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Abstract: In this paper, we study the regularized Huber regression algorithm in a reproducing kernel
Hilbert space (RKHS), which is applicable to both fully supervised and semi-supervised learning
schemes. Our focus in the work is two-fold: first, we provide the convergence properties of the
algorithm with fully supervised data. We establish optimal convergence rates in the minimax sense
when the regression function lies in RKHSs. Second, we improve the learning performance of the
Huber regression algorithm by a semi-supervised method. We show that, with sufficient unlabeled
data, the minimax optimal rates can be retained if the regression function is out of RKHSs.
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1. Introduction

The ordinary least squares (OLS) is an important statistical tool applied in regression
analysis. However, OLS does not perform well when the data are contaminated by the oc-
currence of outliers or heavy-tailed noise. Thus, OLS is suboptimal in the robust regression
analysis and a variety of robust loss functions have been developed that are not so easily
affected by noises. Among them, Huber loss function is usually a popular choice in the
fields of statistics, machine learning and optimization since it is less sensitive to outliers
and can address the issue of heavy-tailed errors effectively. Huber regression was initiated
by Peter Huber in his seminal work [1,2]. Statistical bounds and convergence properties for
Huber estimation and inference have been further investigated in the subsequent works.
See, e.g., [3–9].

Semi-supervised learning has been gaining increased attention as an active research
area in the fields of science and engineering. The original idea of semi-supervised method
can date back to self-learning in the context of classification [10] and then is well devel-
oped in decision-directed learning, co-training in text classification, and manifold learn-
ing [11–13]. Most existing research on Huber regression work is in the supervised frame-
work. Unlabeled data had been deemed useless and thus thrown away in the design of
algorithms. Recently, it has been shown in vast literature that utilizing the additional infor-
mation in unlabeled data can effectively improve the learning performance of algorithms.
See, e.g., [14–18]. In this paper, we focus on the Huber regression algorithm performance
with unlabeled data. By the semi-supervised method, we find that optimal learning rates
are available if sufficient unlabeled data are added in the Huber regression analysis.

In the standard framework of statistical learning, we let the explanatory variable X
take values in a compact domain X in a Euclidean space, and the response variable Y takes
values in the output space Y ⊂ R. This work investigates the application of the Huber loss
that is linked to the following regression model:

Y = f ∗(X) + ε,
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where f ∗ is the regression function and ε is the noise in the regression model. Let ρ be
a Borel probability measure on the product space Z = X × Y . Let ρX and ρ(y|x) and
denote the marginal distribution of ρ on X , and the conditional distribution on Y given
x ∈ X , respectively. In the supervised learning setting, ρ is assumed to be unknown and
the purpose of regression is to estimate f ∗(X) according to a sample D = {(xi, yi)}N

i=1
drawn independently from ρ, where N is the sample size, the cardinality of D. The Huber
loss function `σ(·) is defined as

`σ(u) =
{

u2, if |u| ≤ σ,
2σ|u| − σ2, if |u| > σ,

where σ > 0 is a robustification parameter. Given the prediction function f : X → Y ,
Huber regression searches for a good approximation of f ∗(X) by minimizing the empirical
prediction error with the Huber loss

ED( f ) :=
1
N

N

∑
i=1

`σ(yi − f (xi)) (1)

over a suitable hypothesis space.
In this work, we study the kernel based Huber regression algorithm and the mini-

mization of (1) performs in a reproducing kernel Hilbert space (RKHS) [19]. Recall that
K : X ×X → R is a Mercer kernel if it is continuous, symmetric, and positive semidefinite.
The RKHSHK is the completion of the linear span of the function set {Kx = K(x, ·), x ∈ X}
with the inner product induced by 〈Kx, Ky〉K = K(x, y). The reproducing property is given
by f (x) = 〈 f , Kx〉K. Note that, by Cauchy–Schwarz inequality and [19],

‖ f ‖∞ = sup
x∈X
|〈 f , Kx〉K| ≤ sup

x∈X
‖ f ‖K‖Kx‖K = sup

x∈X

√
K(x, x)‖ f ‖K.

To avoid overfitting, the regularized Huber regression algorithm in the RKHSHK is
given as

fD,λ = arg min
f∈HK

{
ED( f ) + λ‖ f ‖2

K

}
, (2)

where λ > 0 is a regularization parameter.
In this paper, we derive the explicit learning rate of Algorithm (2) in the supervised

learning, which is comparable to the minimax optimal rate of OLS. By a semi-supervised
method, we show that utilizing unlabeled data can conquer the bottleneck that optimal
learning rates for algorithm (2) are only achievable when f ∗ lies inHK.

2. Assumptions and Main Results

To present our main results, we introduce some necessary assumptions. In this section,
we study the convergence of fD,λ to f ∗ in the square integrable space (L2

ρX , ‖ · ‖ρ).
Below, we elaborate on three important assumptions to carry out the analysis. The

first assumption (3) is about the regularity of the regression function f ∗. Define the integral
operator LK : L2

ρX → L2
ρX associated with the kernel K by

LK f :=
∫
X

f (x)KxdρX (x), ∀ f ∈ L2
ρX .

Since K is a Mercer kernel on the compact domain X , LK is compact and positive.
Thus, Lr

K as the r-th power of LK for r > 0 is well defined [20]. Our error bounds are stated
in terms of the regularity of f ∗, given by

f ∗ = Lr
K(h), for some r > 0 and h ∈ L2

ρX . (3)
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The condition (3) characterizes the regularity of f ∗ and is directly related to the
smoothness of f ∗ whenHK is a Sobolev space. If (3) holds with r ≥ 1

2 , f ∗ lies in the space
HK [21].

The second assumption (4) is about the capacity of HK, measured by the effective
dimension [22–24]

N (λ) = Trace((LK + λI)−1LK), for λ > 0,

where I is the identity operator onHK. In this paper, we assume that

N (λ) ≤ Cλ−s for some C > 0, 0 < s ≤ 1. (4)

This condition measures the complexity ofHK with respect to the marginal distribution
ρX . It is typical in the analysis of the performances of kernel methods’ estimators. It is
always satisfied with s = 1 by taking the constant C = Trace(LK). WhenHK is a Sobolev
space Wα(X ),X ⊂ Rn with all derivatives of an order up to α > n

2 , then (4) is satisfied
with s = n

2α [25]. When 0 < s < 1, (4) is weaker than the eigenvalue decaying assumption
in the literature [17,23].

The third assumption is about the conditional probability distribution ρ(y|x) on the
output space Y . We assume that the output variable Y satisfies the moment condition when
there exist two positive numbers t, M > 0 such that, for any integer q ≥ 2,

E(|Y|q|X) ≤ 1
2

q!t2Mq−2. (5)

The assumption (5) covers many common distributions, for example, Gaussian, sub-
Gaussian, and the distributions with compact support [26].

Now, we are ready to present the main results of this paper. Without loss of generality,
we assume sup

x∈X
K(x, x) = 1.

2.1. Convergence in the Supervised Learning

The following error estimate for Algorithm (2) is the first result of this section, which
presents the convergence of Huber regression with fully supervised data and will be proved
in Section 3.

Theorem 1. Define fD,λ by Algorithm (2) with the fully supervised data set D = {(xi, yi)}N
i=1.

Suppose that (3) holds for some r > 0, (4) and (5). If

λ =

{
N−

1
1+s , for 0 < r < 1

2 ,

N−
1

s+2 min{1,r} , for r ≥ 1
2 ,

(6)

then, for any 0 < δ < 1, with probability 1− δ,

‖ fD,λ − f ∗‖ρ ≤ C1 max
{

λmin{r,1}, σ−1λ−
3
2 (log N)4

}(
log

8
δ

)4
, (7)

where C1 is a constant independent of N, δ, or σ.

The above theorem shows that the parameter σ in the Huber loss `σ balances the
robustness of Algorithm (2) and its convergence rates. We can see that, when the Huber loss
function is employed in nonparametric regression problems, the enhancement of robustness
occurs with the sacrifice of the convergence rate of Algorithm (2). Thus, what one needs to
do is to find a trade-off. It is then direct to obtain the following corollary that provides the
explicit learning rates for (2) with a suitable choice of σ.
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Corollary 1. Under the same conditions of Theorem 1, if σ ≥
[
λ−r− 3

2 (log N)4
]
, then with

probability at least 1− δ,

‖ fD,λ − f ∗‖ρ =

 O
(

N−
r

s+1
(
log 8

δ

)4
)

, for 0 < r < 1
2 ,

O
(

N−min{ r
s+2r , 1

s+2}(log 8
δ

)4
)

, for r ≥ 1
2 .

(8)

Remark 1. The above corollary tells us that, when 1
2 ≤ r ≤ 1, Algorithm (2) achieves the error rate

O
(

N−
r

2r+s

)
, which coincides with the minimax lower bound proved in [23,25], and is optimal. We

also notice that the convergence rate can not improve when r > 1. It is referred to as the saturation
phenomenon, which has been found in a vast amount of literature [20,22,25].

2.2. Convergence in the Semi-Supervised Learning

Although optimal convergence rates of the Algorithm (2) were deduced when f ∗

lies in HK (r ≥ 1
2 ) in the previous subsection, the error rate for the case 0 < r < 1

2
needs improvements. In this subsection, we study the influence of unlabeled data on the
convergence of (2) by using semi-supervised data.

Let an unlabeled data set D̃(x) = {x̃i}Ñ
i=1 be drawn independently according to the

marginal distribution ρX , where Ñ is the cardinality of D̃(x). With the fully supervised
data set D = {(xi, yi)}N

i=1, we then introduce the supervised data set associated with Huber
regression problems as D∗ = {(x∗i , y∗i )}

N+Ñ
i=1 , given by

(x∗i , y∗i ) =

{
(xi, N+Ñ

N yi), for 1 ≤ i ≤ N,
(x̃i−N , 0), for N + 1 ≤ i ≤ N + Ñ.

(9)

By replacing D with D∗ in Algorithm (2), we then obtain the output function fD∗ ,λ
with semi-supervised data D∗. The enhanced convergence results are as follows.

Theorem 2. Suppose (3), (4) and (5) hold for 0 < r ≤ 1, r + s ≥ 1
2 , and Ñ ≥ max{N

s+1
2r+s − N +

1, 1}. If λ = N−
1

2r+s , then, with a probability at least 1− δ,

‖ fD∗ ,λ − fρ‖ρ ≤C2 max

{
N−

r
2r+s ,

∆N,Ñ,λ(log N)4

√
λσ

}
log
(

8
δ

)4
, (10)

where

∆N,Ñ,λ =
N + Ñ

λN
+

(
N + Ñ

N

)2

and C2 is a constant independent of N, Ñ, σ, or δ.

Based on the theorem above, we can obtain the improved convergence rate as follows.

Corollary 2. Under the same conditions of Theorem 2, if

σ ≥ N
2r+1

2(2r+s) ∆N,Ñ,λ(log N)4, (11)

then, with probability 1− δ,

‖ fD∗ ,λ − fρ‖ρ = O
(

N−
r

2r+s

(
log

8
δ

)4
)

. (12)
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Remark 2. Corollary 1 shows that, provided no unlabeled data are involved, the minimax optimal
convergence rate for (2) is obtained only in the situation r > 1

2 . When 0 < r ≤ 1
2 , the rate reduces

to O
(

N−
r

s+1

)
. It implies that the regression function f ∗ is assumed to belong toHK for achieving

the optimal rate, which is difficult to verify in practice. In contrast, Corollary 2 tells us that, with
sufficient unlabeled data D̃(x) engaged in Algorithm (2), the minimax optimal rate O

(
N−

r
2r+s

)
is

retained for 0 < r ≤ 1. This removes the strict regularity condition on f ∗.

3. Proofs

Now, we are in a position of proving results stated in Section 2.

3.1. Useful Estimates

First, we will estimate the bound of fD,λ defined by (2). In the sequel, for notational
simplicity, let z = (x, y) and define the empirical operator LK,D : HK → HK by

LK,D :=
1
N

N

∑
i=1
〈·, Kxi 〉KKxi , zi = (xi, yi) ∈ D,

so, for any f ∈ HK, LK,D f =
1
N

N

∑
i=1

f (xi)Kxi . Then, we have the following representation

for fD,λ.

Lemma 1. Define fD,λ by (2). Then, it satisfies

fD,λ = (LK,D + λI)−1 f̂ρ,D + (LK,D + λI)−1WD,λ (13)

where

f̂ρ,D =
1
N

N

∑
i=1

yiKxi , zi = (xi, yi) ∈ D

and

WD,λ =
1
N

N

∑
i=1

[
G′+

(
( fD,λ(xi)− yi)

2

σ2

)
− G′+(0)

]
( fD,λ(xi)− yi)Kxi

with

G(s) =

{
s, if 0 ≤ s ≤ 1,
2s

1
2 − 1, if s ≥ 1.

Proof. Note that `σ(u) = σ2G
(

u2

σ2

)
. Since fD,λ is the minimizer of Algorithm (2), we take

the gradient of the regularized functional onHK to give

1
N

N

∑
i=1

G′+

(
( fD,λ(xi)− yi)

2

σ2

)
( fD,λ(xi)− yi)Kxi + λ fD,λ = 0.

With the fact G′+(0) = 1, it yields

1
N

N

∑
i=1

( fD,λ(xi)− yi)Kxi + λ fD,λ −WD,λ = 0,

which is (LK,D + λI) fD,λ − f̂ρ,D −WD,λ = 0.
The proof is complete.
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Based on the above lemma, we can obtain the bound of fD,λ.

Lemma 2. Under the moment condition (5), with a probability at least 1− δ, there holds

‖ fD,λ‖K ≤ (4M + 5t)λ−
1
2 log

N
δ

. (14)

Proof. Under the moment condition (5), it has been proven in [27] that, with a probability
of at least 1− δ, there holds

max{|y| : there exists an x ∈ X , such that (x, y) ∈ D} ≤ (4M + 5t) log
N
δ

. (15)

By the definition of fD,λ, we have that ED( fD,λ) + λ‖ fD,λ‖2
K ≤ ED(0). Thus,

λ‖ fD,λ‖2
K ≤ED(0) ≤

1
N

N

∑
i=1

`σ(yi) ≤
1
N

N

∑
i=1

y2
i ≤ max

(x,y)∈D
|y|2.

It follows that

‖ fD,λ‖K ≤ λ−
1
2 max
(x,y)∈D

|y|. (16)

This together with (15) yields the desired conclusion.

Furthermore, we see that

‖WD,λ‖K ≤ σ−1 1
N

N

∑
i=1

(‖ fD,λ‖K + |yi|)2 ≤ 2σ−1 1
N

N

∑
i=1

(
‖ fD,λ‖2

K + |yi|2
)

≤ 2σ−1

(
‖ fD,λ‖2

K + max
(x,y)∈D

|y|2
)

. (17)

This in combination with the bounds (15) and (16) provides that, with probability at
least 1− δ,

‖WD,λ‖K ≤ 2(4M + 5t)2
(

λ−1 + 1
)

σ−1
(

log
N
δ

)2
. (18)

3.2. Error Decomposition

To derive the explicit convergence rate of Algorithm (2), we introduce the regularization
function fλ inHK, defined by

fλ := arg min
f∈HK

Els( f ) + λ‖ f ‖2
K

where Els( f ) =
∫
Z ( f (x)− y)2dρ is the expected risk associated with the least squares loss.

It is direct to verify that

fλ = (LK + λI)−1LK f ∗, (19)

so fλ − f ∗ = −λ(LK + λI)−1 f ∗. By the work in [20], we know that under the regularity
assumption (3) with r > 0,

‖ fλ − f ∗‖ρ ≤
{
‖h‖ρλr, when 0 < r ≤ 1,
‖h‖ρλ, when r > 1,

(20)
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and

‖ fλ‖K ≤
{
‖h‖ρλr− 1

2 , when 0 < r < 1/2,
‖h‖ρ, when r ≥ 1/2.

(21)

Now, we state two error decompositions for fD,λ − fλ. By (19), we have

−LK,D fλ − λ fλ = −LK,D fλ + LK fλ − LK f ∗.

It implies

− fλ = (LK,D + λI)−1[(LK − LK,D) fλ − LK f ∗], (22)

which leads the decomposition by (13),

fD,λ − fλ =(LK,D + λI)−1(LK − LK,D) fλ + (LK,D + λI)−1
(

f̂ρ,D − LK f ∗
)

+ (LK,D + λI)−1WD,λ. (23)

In the sequel, we denote

BD,λ = ‖(LK,D + λI)−1(LK + λI)‖,

CD,λ = ‖(LK + λI)−
1
2 (LK − LK,D)‖,

GD,λ = ‖(LK + λI)−
1
2 ( f̂ρ,D − LK f ∗)‖K.

Noting that, for any f ∈ HK,

max{‖ f ‖ρ,
√

λ‖ f ‖K} ≤ ‖(LK + λI)
1
2 f ‖K (24)

by the fact ‖ f ‖ρ = ‖L
1
2
K f ‖K [21], one obtains a bound for the sample error ‖ fD,λ − fλ‖ρ by

the decomposition (23) above.

Proposition 1. Define fD,λ by (2). Then, there holds

‖ fD,λ − fλ‖ρ ≤ BD,λCD,λ‖ fλ‖K + BD,λGD,λ + λ−
1
2BD,λ‖WD,λ‖K. (25)

Proof. Let I1, I2, and I3 denote the three terms on the right-hand side of (23), respectively.
Consider theHK norm of

(LK + λI)1/2( fD,λ − fλ) = (LK + λI)1/2(I1 + I2 + I3).

Then,

‖(LK + λI)1/2 I1‖K

≤‖(LK + λI)1/2(LK,D + λI)−1/2‖‖(LK,D + λI)−1/2(LK + λI)1/2‖
× ‖(LK + λI)−1/2(LK − LK,D)‖‖ fλ‖K

≤BD,λCD,λ‖ fλ‖K.

Similarly,

‖(LK + λI)1/2 I2‖K

≤‖(LK + λI)1/2(LK,D + λI)−1(LK + λI)1/2‖‖(LK + λI)−1/2( f̂ρ,D − LK f ∗)‖K

≤BD,λGD,λ,
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and

‖(LK + λI)1/2 I3‖K

≤‖(LK + λI)1/2(LK,D + λI)−1(LK + λI)1/2‖ 1√
λ
‖WD,λ‖K

≤λ−1/2BD,λ‖WD,λ‖K.

With the above bounds, we use (24) to obtain the statement.
The proof is finished.

3.3. Deriving Main Results

To prove our main results, we need to bound the quantities BD,λ, CD,λ,GD,λ by the
following probability estimates.

Lemma 3. With a confidence of at least 1− δ, there holds

BD,λ ≤ 2

(
2AD,λ log 2

δ√
λ

)2

+ 2, CD,λ ≤ 2AD,λ log
2
δ

, and

GD,λ ≤ 4(M + t)AD,λ log
2
δ

where AD,λ = 1
N
√

λ
+

√
N (λ)√

N
.

These inequalities are well studied in the literature and can be found in [17,18].

Proof of Theorem 1. We can decompose ‖ fD,λ − f ∗‖ρ as the sample error ‖ fD,λ − fλ‖ρ and
the approximation error ‖ fλ − f ∗‖ρ. As stated in (20), ‖ fλ − f ∗‖ρ ≤ λr‖h‖ρ for 0 < r ≤ 1.
Thus, we just estimate ‖ fD,λ − fλ‖ρ by Proposition 1.

By Lemma 3 and the bound (18), with probability at least 1− 4δ, the following bounds
hold simultaneously:

BD,λCD,λ‖ fλ‖K ≤ 4

[(
2AD,λ√

λ

)2
+ 2

]
AD,λ

(
log

2
δ

)3
‖ fλ‖K,

BD,λGD,λ ≤ 8(M + t)

[(
2AD,λ√

λ

)2
+ 2

]
AD,λ

(
log

2
δ

)3
,

and

λ−
1
2BD,λ‖WD,λ‖K ≤ 8(4M + 5t)2

[(
2AD,λ√

λ

)2
+ 2

]
λ−

3
2 σ−1

(
log

N
δ

)4
.

Scaling 4δ to δ, by (20) and the estimates above, we have with confidence at least 1− δ

‖ fD,λ − f ∗‖ρ ≤ ‖ fD,λ − fλ‖ρ + ‖ fλ − f ∗‖ρ

≤ 24(4M + 5t)2

[(
2AD,λ√

λ

)2
+ 2

]
[
(AD,λ +AD,λ‖ fλ‖K)

(
log

8
δ

)3
+ λ−

3
2 σ−1

(
log

4N
δ

)4
]
+ ‖h‖ρλr. (26)
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By (4),

AD,λ =
1

N
√

λ
+

√
N (λ)√

N
≤ 1

N
√

λ
+

√
Cλ−s

N
≤ (
√

C + 1)
λ−

s
2

√
N

(
λ

s−1
2
√

N
+ 1

)
.

The choice (6) of λ results in the fact that

λ−
s
2

√
N
≤
{

λ−
s
2+

1+s
2 = λ

1
2 , when 0 < r < 1

2 ,
λ−

s
2+

s
2+min{1,r} = λmin{1,r}, when r ≥ 1

2 ,
(27)

λ
s−1

2
√

N
≤
{

λ
s−1

2 + 1+s
2 , when 0 < r < 1

2
λ

s−1
2 + s

2+min{1,r}, when r ≥ 1
2

}
≤ λs ≤ 1, (28)

and

λ−s−1

N
≤
{

λ−s−1λs+1 = 1, when 0 < r < 1
2

λ−1−sλs+2 min{r,1} = λmin{2r−1,1}, when r ≥ 1
2

}
≤ 1. (29)

Collecting the above estimates,

(AD,λ√
λ

)2
≤ (
√

C + 1)2 λ−s−1

N

(
λ

s−1
2
√

N
+ 1

)2

≤ 4(
√

C + 1)2 (30)

and

AD,λ ≤
{

λ
1
2 , when 0 < r < 1

2 ,
λmin{1,r}, when r ≥ 1

2 .
(31)

Putting (21), (30) and (31) into (26), we can get (7) with

C1 = 96(4M + 5t)2[(
√

C + 1)2 + 1](2 + ‖h‖ρ).

The proof is complete.

Proof of Theorem 2. Similar as the proof of (25), there holds

‖ fD∗ ,λ − fλ‖ρ ≤ BD∗ ,λCD∗ ,λ‖ fλ‖K + BD∗ ,λGD∗ ,λ + λ−
1
2BD∗ ,λ‖WD∗ ,λ‖K. (32)

Note that, by (9),

f̂ρ,D∗ =
1

N + Ñ

N+Ñ

∑
i=1

y∗i Kx∗i
=

1
N + Ñ

N

∑
i=1

N + Ñ
N

yiKxi =
1
N

N

∑
i=1

yiKxi = f̂ρ,D.

It means GD∗ ,λ = GD,λ. Furthermore, similar to (16), we have

‖ fD∗ ,λ‖2
K ≤

N + Ñ
Nλ

max
(x,y)∈D

|y|2.

In addition, by (17),

‖WD∗ ,λ‖K ≤ σ−1 1
N + Ñ

N+Ñ

∑
i=1

(‖ fD∗ ,λ‖K + |yi|)2 ≤ 2σ−1 1
N + Ñ

N+Ñ

∑
i=1

(
‖ fD∗ ,λ‖2

K + |y∗i |2
)

≤ 2σ−1

(
‖ fD∗ ,λ‖2

K +

(
N + Ñ

N

)2

max
(x,y)∈D

|y|2
)

.
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Then, by (15), with confidence at least 1− δ,

‖WD∗ ,λ‖K ≤ 2(4M + 5t)2

(
N + Ñ

Nλ
+

(
N + Ñ

N

)2)
σ−1

(
log

N
δ

)2
.

This together with Lemma 3 yields that, with a confidence of at least 1− 4δ,

BD∗ ,λCD∗ ,λ‖ fλ‖K ≤ 4

[(
2AD∗ ,λ√

λ

)2
+ 2

]
AD∗ ,λ

(
log

2
δ

)3
‖ fλ‖K,

BD∗ ,λGD∗ ,λ = BD∗ ,λGD,λ ≤ 8(M + t)

[(
2AD∗ ,λ√

λ

)2
+ 2

]
AD,λ

(
log

2
δ

)3
,

and

λ−
1
2BD∗ ,λ‖WD∗ ,λ‖K ≤ 8(4M + 5t)2

[(
2AD∗ ,λ√

λ

)2
+ 2

]
∆N,Ñ,λλ−

1
2 σ−1

(
log

N
δ

)4
.

Scaling 4δ to δ, by (32) and (20), then, with a confidence at least 1− δ,

‖ fD∗ ,λ − f ∗‖ρ ≤ ‖ fD∗ ,λ − fλ‖ρ + ‖ fλ − f ∗‖ρ

≤ 24(4M + 5t)2

[(
2AD∗ ,λ√

λ

)2
+ 2

]
[
(AD,λ +AD∗ ,λ‖ fλ‖K)

(
log

8
δ

)3
+ ∆N,Ñ,λλ−

1
2 σ−1

(
log

4N
δ

)4
]
+ ‖h‖ρλr. (33)

Thus, to prove Theorem 2, we need the estimates as follows:
Since r + s > 1

2 and λ = N−
1

2r+s ,

λ
s−1

2
√

N
= N

1−2(r+s)
2(2r+s) ≤ 1,

λ−
s
2

√
N

= λr.

Then, by (4),

AD,λ =
1

N
√

λ
+

√
N (λ)√

N
≤ 1

N
√

λ
+

√
Cλ−s

N
≤ (
√

C + 1)
λ−

s
2

√
N

(
λ

s−1
2
√

N
+ 1

)
≤ (
√

C + 1)λr

and

AD∗ ,λ =
1

(N + Ñ)
√

λ
+

√
N (λ)√

N + Ñ
≤ 1

(N + Ñ)
√

λ
+

√
Cλ−s

(N + Ñ)

≤ (
√

C + 1)
λ−

s
2

√
N + Ñ

(
λ

s−1
2

√
N + Ñ

+ 1

)
≤ 2(
√

C + 1)
λ−

s
2

√
N + Ñ

.

Thus, (AD∗ ,λ√
λ

)2
+ 1 ≤ 4(

√
C + 1)2 λ−s−1

N + Ñ
+ 1 ≤ 4(

√
C + 1)2 + 1.

Furthermore, by (21),

AD∗ ,λ‖ fλ‖K ≤

2(
√

C + 1)‖h‖ρ
λ−

s
2 +r− 1

2√
N+Ñ

, when 0 < r < 1/2,

2(
√

C + 1)‖h‖ρ
λ−

s
2√

N+Ñ
, when r ≥ 1/2.
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By the restriction Ñ ≥ max{N
s+1
2r+s − N + 1, 1}, we conclude that

AD∗ ,λ‖ fλ‖K ≤ 2(
√

C + 1)‖h‖ρλr, for r > 0.

Putting the estimates above into (33) yields that the desired conclusion (10) with

C2 = 96(4M + 5t)2[(
√

C + 1)2 + (
√

C + 1) + 1](2 + ‖h‖ρ).

The proof is finished.

4. Numerical Simulation

In this part, we carry out simulations to verify our theoretical statements. We employ
the mean squared error of a testing set for the comparison. We generate N = 500 labeled
data {xi, yi}500

i=1 by the regression model yi = f ∗(xi) + ε, where f ∗(x) = x(1− x), and the
random inputs xi’s are independently drawn according to the Normal distribution N (0, 1),
and ε is the independent Gaussian noise N (0, 0.005). We also generate Ñ = 200 unlabeled
data {x̃i}200

i=1 with x̃i’s drawn independently according to the uniform distribution on [0, 1].
We choose the Gaussian kernel K(x, u) = exp{−|x − u|2/2}, h = 5 and regularization
parameter λ = 0.7. Algorithm 1 shows the mean squared error of Algorithm (1) with
the training data set D = {xi, yi}500

i=1. Algorithm 2 shows the mean squared error of Algo-
rithm (2) with the semi-supervised data set D∗ by (9). Algorithm (2)’ s error is obviously
smaller than Algorithm (1) if 20 unlabeled data are added into the training data. When we
add more unlabeled data from 20 to 200, Algorithm (2)’ s curve decreases continuously.
These experimental results coincide with our theoretical analysis through the following
Figure 1.

Figure 1. The number of unlabeled data.
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5. Discussion

Unlabeled data are ubiquitous in a variety of fields including signal processing, privacy
concerns, feature selection, and data clustering. For the applications of Huber regression
that have robustness, we adopted a semi-supervised learning method to our regularized
Huber regression algorithm. We derived the explicit learning rate of algorithm (2) in the
supervised learning, which was comparable to the minimax optimal rate of OLS. By a
semi-supervised method, we showed that an inflation of unlabeled data could improve
learning performance for Huber regression analysis. It suggested that using the additional
information of unlabeled data could extend the application of Huber regression.

Author Contributions: Conceptualization, Y.W.; Funding acquisition, C.P.; Methodology, B.W. and
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