maximal with the property of being disjoint from N. It is well-known that
all N-high submodules of M are bounded if and only if there exists k ∈ Z+ such that
(N + Soc(Hk(M)))/N is finitely generated and N contains the socle of the h-divisible
submodule of M.

All N-high submodules are bounded if and only if for every h-pure submodule L of
an h-reduced QTAG-modules M containing N, M/L is a direct sum of bounded modules.”

Our aim here is to give a complete description of some important assertions of h-pure-
N-high submodules with the aid of certain submodules and to use them to study the direct
sum of uniserial modules.

We begin with the following concept.

Definition 1. A submodule T of a QTAG-module M is h-pure-N-high in M if it is maximal
among the h-pure submodules disjoint from N for some submodules N of M.

Remark 1. Clearly, h-pure-N-high submodule is contained in an N-high submodule.

The following theorem establishes the connection between h-pure-N-high and N-high
submodules of a QTAG-module.

Theorem 1. Suppose M is a QTAG-module. In QTAG-modules, h-pure-N-high submodules are
N-high submodules for some submodules N of M.

Proof. If N is a submodule of M such that Soc(N) 6= Soc(M), then there is a non-zero
h-pure submodule of M disjoint from N. We have two cases to consider:
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In the first case, all elements of Soc(M) are of infinite height. Then M is a h-divisible
module, and so the N-high submodule of M is h-pure. As for the second case, there exists a
non-zero uniform element u in Soc(M) such that HM(u) < ∞. Thus, for 0 6= v ∈ Soc(M) \
Soc(N) such that HM(v) = ∞. This, in turn, implies that u + v ∈ Soc(M) \ Soc(N), and
hence HM(u + v) = HM(u) < ∞. This means that v generates the non-zero socle of an
h-pure submodule disjoint from N.

Let T be an h-pure-N-high submodule of M. In order to show that T is N-high in M,
we need only show that Soc(T)⊕ Soc(N) = Soc(M). In virtue of ([18], Theorem 2.3), we
have Soc((N ⊕ T)/T) = Soc(M/T). Then there exists an h-pure submodule L/T disjoint
form (N ⊕ T)/T. It follows that L is h-pure in M, which contradicts the maximality of
T. Since T is h-pure, we have Soc(T) ⊕ Soc(N) = Soc(M). Consequently, T is N-high
in M.

As a direct consequence, we have the following corollary.

Corollary 1. Every h-pure submodule disjoint from a submodule N of a QTAG-module can be
extended to an h-pure-N-high submodule of M.

Motivated by h-pure-N-high submodules, we make the following definition.

Definition 2. Let M be a QTAG-module. A submodule N of M is said to be an h-pure-absolute
summand if for every h-pure-N-high submodule T of M, M = N ⊕ T.

Therefore, we come to the following theorem.

Theorem 2. Suppose M is a QTAG-module. In QTAG-modules, h-pure-absolute summands are
absolute summands for some submodules N of M.

Proof. If N is an h-pure-absolute summand of M, we obtain that N is a summand of M
from the utilization of Theorem 1. If Soc(N) ⊂ M1, then N is h-divisible in M, and therefore,
N is an absolute summand of M. If Soc(N) * M1, then there exists k ∈ Z+, such that
Soc(Hk+1(M)) ⊂ Soc(N) ⊂ Soc(Hk(M)).

Let k be the least positive integer such that Soc(N) ⊂ Soc(Hk(M)) and Soc(N) *
Soc(Hk+1(M)). Such a k exists; otherwise, Soc(N) would not be contained in the submodule
of M generated by uniform elements of M of infinite height. Then there exists a uniform
element x in Soc(N) such that HM(x) = k. Let y ∈ Soc(Hk+1(M)) such that y /∈ Soc(N).
Then x + y /∈ Soc(N) and HM(x + y) = k. Therefore, there exists an h-pure submodule L
of M containing x + y, and so L is N-high in M. This gives M = N ⊕ L.

Furthermore, since x + y ∈ L where x ∈ N and HM(x + y) = HM(x) = k, it follows
that HM(x + y− x) = k. This is a contradiction. Hence, y ∈ Soc(N) and Soc(Hk+1(M)) ⊂
Soc(N) ⊂ Soc(Hk(M)). Therefore, N is an absolute summand of M.

It is good to note that we have argued in ([18], Theorem 2.1) that if some N-high
submodule K of an h-reduced QTAG-module M is not bounded, then there is a submodule
P of K such that M/P = (K/P)⊕ (L/P), where P is a basic submodule of K, and L can
be taken to contain N. It follows that L is an h-pure submodule of M. Thus, if L is the
smallest h-pure submodule of M containing N, we see that all N-high submodules of M
are bounded. This can be strengthened by the following result.

Theorem 3. Let M be an h-reduced QTAG-module and S be a subsocle of M. Then all h-pure-N-
high submodules of M are bounded if and only if (Soc(Hk(M)) + S)/S is finitely generated for
some k ∈ Z+.

Proof. Note that if (Soc(Hk(M)) + S)/S is finitely generated for some k ∈ Z+, then it
readily follows that Soc(Hk(T)) is finitely generated for every h-pure-N-high submodule T
of M. Since M is h-reduced, we also have that T is bounded.
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Next, assume that (Soc(Hk(M)) + S)/S is infinite for every k ∈ Z+. Now we want
to construct inductively a sequence of elements of Soc(M) whose heights are strictly
increasing. Since M is h-reduced, we can find a1 ∈ Soc(M) \ S such that HM(a1) = t1 < ∞.
Otherwise, Soc(N) would be contained in the submodule of M generated by uniform
elements of M of infinite height, and it is plainly observed that M is h-divisible.

Therefore, to finish off the induction, we have constructed a1, a2, . . . , ak in Soc(M) such
that HM(ai) = ti and ti < ti+1, i = 1, 2, . . . , k− 1. Let Tk ∩ S = 0, where Tk = 〈a1, a2, . . . , ak〉.
It is fair to verify that Tk is finitely generated and implies that

(Tk + S) ∩ Soc(Htk+1(M)) ( Soc(Htk+1(M)).

Therefore, there exists ak+1 ∈ Soc(Htk+1(M)) such that ak+1 /∈ Tk +S and HM(ak+1) =

tk+1 < ∞. Otherwise, Soc(Htk+1(M)) ⊂ M1 and M would not be h-reduced. In addition,
tk+1 ≥ tk + 1 > tk and Tk+1 = Tk + 〈ak+1〉 is disjoint from S.

Choose bi ∈ M such that d(biR/aiR) = ti and let T = 〈{bi}∞
i=1〉. Then T is an h-

pure unbounded submodule of M disjoint from S, which can be extended to an h-pure
unbounded S-high submodule of M. The proof is finished.

An interesting consequence of the last statement is the following.

Corollary 2. Let M be a QTAG-module and S be a subsocle of M. Then all h-pure-S-high
submodules of M are bounded if and only if (Soc(Hk(M)) + S)/S is finitely generated for some
k ∈ Z+ and S contains the socle of the h-divisible submodule of M.

Before proceeding by proving another motivation for Theorem 3, we need the follow-
ing useful observation.

Lemma 1. Suppose N is a submodule of a QTAG-module M. If F is the family of h-pure-N-high
submodules of M such that N 6= φ, then ∩TF = φ for some h-pure-N-high submodules T of M.

Proof. Let x be a uniform element in Soc(T), for some h-pure-N-high submodules T of M.
In order to prove the result, we shall show that for every uniform element of Soc(T), there
exists an h-pure-N-high submodule of M, which does not contain x. We have two cases
to consider: either there exists a ∈ N such that HM(x + a) < ∞ or HM(x + a) = ∞ for all
a ∈ N.

In the first case, x + a can be embedded in an h-pure submodule L of M [9] disjoint
from N. Consequently, L can be extended to an h-pure-N-high submodule P of M, which
does not contain x.

As for the second case, we have HM(x) = HM(a) for all a ∈ N. If now HM(x) = ∞,
it is plainly seen that N ⊂ M1, and all N-high submodules of M are h-pure. Likewise, if
HM(x) < ∞, we obtain N = Soc(K) for some h-pure submodules K of M. Therefore, since
K is bounded, we obtain that M = K ⊕ Q for some submodules Q of M. It follows that
Q ⊃ M1 and thus x + a ∈ Q for all a ∈ N. Henceforth, Q is an h-pure-N-high submodule
of M, which does not contain x.

Therefore, we are able to demonstrate the truthfulness of the following theorem.

Theorem 4. Let M be a QTAG-module and S be a subsocle of M. Then all h-pure-S-high submod-
ules T of M are closed in the h-topology of M if and only if M is separable and T is bounded for
all T.

Proof. Assume that all h-pure-S-high submodules T of M are closed in the h-topology of
M. Then M1, the closure of 0, is contained in the intersection of the family of h-pure-S-high
submodules of M. Consequently, referring to Lemma 1, we yield that M1 = 0, that is, M
is separable. On the other hand, suppose that T is not bounded. Then there exists a basic
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submodule B of T such that (M/B)1 6= 0. Knowing this, with the aid of ([18], Theorem 2.1),
we observe that there exists an h-pure-(S⊕ B)/B-high submodule L/B of M/B, which is
not closed in the h-topology of M/B, i.e., (M/B)/(L/B)1 6= 0. Certainly, (M/L)1 6= 0 and
L is not closed in the h-topology of M. Now L is h-pure submodule of M, since B is h-pure,
and it is S-high in M, which is a contradiction. Therefore, all h-pure-S-high submodules
are bounded, as desired.

The converse implication is obvious.

Regarding the above theorem, the following immediately follows.

Corollary 3. Let S be a subsocle of a QTAG-module M, and L be an h-pure submodule of M
disjoint from S. Then all h-pure-S-high submodules T of M containing L are closed in the h-
topology of M if and only if (M/L)1 = 0 and T/L is bounded for all T.

Proof. As we have noted earlier, an h-pure-S-high submodule T of M contains an h-pure
submodule L of M if and only if T/L is an h-pure-(S⊕ L)/L-high submodule of M/L and
T is closed in M if and only if T/L is closed in M/L. The proof is complete.

3. Role of Direct Sum of Uniserial Modules

Before stating and proving our main attainments, to make this section more nearly
self-contained, we shall summarize some known principal results in this theme.

“Singh [3] proved that a QTAG-module M is a direct sum of uniserial modules if and
only if M is the union of an ascending chain of bounded submodules. This indicates that
M is a direct sum of uniserial modules if and only if Soc(M) =

⊕
k∈ω

Sk and HM(x) = k for

every x ∈ Sk”.
In [20], it is easily checked that the separable direct sums of countably generated

modules are known to be a direct sum of uniserial modules. Although the direct sum of
uniserial modules can also be identified in the h-purity sense. Specifically, the following
excellent criterion for h-pure submodules of QTAG-modules is fulfilled.

Theorem 5 ([21], Theorem 1). Let M be a QTAG-module with an h-pure submodule L of M
and suppose that N is a submodule of L containing Soc(L) such that Soc(M) = C⊕ Soc(N) and
(C⊕ N)/N = Soc(K/N) with K/N is an h-pure submodule of M/N, which is a direct sum of
uniserial modules. Then L is a summand of M, and M/L is a direct sum of uniserial modules.

Note that the hypothesis of Theorem 5 is satisfied in the case where M/N is a direct
sum of uniserial modules for some submodule N of M such that Soc(L) ⊂ N ⊂ L. A
special case of this gives the following technicality.

Theorem 6 ([21], Theorem 2). Let M be a QTAG-module with an h-pure submodule L of M such
that M/K is a direct sum of uniserial modules, where K is a submodule of L generated by uniform
elements of exponents at most k for some positive integer k. Then M is a direct sum of uniserial
modules.

In particular, when k = 1, the following affirmation was obtained.

Corollary 4 ([21], Corollary 3). Let M be a QTAG-module and S be a subsocle of M with
S = Soc(N) for some h-pure submodules N of M. If M/S is a direct sum of uniserial modules,
then so is M.

It is an analog of Theorem 1 or Corollary 7 from [22]. For more detailed information
about this result, we refer the interested reader to [8,20].

Now, we obtain a new simple but useful reformulation of the last statement to the
following.
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Theorem 7. Let S be a subsocle of a QTAG-module M such that M/L is a direct sum of uniserial
modules for all h-pure-S-high submodules T of M. Then M is is a direct sum of uniserial modules.

Proof. Since M/T is a direct sum of uniserial modules for all h-pure-S-high submodules
T of M, it is straightforward that all h-pure-S-high submodules of M are closed in the
h-topology. Thus, by what we have just shown above, all h-pure-S-high submodules of M
are bounded. Note that M = L⊕ T, for some h-pure submodules L of M, if T is a bounded
direct sum uniserial module. Consequently, M is a direct sum of uniserial modules.

The following lemma is of some interest.

Lemma 2. Let M be a QTAG-module with an h-pure submodule L of M such that Soc(M) =
C⊕ Soc(L). Then

(i) for every submodule N of M with Soc(N) = Soc(L), HM/N(u + N) ≥ HM/L(u + L),
where u is uniform in C.

(ii) for h-pure submodule N of M with N ⊂ L, HM/N(u + N) = HM/L(u + L) for all u ∈ L.

Proof. (i) If u ∈ C, then there exists v ∈ M such that u + L = v′ + L where d(vR/v′R) = k,
and k ∈ Z+. Thus u− v′ ∈ L where d(vR/v′R) = k, and v′ ∈ L where d(vR/v′R) = k + 1.
Since L is an h-pure submodule of M, there exists w ∈ L such that d(vR/wR) = k + 1. This
shows that u− x ∈ Soc(N) = Soc(L) where x = v− w and d(xR/x′R) = k. Therefore,
HM/N(u + N) ≥ HM/L(u + L).

(ii) If N ⊂ L, then there exists a homomorphism φ : M/N → M/L such that
φ(u + N) = u + L for all u ∈ L. Since the homomorphism does not decrease height, we
have HM/N(u + N) ≤ HM/L(u + L) in conjunction with ([21], Proposition 1). Therefore,
HM/N(u + N) = HM/L(u + L).

Therefore, we have all the instruments necessary to prove the following criterion for a
direct sum of uniserial modules.

Theorem 8 (The Characterization Theorem). Let M be a QTAG-module and S be a subsocle of
M such that M is a direct sum of uniserial modules. Then the following are equivalent.

(i) M/S is a direct sum of uniserial modules;
(ii) M/S is h-pure-complete;
(iii) S supports a summand of M.

Proof. (i)⇒ (ii). If M/S is a direct sum of uniserial modules, then h-pure-completeness
follows via the simple fact that in a direct sum of uniserial modules, every subsocle supports
an h-pure submodule.

(ii)⇒ (i). If M/S is h-pure-complete, then Soc(M)/S supports an h-pure submodule
of M/S. However, (M/S)/(Soc(M)/S) w M/Soc(M) is a direct sum of uniserial modules,
and hence, in view of Theorem 6, M/S is a direct sum of uniserial modules.

(i)⇒ (iii). Since M is h-pure-complete, there exists an h-pure submodule L of M such
that S = Soc(L). Henceforth, according to Theorem 5, L is a summand of M.

(iii) ⇒ (i). If L is a summand of M, then M = L ⊕ N for some submodule N of
M, and we obtain M/Soc(L) = (L/Soc(L))⊕ ((N ⊕ Soc(L))/Soc(L)) as a direct sum of
uniserial modules.

4. Open Problems

In closing, we shall state some left-open problems that still elude us.

Problem 1. Describe the properties of those QTAG-modules M for which there exist h-pure-S-high
submodules T of M such that (M/T)1 is finitely generated for some subsocles S of M.
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Problem 2. Does it follow that an h-pure-N-high submodule of the direct sum of a separable module
and a countably generated module is a direct sum of uniserial modules?

Problem 3. Characterize those QTAG-modules M = M1/M2 such that for all h-pure-complete
modules M1 and all h-pure-absolute summands M2, it follows that M1 is an absolute summand.
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