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Abstract: The main purpose of this paper is to study point-cycle type bistability as well as induced
periodic bursting oscillations by taking a modified Filippov-type Chua’s circuit system with a
low-frequency external excitation as an example. Two different kinds of bistable structures in the
fast subsystem are obtained via conventional bifurcation analyses; meanwhile, nonconventional
bifurcations are also employed to explain the nonsmooth structures in the bistability. In the following
numerical investigations, dynamic evolutions of the full system are presented by regarding the
excitation amplitude and frequency as analysis parameters. As a consequence, we can find that the
classification method for periodic bursting oscillations in smooth systems is not completely applicable
when nonconventional bifurcations such as the sliding bifurcations and persistence bifurcation are
involved; in addition, it should be pointed out that the emergence of the bursting oscillation does
not completely depend on bifurcations under the point-cycle bistable structure in this paper. It is
predicted that there may be other unrevealed slow–fast transition mechanisms worthy of further
study.

Keywords: point-cycle bistability; nonconventional bifurcation; periodic bursting oscillation;
generalized slow–fast analysis method
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1. Introduction

Many practical problems, such as neuron activities [1–3], surface oxidation reactions
and autocatalytic chemical reactions [4–6], memristor-based circuits [7,8], and so on, can
often be described as slow–fast dynamical systems (SFDSs), written in the generalized form{

u̇ = f(u, v, ε),

v̇ = εg(u, v, ε)
(1)

where · = d
dτ , u ∈ RN are the fast variables, v ∈ RM are the slow variables, the positive

parameter 0 < ε � 1 measures the timescale difference between u and v, and f : RN ×
RM ×R 7→ RN and g : RN ×RM ×R 7→ RN are the smooth functions.

Compared with single-timescale dynamical systems, one can find that the system
responses of (1) may be much more complicated, such as in the bursting oscillation patterns
concerned in this paper. A bursting oscillation generally refers to the oscillation mode
in which the trajectories of the whole system alternate between the quiescent states(QSs)
and the spiking states (SPs) periodically. QS means that the trajectory converges to a
stable equilibrium, while SP means that the trajectory oscillates along with a limit cycle.
Since such complicated oscillation modes were reported in a large number of experiments
and numerical simulations, the related dynamical evolutions as well as the generation
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mechanisms confused the researchers for a long time based on the fact that the mature
analysis techniques in single-timescale dynamical systems cannot be directly applied to (1)
when bursting phenomena are present.

Fortunately, an incredibly useful approach based on timescale separation, i.e., the
classical slow–fast analysis method, was introduced by Rinzel to expound the dynamics
underlying bursting in neurons and pancreatic β-cells [9–11]. It is feasible to understand
a burster by employing nonlinear dynamics techniques and bifurcation theory. Taking
system (1) as an example, potential bursting oscillations may be well explained by exe-
cuting the following two stages: firstly, dividing the full system (1) into a fast subsystem
u̇ = f(u, v, ε) and a slow subsystem v̇ = εg(u, v, ε) via timescale separation; secondly,
analyzing the attractors as well as the bifurcations in the fast subsystem by regarding the
slow variables v as bifurcation parameters. Then, it can be found that a potential burster
in System (1) may be well interpreted as the dynamical evolution process in which the
trajectory modulated by a slow subsystem periodically alternates between a spiking attrac-
tor and the following quiescent attractor (for instance, from a stable limit cycle to a stable
equilibrium regime, and so forth), which is caused by bifurcations in the fast subsystem.
By adopting such a method, some extensive generation mechanisms of bursters have been
listed by Izhikevich in his works [12,13]. More importantly, he also proposes that a burster
can be named by using the two important bifurcations leading to the transitions between
SPs and QSs, which can effectively distinguish and classify different bursters and their
generation mechanisms and may provide great convenience for studies related to bursting
phenomena.

Along with the successional exploration of various bursting forms and the genera-
tion mechanisms in slow–fast dynamics, accumulating evidence suggests that bistability,
referring to when one attractor coexists with another attractor under certain parameter
conditions, may play an important role in the dynamical evolutions of bursters [14,15]. The
famous binocular rivalry, which reflects the human event for which a person reports an
alternation between two competing percepts as opposed to a mixture of them when his/her
eyes are exposed simultaneously to two significantly different images, can be explained
theoretically in the view of dynamics by the so-called winner-take-all bursting transi-
tion mechanism, in which the trajectory may converge to one of the bistable equilibrium
branches to behave in QS with different parameter conditions [16,17]. A novel bursting
form named mixed bursting oscillation has been observed in [18], which is characterized
by the fact that different SP patterns can be performed in a period bursting oscillation. By
using slow–fast decomposition, Duan et al. pointed out that different bistability structures
may lead to different mixed bursting patterns [19].

Note that most of the above results are verified in continuous slow–fast dynamical
systems; however, some systematic mutations may also appear in slow–fast dynamical
systems, for instance, nonsmooth stillness in nonlinear energy sinks [20], dry friction
in an oscillator with low-frequency excitation [21], and switch-like interactions in gene
regulatory networks [22]. Then, corresponding mathematical models are discontinuous,
and the conventional bifurcation theory is nearly helpless for the understanding of the
slow–fast dynamics as well as the generation mechanism.

Particularly in today’s third generation of neural networks (referring to spiking neural
networks), although the adoption of piecewise smooth integrate-and-fire models for a single
neuron bring great convenience to the computability and application of neural networks (for
more details, see [23] and the references therein), the reset motion in neuron models and gap-
junction coupling among neurons perform intricately discontinuous and implicit nonlinear
mechanisms.

Obviously, a deep understanding of bursting phenomena as well as the mechanism
in discontinuous slow–fast dynamical systems is very meaningful to slow–fast dynamics
as well as their practical applications. Based on this purpose, we focus on the slow–fast
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dynamical systems with discontinuous vector fields (which can also be called Filippov-type
slow–fast dynamical systems). The standard mathematical model can be expressed by

u̇ =

{
f1(u, v, ε), H(u) > 0,
f2(u, v, ε), H(u) < 0,

(Filippov fast subsystem)

v̇ = εg(u, v, ε), (slow subsystem)

(2)

in which, the fast subsystem possesses a discontinuous boundary (switching boundary)
H(u) = 0 that divides the fast subsystem into two smooth subsystems. Apparently,
when contacting with H(u) = 0, attractors in the fast subsystem of (2) may undergo
nonconventional bifurcations, leading to System (2) exhibiting unique nonsmooth dynamic
behaviors. This paper aims to discuss those dynamic behaviors as well as the generation
mechanisms in (2).

The remainder of this paper is organized as follows. In Section 2, a Filippov-type
slow–fast dynamical system is presented via establishing a modified Chua’s circuit with a
low-frequency external excitation. Necessary bifurcation analyses are presented in Section 3.
Based on Section 3, the attractors of the fast subsystem and their stabilities are discussed
with property parameter settings. Various dynamical behaviors observed in the full system
as well as the underlying generation mechanisms are discussed via numerical investigations
in Section 4. We draw some conclusions and discussions in Section 5.

2. Mathematical Model

The classical Chua’s circuit, designed by Chua, composed of two capacitors, an in-
ductor and a Chua’s diode, is a famous 3D nonlinear electronic circuit to show chaotic
behavior [24,25]. The circuit as well as the various modifications are often taken as ex-
amples in the research on slow–fast dynamics. For instance, canards and chaotic burst-
ing can be revealed in memristor-based Chua’s circuits [26], or more to the point, those
modified Chua’s circuits with low-frequency excitations are employed for the investiga-
tion of various bursting oscillations as well as the generation mechanisms via slow–fast
decomposition [27–29].

To reveal the influence of non-smoothness on the dynamics with two scales, here we
consider one modified Chua’s circuit system by introducing a low-frequency current source
and a nonlinear resistor RN with piecewise characteristics, shown in Figure 1.

v
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Figure 1. 3D Filippov-type slow–fast Chua’s circuit diagram.
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The related mathematical mode can be written as

C1
d u1

d t
=

u2 − u1

R
+ iS − g(u1),

C2
d u2

d t
=iL +

u1 − u2

R
,

L
d iL
d t

=− u2,

(3)

where iS = Im sin(ω t) denotes a sinusoidal AC power source, which represents an external
low-frequency excitation, and RN is the nonlinear resistor designed in Figure 2.
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Figure 2. The design of the nonlinear resistor RN in Figure 1.

Let i be the current flowing through the resistor RN ; the v− i characteristic can be
written as

i = g(vi) =
R7 R19 + R7 R20 + R8 R20

R7 R19 R22
vi −

R20 R11 (R4 + R6)

100 R17 R10 R4 R22
v3

i +
(R15 + R14) R20

10000 R15 R18 R22
v5

i

+
(R1 + R2) R20

R1 R16 R22
Esat sgn (vi),

(4)

By employing the transformations τ = 1
R C2

t, W = Im α R
Esat

, α = C2
C1

, x = u1
Esat

,

y = u2
Esat

, z = R iL
Esat

, a = R7 R19+R7 R20+R8 R20
R7 R19 R22

R, b = − R20 R11 (R4+R6)
100 R17 R10 R4 R22

R E2
sat,

c = (R15+R14) R20
10000 R15 R18 R22

R E4
sat, δ = −α

(R1+R2) R20
R1 R16 R22

R, Ω = ω R C2 and η = R2 C2
L , system (3)

can be expressed in the dimensionless form
ẋ =α (y− x− f (x)) + δ sgn(H(X)) + W sin(Ω τ),

ẏ =x− y + z,

ż =− η y,

(5)

where · = d
d τ , f (x) = a x + b x3 + c x5, X = [x y z]T , H(X) = x, and a, c, W, Ω, η are

positive, while b and δ are negative.
Assuming that W sin(Ω t) is considered a low-frequency excitation, i.e., 0 < Ω� 1,

indicating that the whole excitation changes periodically on a slow timescale in [−W,+W],
System (5), which is one of the slow–fast dynamical systems with two timescales coupling
in the frequency domain, can also be called a Filippov-type slow–fast dynamical system.
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According to the generalized slow–fast analysis method [29], the attractors and their
bifurcations parameterized by the slow variable w = W sin(Ω t) are the core to understand
potential bursting oscillations in (5). However, the discontinuity boundary H(X) = 0
(labeled as Σ) divides the state space of the fast subsystem, denoted as Π(X), into two
smooth sub-regions: R− := {X|x < 0} and R+ := {X|x > 0}, i.e., Π = R− ∪ R+ ∪ Σ. At
the same time, in the smooth sub-regions R− and R+, there are two smooth sub-systems
S− and S+, expressed by

ẋ =α (y− x− f (x)) + δ + w,

ẏ =x− y + z,

ż =− η y,

(X ∈ R+) (6)

and 
ẋ =α (y− x− f (x))− δ + w,

ẏ =x− y + z,

ż =− η y,

(X ∈ R−) (7)

The corresponding vector fields are denoted as F− and F+, respectively.
Meanwhile, for a point XΣ ∈ Σ, using the directional derivatives of H(X) with respect

to the two vector fields on both sides of Σ, expressed as 〈OH, F+〉 = α yΣ + w + δ and
〈OH, F−〉 = α yΣ + w− δ (OH = ∂H(X)

∂X , where 〈·, ·〉 is the vector inner product), we have
the following results on Σ with the assumption that δ < 0.

When 〈OH, F+〉 〈OH, F−〉 > 0, there exist two sewing regions

Σ− = {XΣ|α yΣ + w− δ < 0, α yΣ + w + δ < 0},
Σ+ = {XΣ|α yΣ + w− δ > 0, α yΣ + w + δ > 0},

(8)

where the trajectory may behave in a crossing motion after it contacts with Σ+ or Σ−; when
〈OH, F+〉 〈OH, F−〉 < 0, there exists a sliding region

ΣS = {XΣ|α yΣ + w− δ > 0, α yΣ + w + δ < 0}. (9)

Moreover, by introducing an auxiliary parameter Q ∈ [−1, 1] via Utkin’s equivalent
control method [30], one 2D sliding vector field in ΣS can be computed as

FS =
(F− + F+)

2
+

Q (F+ − F−)
2

, (10)

corresponding to the sliding subsystem{
ẏ =− y + z,

ż =− η y.
(11)

Particularly, Q = −1 and Q = 1, respectively, correspond to two important
sliding boundaries

∂ΣS+ = {XΣ|α yΣ + w + δ = 0},
∂ΣS− = {XΣ|α yΣ + w− δ = 0}.

(12)

For one bursting oscillation in System (5), when the trajectory is in the smooth sub-
region R− (or R+), it will be driven by the smooth subsystem S− (or S+), and its dynamics
evolution process can be explained by the smooth dynamics theory. However, when
the trajectory interacts with the non-smooth interface Σ, unique nonsmooth dynamics in
Filippov systems, including sliding motions as well as nonconventional bifurcations, may
appear and influence the bursting structure.
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3. Theoretical Analyses
3.1. Stability Analysis of the Slow Manifolds

As the vector fields of the fast subsystems (6) and (7) are origin-symmetry, the equi-
librium point can be labelled in a unified form X0 (x0, 0,−x0). Then, the slow manifold is
written as

M = {X0|w− α (x0 + f (x0)) + δ sgn(H(x0)) = 0}, (13)

which consists of three parts:

1. The equilibrium points of S− and S+ in the smooth region are called admissible
equilibrium points, denoted as AE− and AE+, respectively, which can be expressed
as

AE− = {X0|w− α (x0 + f (x0))− δ = 0, x0 < 0},
AE+ = {X0|w− α (x0 + f (x0)) + δ = 0, x0 > 0}.

(14)

2. The equilibrium of the sliding subsystem (11) located in the sliding region is called a
pseudo-equilibrium point, denoted by PE, which can be expressed as

PE := {X0|(0, 0, 0),−δ < w < δ}. (15)

3. The equilibrium points on the sliding boundary ∂ΣS− and ∂ΣS+ are called boundary
equilibria, denoted by BE− and BE+, respectively, which can been expressed as

BE− = {X0|(0, 0, 0), w = δ},
BE+ = {X0|(0, 0, 0), w = −δ}.

(16)

Note that the PE in the sliding region is equivalent to the equilibrium of the sliding
subsystem, so the stabilities of AE± and PE can be characterized by the corresponding
characteristic equations.

For AE±, the corresponding characteristic equation can be written in the
uniform expression

fAE (λ) := λ3 + (κ + 2) λ2 + (κ + η) λ + (κ + 1) η = 0, (17)

in which κ = α (a + 3bx2
0 + 5cx4

0). When (κ + 2) > 0, (κ + 2) (κ + η)− η (κ + 1) > 0 and
η (κ + 1) > 0 are satisfied, the admissible equilibrium is stable.

For PE, the corresponding characteristic equation can be written as

fBE (λ) := λ2 + λ + η = 0, (18)

The eigenvalues of (18) are easy to derive as λBE
1,2 = −0.5± 0.5

√
1− 4 η. It is not

difficult to find that the pseudo-equilibrium is always stable when η > 0.

3.2. Hopf Bifurcations on AE

For a stable AE on a slow manifold, labelled as AE := (x0A, 0,−x0A; w), one important
route to lose its stability is the occurrence of a Hopf bifurcation characterized by a pair of
conjugate complex roots of (17) λAE

1,2 = ρ(w) ± β(w) I crossing through the imaginary axis
and the rest root λAE

3 < 0. By omitting redundant calculations, the exact conditions for
Hopf bifurcations on AE are given in the following.

(κ + 2) (κ + η)− η (κ + 1) = 0,

d ρ(w)

d w
=

(η + v2) (10 c x3
0A + 3 b x0A)

v2 (1− η + v2)
6= 0,

L0 = −
3 (b + 10 c x2

0A) g1 − 6 (3 b + 10 x2
0A)

2 x2
0A g2

g3
6= 0,

(19)
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where v2 = (κ + η) > 0, g1 =
[
−9 v2 + (3 v2 + 1)

√
1− 4 v2 − 1

]
, g2 = 2 v2 +

3
√

1− 4 v2 − 3, g3 = ω
[
18 v4 + 24 v2 + (6 v2 + 1)

√
1− 4 v2 − 1

]
. The first equa-

tion guarantees (17) has a pair of pure imaginary roots, the second equation indicates the
transversality, and the last one represents the nondegeneracy. Furthermore, if L0 < 0, it is a
supercritical Hopf bifurcation; if L0 > 0, it is a subcritical Hopf bifurcation.

3.3. Nonconventional Bifurcations of the Slow Manifold

The two boundary equilibria BE±(X0B; wB) = (0, 0, 0;∓δ) may connect PE with AE
when w = ∓δ. Then, nonconventional bifurcations on the slow manifold, also called
boundary equilibrium point bifurcations (BEBs), may be observed. Now, we take BE− as
an example to exhibit more details.

At the boundary equilibrium BE−, the condition for the codimension-1 bifurcations of
the boundary equilibrium must be satisfied

det (F1−,X(X0B; wB)) = −ηα (1 + a) 6= 0,
d H
d w

(X0B; wB) =
1

α (1 + a)
6= 0,

(20)

in which the first is a non-degenerate condition to ensure that BE− is isolated in the vector
field, while the second is a transversal condition. In this case, BE− connects AE− and PE,
indicating that there is an admissible equilibrium (XA−; w∗) ∈ AE− in the neighborhood of
BE−

F− (XA−; w∗) = 0,

H (XA−; w∗) := xA− < 0.
(21)

and a pseudo-equilibrium point (XP−; w∗) ∈ PE, which can be represented by introducing
an auxiliary parameter q = (1−Q)

2 ∈ [0, 1]

F− (XP; w∗) + q (F+ (XP; w∗)− F− (XP; w∗)) = 0,

H(XP; w∗) = 0.
(22)

Linearizing (21) and (22) at BE− (X∗; w∗), we have

q =
xA−α (1 + a)

2 δ
. (23)

Since xA− < 0, if α (1+a)
2 δ < 0, the admissible equilibrium and the pseudo-equilibrium

may collide into each other at BE− and disappear together, indicating the appearance of
a non-smooth fold bifurcation; if α (1+a)

2 δ > 0, the admissible equilibrium and the pseudo-
equilibrium are located on the opposite side of BE− and transform to each other through
BE−, which means the appearance of a persistence bifurcation. Thus far, Hopf bifurcations
as well as BEBs on the slow manifold have been analyzed.

3.4. Identification and Localization of the Sliding Bifurcations

In the bursting oscillation, the spiking state usually corresponds to the process of the
trajectory following the stable limit cycle, so the potential stable limit cycle can be regarded
as the attractor of the spiking state. When the limit cycle interacts with the discontinuous
interface, according to (10), the sliding vector field can be expressed as

FS =
(F− + F+)

2
+ Q

(F+ − F−)
2

, (24)

When 〈OH, FS〉 = 0, we have
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Q = − (〈OH, F−〉+ 〈OH, F+〉)
(〈OH, F+〉 − 〈OH, F−〉)

. (25)

Then, for the sliding region ΣS and sliding boundary ∂ΣS± on the discontinuity
boundary, the following conclusions are obtained

ΣS := {XΣ| − 1 < Q < 1},
∂ΣS± := {Q = ±1}.

(26)

If we extend the vector field on the interface as

FΣ =
(F− + F+)

2
+ Q

(F+ − F−)
2

, Q ∈ (−∞,+∞), (27)

It is obvious that Q ∈ [−1, 1] corresponds to the above conclusion, and further, in the
nonsmooth crossing region, we have

Σ− := {XΣ|Q < −1},
Σ+ := {XΣ|Q > 1}.

(28)

without losing generality, taking one stable limit cycle interacting with Σ as an example,
there may exist two important contacting points: one is the point at which the trajectory
comes into contact with Σ from the smooth region R+, while the other is the point at
which the trajectory comes into contact with Σ from the smooth region R−, respectively
corresponding to two Q values, denoted as Qre+ and Qre−.

Obviously, one may find that the nonsmooth oscillation structures of the corresponding
stable limit cycle may be directly reflected by the values of Qre+ and Qre−, and moreover,
two curves formed by Qre+ and Qre− in the (w, Q) plane may also draw the nonsmooth
dynamics evolution process via combining Q = ±1, indicating that sliding bifurcations can
also be located and identified by Qre+ and Qre−. Such a numerical method can be called a
nonsmooth returning map since it represents the first interacting points of trajectories of a
limit cycle and discontinuity boundary by discrete points in (w, Q), and more details about
this will be presented in numerical simulations.

4. Numerical Simulations

In this part, we turn to numerical study by using the method of the fourth-order Runge–
Kutta. According to the theory analyses, when setting α = 1, a = 0.2, b = −1.6, c = 1,
δ = −0.1, η = 0.1, obvious bistability can be observed in the fast subsystem, as shown in
Figure 3.

It can be found that the four subcritical Hopf bifurcations, computed as subH2± (w, x) =
(±0.3627,±0.2357) and subH1±(w, x) = (±0.6429,±0.9510), divide the slow manifoldM
into three parts: stable AE1±, stable AE3±, and unstable AE2±. Meanwhile, two persistence
bifurcations PB±, located at BE±(w, x) = (±0.1, 0), connect the stable pseudo-equilibrium
branch AE3±, respectively.
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Figure 3. One parameter bifurcation diagram of the fast subsystem in the (w, x) plane: (a) is the
attractor and their stabilities with sliding bifurcations of LCS presented in the return map (b).

Note that one spiking attractor, i.e., a stable limit cycle LCS represented by two
extremes LCmax

S and LCmin
S , exists between w ≈ −0.6552 and w ≈ 0.6552. Then, the

bistability in Figure 3a will be separated by the unstable limit cycles bifurcated from the
subcritical Hopf bifurcations subHi± (i = 1, 2). Accordingly, the unstable limit cycles can
be approximately found by the dichotomy between an extreme point of the stable limit
cycle and the stable equilibrium point based on attractor basin theory, respectively labelled
as LCU1± and LCU . Furthermore, the two fold bifurcations of limit cycles LPC± occur via
collisions between the spiking attractor LCS and the unstable limit cycles LCU1± bifurcated
from HB1±.

Meanwhile, based on the fact that the limit cycle LCS always contacts with Σ, we draw
two Q curves Qre+ (light gray dashed line) and Qre− (red dashed line) in Figure 3b. The two
curves Qre± interact with sliding boundaries ∂ΣS± at (w, Q) ≈ (±0.6161,∓1), (w, Q) ≈
(±0.5307,∓1) and (w, Q) ≈ (±0.2915,∓1), and obvious variations of nonsmooth structures
may be observed via the Qre± values when LCS passes through these points along with
changing w, indicating that unique sliding bifurcations may appear. We now take the
LCS located in w ∈ [0, 0.6552) as an example to give more details based on the geometry
structures of sliding bifurcations in [30].

When w ∈ [0, 0.2951), both Qre+ and Qre− are located in the regions with |Q| > 1, i.e.
sewing regions, then LCS may directly cross through Σ after it interacts with Σ, behaving in
double crossing nonsmooth oscillation mode in a complete oscillation period, as illustrated
by LCS with w = 0 in Figure 4a. Along with w increases over w = 0.2951, Qre− may enter
into sliding region represented by |Q| < 1 via crossing through ∂ΣS+ (Q = 1) while Qre+
is still in the region Σ− (Q < −1), indicating that one sliding motion amd one crossing
motion can be observed in LCS, as shown in Figure 4b with w = 0.38.
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Figure 4. The limit cycle LCs with respect to different slow variable values: (a) double crossing
mode with w = 0; (b) crossing sliding mode with w = 0.38; (c) double sliding mode with w = 0.58;
(d) single sliding mode with w = 0.63.

Obviously, the nonsmooth oscillation mode has transformed to sliding crossing oscil-
lation mode from double crossing oscillation mode, meaning that one sliding bifurcation
has occurred on sliding boundary ∂ΣS+ when w = 0.2951. In such a sliding bifurcation
structure, the intersection of Qre− and ∂ΣS+ actually represents the geometry structures
that intersecting points of trajectories starting in one smooth subsystem and discontinuity
boundary may continuously pass through the sliding boundary belonging to the opposite
smooth subsystem, referring to the nonconventional bifurcation called crossing-sliding
bifurcation. Therefore, we can say that LCS goes through crossing-sliding bifurcation when
w = 0.2951. Similar bifurcation structure can also be observed at w = 0.5307, i.e., crossing-
sliding bifurcation of LCS also takes place when w continuously increases over w = 0.5307,
leading to that LCS may behave in double sliding oscillation mode from crossing sliding
oscillation mode after w enters into w ∈ [0.5307, 0.6161) since both Qre+ and Qre− are
located in sliding region, as shown in Figure 4c with w = 0.58.

Particularly after w increases over w = 0.6161, Qre− may disappear on sliding bound-
ary ∂ΣS− while Qre+ is still in the sliding region. Then, two sliding motions merge into
one via the geometry structures for which intersecting points of trajectories starting in one
smooth subsystem and discontinuity boundary may continuously approach the sliding
boundary belonging to the same smooth subsystem and disappear ultimately, thus actually
corresponding to the geometry structures of multi-sliding bifurcation [31]. Therefore, we
may say that LCS goes through multi-sliding bifurcation when w = 0.6161, leading to the
transition from double sliding oscillation mode to single sliding oscillation mode, as shown
in Figure 4d with w = 0.63.

According to the symmetry, sliding bifurcations of LCS, which are located by the
six intersecting points of Qre± and sliding boundaries, have been distinguished via the
correspondence between the local structures of Qre± interacting with sliding boundaries
and geometry structures of sliding bifurcations, including two multi-sliding bifurcations
MS± with w = ±0.6161 as well as four crossing sliding bifurcations CS1± with w = ±0.5307
and CS2± with w = ±0.2951, as shown in Figure 3b.
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After clarifying the attractors and bifurcations of the fast subsystem under the given
parameters, it can be found that there are three stable parts on the slow manifoldM, which
are further expressed as follows:

M1S := {X0|X0 ∈ AE1+},
M2S := {X0|X0 ∈ AE3± ∪ PE ∪ BE±},
M3S := {X0|X0 ∈ AE1−}.

(29)

Then, the stable slow manifold MiS(i = 1, 2, 3) and the spiking attractor LCS are
divided into two monostability zones and three bistability zones by four sub-Hopf bifurca-
tions HBi±(i = 1, 2) and two fold bifurcations of limit cycles LPC±; more details are given
in Table 1.

Table 1. Attractors and the corresponding intervals of the slow variable w.

interval of |w| (0.6552, 1] (0.6429, 0.6552)** 1 (0.3627, 0.6429) [0, 0.3627)**

attractors M1S(M3S) MiS (i = 1, 3), LCs LCS LCS,M2S

stability structures monostability bistability monostability bistability
1 The superscript ** indicates bistability.

Based on the results in Table 1, one may find that the excitation amplitude W is an
important parameter that may decide the visiting modes of slow variable w, leading to
different responses of the full system. Meanwhile, the excitation frequency Ω is also an
important parameter that may decide the timescale difference between the fast subsystem
and the slow subsystem. Therefore, we will inspect the full system responses as well as
the induced mechanisms in the following numerical simulations by taking W and Ω as
changing parameters, respectively.

4.1. Influence of Excitation Amplitude

In order to study the responses of the Filippov-type slow–fast dynamical system (5)
with changing excitation amplitude W, we firstly set Ω = 0.001 � 1 and W ∈ (0, 1).
According to the bifurcations in Figure 3 as well as the stability structures in Table 1,
it can be found that there are four different parameter regions: W ∈ (0.6552, 1), W ∈
(0.3627, 0.6552], W ∈ (0.1, 0.3627] and W ∈ (0, 0.1].

Without loss of generality, we take the following four visiting modes of slow variable
mode A: W = 0.8, mode B: W = 0.655, mode C: W = 0.3 and mode D: W = 0.1 as examples
to exhibit more details. The corresponding responses of the waveforms of the full system
are given in Figure 5.
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Figure 5. Waveforms of System (5) with different amplitudes. (a) Mode A with W = 0.8; (b) mode B
with W = 0.655; (c) mode C with W = 0.3; (d) mode D with W = 0.1.

When W = 0.8, as shown in Figure 5a, one typical periodic bursting oscillation
represented by the alternations between two quiescent states QSi (i = 1, 2) and two spiking
states SPi (i = 1, 2) can be observed in the waveform. Based on the generalized slow–fast
analysis method, Figure 6 gives the overlapping of the bursting oscillation and the one
parameter bifurcation diagram in the (w = 0.8 sin(Ωτ), x) plane. It is not difficult to find
that the two spiking states SPi (i = 1, 2) and the two quiescent states QSi (i = 1, 2) are
formed by the trajectory, respectively, moving along with the spiking attractor LCS and
stable admissible equilibrium branchesMiS (i = 1, 3) on the slow manifold.

Furthermore, Figure 6b gives the transition mechanism from SP2 to QS1 and then to
SP1, where the fold bifurcation of limit cycles LPC+ leads to the vanishing of the spiking
attractor LCS with w ≈ 0.6552 via colliding with the unstable limit cycle LCU1+, further
resulting in the performance of the transition from SP2 to QS1. While passing through the
subcritical Hopf bifurcation point HB1+ with w ≈ 0.6429, the trajectory may gradually
tend to the outside spiking attractor LCS after a common slow passage effect [25], since
the slow manifold looses its stability via HB1+, resulting in the transition from QS1 to SP1.
According to that, one periodic bursting oscillation can be named and classified by the
bifurcation that leads to the transition from quiescent state to the following spiking state
as well as the bifurcation that leads to the end of the spiking state [12]. Here, the periodic
bursting oscillation in Figure 5a can be called a symmetrical sub-Hopf/LPC burster.
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Figure 6. Mechanism analysis of bursting oscillation in Figure 5a: (a) slow–fast analysis via overlapping
the bursting oscillation and one parameter bifurcation diagram in Figure 3a; (b) enlarged drawing of
Figure 6a; (c) non-smooth oscillation modes in spiking state SP1 are illustrated via return maps.

Since the spiking states SPi (i = 1, 2) are formed by the trajectories oscillating along
with the spiking attractor LCS, sliding bifurcations presented in Figure 3b unavoidably
affect the oscillation structures of the two spiking states, leading to the fact that the four
nonsmooth oscillation modes in Figure 4 may be observed, as shown in Figure 6c. By
drawing the returning maps Qre± of spiking state SP1, the spiking state SP1 actually
behaves in unique mixed oscillation modes via performing nonsmooth oscillation mode
series: single sliding −→ double sliding −→ crossing sliding −→ double sliding −→
crossing sliding −→ double sliding −→ single sliding.

When W ≤ 0.6552, the two fold bifurcations of limit cycles LPC± are no longer in
the coverage area of w, resulting in the fact that the transition from LCS to MiS (i = 1, 3)
cannot appear. As shown in Figure 5b, Figure 5(c1) with initial values Xin = (2, 2, 2) and
Figure 5(d1) with initial values Xin = (2, 2, 2), only oscillations restricted on the stable cycle
manifold can be observed in the last three cases once the full system trajectory converges to
the spiking attractor LCS. Those oscillations are actually quasi-periodic oscillations that
can be well proved by the closed Poincare maps via taking τ = 2 k π + π/2 (k ∈ N∗) as
the section (see Figure 7).

Particularly, when W ≤ 0.3627, only the bistability consisting of M2S and LCS lays in
the convergence area of w, indicating that coexistence phenomena may be observed in the
full system. For instance, as seen in Figure 5(c1,c2) with W = 0.3, when setting the initial
values to Xin = (2., 2, 2), one slow cycle involving unique stick-stip motion is performed.
When reseting Xin = (0, 0, 0), the quasi-periodic oscillation can be observed, which can be
attributed to the fact that the two subcritical Hopf bifurcations HB2± are unreachable in
this case since they occur at w = ±0.3627 (see Figure 5d).

Furthermore, the two persistence bifurcations PB± on the two boundary equilibrium
points will be unreachable when W ≤ 0.1. For instance, in the last case with W = 0.1, the
slow cycle in Figure 5(c2) degenerates to the unique sticking motion where the full system
only behaves in a fixed point at the pseudo-equilibrium point.
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Figure 7. Overlaps of Poincare mappings with τ = 2 k π + π/2(k ∈ N∗) and the corresponding limit
cycles on the Poincare section.

4.2. Influence of the Excitation Frequency

Based on the above numerical simulations with changing excitation amplitude W, it
can be found that the attractors and their bifurcations are the two key elements needed to
understand the full system responses; in other word, it seems that the full system responses
are entirely determined by whether the bifurcations are reachable or not. However, some
interesting and different results may be observed in the full system by changing the
excitation frequency Ω. In order to account for that, here we take W = 0.655 as an example
to exhibit more details; one quasi-periodic oscillation in Figure 5b is on the stage with
Ω = 0.001.

Figure 8 gives the full system responses in the sense of the transformed phase portraits,
respectively corresponding to Ω = 0.00514, Ω = 0.00515 and Ω = 0.00516, where one
may find that four interesting period-1 solutions are observed with slight changes in the
excitation frequency on the slow timescale.

Firstly, when Ω = 0.00514, two alternations between the stable slow manifoldM2S
and the spiking attractor LCS appear in one period, leading to the fact that the full system
then performs one symmetrical periodic bursting oscillation consisting of two spiking states
and two quiescent states involving the unique stick-slip motions on the slow timescale,
as shown in Figure 8a. Secondly, when Ω = 0.00515, only one alternation betweenM2S
and LCS appears in one period, leading to the two coexisting periodic bursting oscillations,
respectively presented in Figure 8b with initial values Xin = (0, 0, 0) and Figure 8c with
initial values Xin = (2, 2, 2), and only one spiking state and one quiescent state involving
the unique stick-slip motion on slow timescale can be observed. In the last case, when Ω =
0.00516, one symmetrical periodic oscillation only evolving on the spiking attractor is on
the stage, which certainly is not a bursting oscillation since there is no alternation between
the slow manifold and the spiking attractor in the movement, as shown in Figure 8d.

As we mentioned earlier in Figure 3a, there is actually no bifurcation leading to the
transition between spiking attractor LCS and stableM2S; moreover, note that the excitation
frequency indeed does not influence the attractors as well as their bifurcations. That is to
say, the transition mechanism of the periodic bursting oscillations in Figure 8a–c cannot
be explained by the generalized slow fast analysis method. In addition, how to name and
classify these bursting oscillations is a difficult topic since the widely applied classification
method is to use the two important bifurcations leading to the transitions between spiking
states and quiescent states.
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Figure 8. Transformed phase portraits of the four period-1 solutions: (a) symmetrical bursting oscilla-
tion with Ω = 0.00514; (b,c) are the two coexisting periodic bursting oscillation with Ω = 0.00515;
(d) non-bursting period-1 solution with Ω = 0.00516.

5. Conclusions and Discussions

By introducing a low frequency excitation to a modified Chua’s circuit system with a
discontinuous nonlinear resistance, we built a Filippov slow–fast dynamic system. Mean-
while, the attractors as well as their conventional and nonconventional bifurcations of the
fast subsystem have been analyzed by adopting property parameters based on the general-
ized slow–fast analysis method. It is found that the excitation amplitude and frequency are
two important parameters of the system that may play an important role in the dynamical
behaviors of the full system.

Firstly, taking the excitation amplitude as the analysis parameter, four different visiting
modes of slow external excitation with a small enough excitation frequency are given
according to the stability structures induced by conventional bifurcations. Various full
system responses in every visiting mode, such as conventional sub-Hopf/LPC periodic
bursting oscillation, quasi-periodic oscillations on spiking attractor, slow cycle involving
unique stick-slip motion and sticking behavior, are presented in numerical simulations.

Secondly, taking the excitation frequency as the analysis parameter, although it cannot
change the dynamics of the fast subsystem, the quasi-periodic oscillation in Figure 5b
may degenerate to interesting dynamical evolutions from symmetrical periodic bursting
oscillations to two coexisting asymmetrical bursting oscillations and finally to periodic
movement on the spiking attractor via just a slight change of the excitation frequency
within the slow timescale; see in Figure 8. In particular, it should be pointed out that the
generation mechanism of the bursting phenomena in this case cannot be revealed by the
bifurcations of the fast subsystem based on slow–fast decomposition, since there actually is
no bifurcation leading to the transition between the spiking attractor and slow manifold.

Furthermore, our works show that although the unconventional bifurcations such as
sliding bifurcations and persistence, which are unique in Filippov systems, cannot bring
about the transition behavior between fast and slow timescales, they can affect the structure
of bursting oscillatory attractors, such as the variable nonsmooth structures in the spiking
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state and the unique quiescent state involving unique stick-slip motion. Therefore, only
considering the bifurcations leading to the transitions between spiking states and quiescent
states to classify the bursting oscillations in this paper cannot be applicable here. Therefore,
we may say that the insight into slow–fast dynamics in Filippov slow–fast systems is still
an open problem worthy of further discussion.

In previous works [27,32], the change in the excitation frequency can affect the sparse-
ness of the spikes in the spiking states. However, although the change in the excitation
frequency cannot change the stabilities and bifurcations of the attractors in the fast subsys-
tem, our work shows that the excitation frequency is a very important parameter. In our
work, we find that a change in the excitation frequency may lead to the birth of inexplicable
bursting phenomena under the special bistability structure in this paper. How to explain
the generation mechanism of such bursting phenomena will be our main concern in future.
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