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Abstract: The fractional model of diffusion equations is very important in the study of oil pollution 
in the water. The key objective of this article is to analyze a fractional modification of diffusion 
equations occurring in oil pollution associated with the Katugampola derivative in the Caputo 
sense. An effective and reliable computational method q-homotopy analysis generalized transform 
method is suggested to obtain the solutions of fractional order diffusion equations. The results of 
this research are demonstrated in graphical and tabular descriptions. This study shows that the ap-
plied computational technique is very effective, accurate, and beneficial for managing such kind of 
fractional order nonlinear models occurring in oil pollution. 
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1. Introduction 
Fractional derivatives are a particular aid of applied mathematics that are related to 

non-integer order derivatives and integrals. Recently, pioneering work in this notable 
branch has been carried in several scientific, engineering, and in different another crucial 
fields. In fact, the new characteristics of this notable branch are affected by distinct useful 
applications, for example in fluid flow problems, electrochemistry, plasma physics, math-
ematical biology, turbulence, image processing, astrophysics, controlled thermonuclear 
fusion, control theory, and many more. In view of the aforementioned facts, it is notewor-
thy that the derivatives and integral of fractional orders have appeared as a pivotal novel 
mathematical key for solving the several issues in science and engineering fields. The sig-
nificant advantage of fractional calculus is about to model the physical problems having 
whole memory effect. Miller and Ross [1] wrote a book about the introduction to fractional 
calculus and differential equations of fractional order. Podlubny [2] provided detailed in-
formation about arbitrary order differential equations. Caputo [3] reported about funda-
mental properties of fractional calculus. Singh [4] studied a blood alcohol model of frac-
tional order. Caputo and Fabrizio [5] explained new features of fractional derivative. Ca-
puto and Fabrizio [6] discussed about singular kernels associated to fractional derivatives. 
Singh et al. [7] investigated a computational scheme for local fractional transport equa-
tion. Singh et al. [8] examined a reliable computational technique for local fractional Pois-
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son equation arising in fractal media. Yang [9] analyzed a novel integral transform oper-
ator to solve heat diffusion equation. Losada and Nieto [10] discussed about the charac-
teristic of novel non-integer order derivative without singular kernel. Atangana and Ba-
leanu [11] investigated novel arbitrary order derivative having nonlocal and non-singular 
kernel. Kumar et al. [12] studied an advanced computational scheme with convergence 
analysis for Lienard’s equation of arbitrary order. 

Nonlinear partial differential equations (NPDE) play a very significant role in several 
fields, for example ocean engineering, fluid mechanics, astrophysics, plasma physics, 
solid-state physics, optical fiber, ocean ecology, metrology, and wave motion. Oil pollu-
tion occurs through the freeing of a fluid oil hydrocarbon within ocean surroundings due 
to human activities, for example freeing of petroleum without refining from drilling rigs, 
tankers, and offshore platforms, in addition to piping that may produce critical destruc-
tion to the marine ecological environment. Hence, to protect the natural shoreline envi-
ronmental structure, it is important to exactly estimate the expand range of oil spills in 
relation to the advance stage correction against a calamity. By solving the proper equa-
tions governing the flow field additionally to the diffusion phenomenon, the zone of oil 
expanding can be expected numerically. The logical key option is likely a diffusion equa-
tions where detail regarding the quantity of oil, which outreaches the ocean outlet, can be 
considered as initial boundary conditions for modeling the oil diffusion in addition to 
adaptation in the waters. 

To discuss oil pollution, we examine a general linear diffusion equation given as fol-
lows: 

,2
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
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

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 (1)

where   represents the concentration, d  indicates diffusion coefficient, and a  is a 
real constant. The generalization of Equation (1) becomes the Allen–Cahn (AC) equation. 
The AC equation is a parabolic partial differential equation which represents crucial nat-
ural physical aspects. It has been broadly applied to analyze many physical problems, 
such as fluid mechanics, quantum mechanics, chemical kinematics, optical fibers, propa-
gation of shallow-water waves, and in other important field of science and engineering. 
To examine phase transitions and interfacial dynamics in the material science branch, the 
AC equation is considered a fundamental model for study the diffuse interface system. 
The AC equation is also employed to analyze phase separation into binary alloys which 
can be represented as a reaction–diffusion equation in case of material sciences and as a 
convection–diffusion equation in the case of fluid dynamics. Hariharan [13] discussed a 
reliable Legendre wavelet associate approximation technique for Newell–Whitehead with 
AC equations. Allen and Cahn [14] studied a microscopic concept for antiphase boundary 
motion in addition to its usefulness to antiphase domain coarsening. Shah et al. [15] ex-
amined a numerical algorithm to solve AC equation. Chen et al. [16] investigated an adap-
tive finite element technique for AC equation. Ahmad [17] studied about solutions of dif-
fusion equations occurring in oil pollution. Bulut [18] discussed about few new exponen-
tial functions to the AC equation. Manafian [19] investigated about an optimal Galerkin-
homotopy asymptotic technique employed for solving nonlinear second order bvps. 
Shahriari and Manafian [20] examined a reliable technique to solve the dirac differential 
operator in fractional sense. Dehghan et al. [21] explained homotopy analysis algorithm 
to solve nonlinear partial differential equations of fractional order. 

Thus, the diffusion equation which is expressed by Equation (1) related with frac-
tional order derivative would be an advancement to the diffusion equation. Since non-
integer order derivatives are very crucial in the analysis of mathematical modeling of 
physical problems, in this article, we study the fractional order modification of diffusion 
equation which is represented by Equation (1). The diffusion equation of non-integer or-
der is attained from classical order diffusion equation by changing the first order time 
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derivative by the Katugampola arbitrary derivative in the Caputo sense [22]. The diffusion 
Equation (1) associated to the Katugampola derivative in the Caputo type is expressed as 
follows: 

,2
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 adDKC
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  (2)

There are many numerical as well as analytical techniques to investigate aspects of 
such types of models. Liao [23,24] suggested an analytic scheme familiar as homotopy 
analysis method (HAM) to control nonlinear physical problems. El-Tawil and Huseen 
[25,26] have analyzed a modification of HAM familiar as q-homotopy analysis method (q-
HAM) to represent behavior of non-linear real world problems. Since traditional analytic 
methods require additional computer memory as well as extra computing time, for con-
trolling such kinds of limitations, analytical techniques require to be mixed with classical 
integral transforms to consider behavior of nonlinear mathematical models occurring in 
scientific and technological fields [27–30]. 

The key objective of this paper is to investigate a new numerical method that is q-
homotopy analysis generalized transform method i.e., q-HAGTM for solving nonlinear 
fractional order diffusion equation. It is a strong amalgamation of q-HAM, generalized 
Laplace transform (GLT) in addition to homotopy polynomials. The supremacy of the 
suggested method is expressed by merging two powerful computing schemes to analyze 
nonlinear fractional order differential equations. Moreover, q-HAGTM carry an asymp-
totic parameter, say, n, which ensures convergence of series solution of physical models. 
The proposed method is a new study for fractional diffusion equation appearing in oil 
pollution associated with the Caputo–Katugampola fractional derivative. As per our best 
knowledge, this study has not been discussed in the literature. 

In this paper, we study fractional diffusion equation occurring in oil pollution by 
applying q-HAGTM. This paper is organized as follows: Section 2 demonstrates about 
generalized Laplace transform and fractional derivatives. Section 3 presents the details 
about q-HAGTM. Section 4 imparts the numerical results and new aspects of fractional 
diffusion equation in three separate cases. Lastly, Section 6 elaborates the conclusion of 
the paper. 

2. Mathematical Preliminaries 
Important definitions and fractional operators [2,22,31–35] which are utilized in this 

manuscript are expressed in the following manner 

Definition 1. The Caputo derivative [2] of order 10    of the function )(  is given 
as 
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Definition 2. The Caputo–Hadamard derivative [31] of order 10    of the function 
)( is given as 
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where   is differential operator and is defined by .



d
d

  
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Definition 3. The Katugampola derivative [22] in the Caputo type of order 10    of 
the function )(  is given as follows 
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where   is differential operator and is defined by .1


 

d
d  

If we set ,1 then the derivative given by Equation (5) reduces in the Caputo derivative 
with order .  If   tens to 0, then the derivative defined by Equation (5) reduces to the Caputo–
Hadamard non-integer order derivative with order .  

Definition 4. Suppose that Ra ),[:,  be a real valued function in such manner 
that )( is continuous and 0)('   on ).,[ a  If the GLT [32] of )(  exists, 
then 

(ݏ){(ߠ)ߦ}టܮ = න ݁ି௦൫ట(ఏ)ିట(௔)൯
∞

௔
(6) ,ߠ݀(ߠ)′߰(ߠ)ߦ

where s  denotes the GLT operator. 
If we set  )(  and 0a  in Equation (6), then GLT reduces in standard LT but if 

we set 





)(  and 0a  in this case the GLT converts in to the  LT [33]. 

In this paper, we consider the GLT with 





)(  and 0a  by 

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LT. The 


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LT is defined by 
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The 

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LT of the Katugampola derivative in the Caputo sense [30,33] is given as 

follows 
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(8)

3. Fundamental Plan of q-Homotopy Analysis Generalized Transform Method  
(q-HAGTM) 

To discuss the principal scheme of proposed method, we study an NPDE associated 
to the Katugampola derivative as follows 

,1),,(),(),(),(, nnfNMDKC  
  (9)
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where 

,D  denotes the fractional derivative in the Caputo–Katugampola sense, M  

and N  represent the general differential operators; additionally, ),( f  denotes the 
source term. 

First of all, we employ GLT on Equation (9), where we have 

)].,([)],([)],([)],([ , 
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(10)

Next, by utilizing differentiation formula of GLT, we obtain 
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Dividing both the sides of Equation (11) by s  and simplifying, we obtain 
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Now we represent an operator given as follows 
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Here, ]/1,0[ nq  and );,( q  represents a real function. Next, we set a ho-
motopy in the subsequent approach 
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where ,1n  0),( H  denotes an auxiliary function, 0  indicates auxiliary 
parameter, ),(0   represents an initial guess of ),(   and );,( q  denotes an 

unknown function. When we put 0q  and ,1
n

q   we have the following outcomes 
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Thus, when q  tends 0 to 
n
1

, );,( q  changes from ),(0  t to the solution 

).,(   Expanding );,( q  in a series expression by utilizing Taylor’s theorem 
about parameter q , we obtain 
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Here, the value of ),(  l  is given as follows 

.);,(
!
1),( 0


 ql

l

l q
q

l
  (17)



Mathematics 2022, 10, 3827 6 of 21 
 

 

Now we select the value of ),(0  , the parameters ,n  and ),( H  in such 

a way that Equation (14) converges at 
,
1
n

q  , then we have 
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The above is one of solution of the original nonlinear equation. The governing equa-
tion can be attained from Equation (14) by taking in consideration the solution given in 
(18). 

Now we set the vectors as follows 

}.,...,,{ 10 ll    (19)

We differentiate Equation (14) l -times about q  and then divide by !l  further tak-
ing ,0q  then deformation equation of l th-order is given as follows 

).(),()],(),([ 11   lllll HL 



  (20)

Next, by exerting the inverse Laplace operator, we obtain 
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The value of )( 1 ll   is represented in the following way 
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When we set ,1n  then q-HAGTM solution converts in to HAGTM solution. 

4. Numerical Solution of Fractional Diffusion Equations Occurring in Oil Pollution 
Here, we discuss numerical outcomes of fractional order diffusion equation and AC 

equations occurring in oil pollution by applying the proposed q-HAGTM. 

Example 1. First, we study time-fractional diffusion equation as follows 
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with the initial condition 

.1),1(,1),0(,0)0,(     ee  (25)

The exact solution of Equation (24) is given as follows 

).1(cos),(   e  (26)
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Since the integer order mathematical model does not impart past memory of the model, for 
considering the whole memory of diffusion equation we replace the classical derivative of Equation 
(24) by the Caputo–Katugampola fractional order derivative, then we have 
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with initial condition given by Equation (26). 
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Now utilizing Equation (8) and Equation (26), we have 

  .0cos),(1),( 2

2














 







  L

s
L  (29)

Next, we consider an operator represented in the following way 
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Next the deformation Equation of thl  order is given as follows 
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Now by exerting inverse GLT on Equation (32), we have 
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and so on. 
The series solution of Equation (24) is represented in the following approach 
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Now substituting values of Equations (25), (34), and (35) in Equation (36), we have 
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
































































n

nn
 (37)

which a required solution of Equation (24) in series form. 

Example 2. Next, we study the time-fractional Allen–Cahn equation as follows 

),1(),(),( 2
2

2















  (38)

with the initial condition 

).3536.0tanh(5.05.0)0,(    (39)

The exact solution of Equation (38) is given as follows 

).75.03536.0tanh(5.05.0),(    (40)

Since integer order mathematical model does not impart past memory of the model, for con-
sidering the whole memory of AC equation, we replace the classical derivative of Equation (38) by 
the Caputo–Katugampola fractional order derivative, then we have 

),1(),(),( 2
2

2
, 





 




DKC  (41)

with the initial condition given by Equation (39). 
Now by employing GLT on both the sides of Equation (41), we have 

  .)1(),(),( 2
2

2
,














 










  LDL KC  (42)

Now utilizing Equation (8) and Equation (39), we have 

  .0)1(),(1)0,(),( 2
2

2














 







  L

ss
L  (43)

Next, we consider an operator described in the subsequent manner 

,0);,();,();,(1

)0)(;,(1)];,([)];,([

3
2

2
















 

qqqL
s

q
s

qLqN

















 
(44)

and the value of )( 1 ll   is as follows 

.),(
),(1)0,(1][)( 1

3
12

1
2

11 


















  


 ll

ll
lll AL

ssn
L 









   (45)
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Further, the deformation Equation of thl  order is given as follows 

).()],(),([ 11   lllllL 



  (46)

Next by applying the inverse GLT on Equation (46), we obtain 

 .)(),(),( 1
1

1 


  lllll L 



  (47)

Now, by putting ,...3,2,1l  we have 

   
 

,
)1(

1

)3536.0(tan125.0)3536.0(tan375.0)3536.0tanh(375.0)125.0(
)3536.0tanh(5.05.0)3536.0tanh()3536.0(sec12503296.0

),(
32

2

1








































hh
h



 (48)

and so on. 
The series solution of Equation (38) is given in the following approach 

...),(1),(1),(),( 2

2

10 





 
nn

 (49)

Now substituting values of Equation (39) and Equation (48) in Equation (49), we have 

   
 

...,
)1(

1

.
)3536.0(tan125.0)3536.0(tan375.0)3536.0tanh(375.0)125.0(

)3536.0tanh(5.05.0)3536.0tanh()3536.0(sec12503296.0

)3536.0tanh(5.05.0),(

32

2










































hh
h

n


 
(50)

which is a required solution of Equation (38) in the series form. 

Example 3. Finally, we study the time-fractional Allen–Cahn equation given as follows 

,10,10,),(),( 3
2

2








 





  (51)

with the initial condition 

  
   ,)848528.03.0(416667.0tanh13024

)848528.03.0(416667.0tanh112)0,(






  (52)

The exact solution of Equation (51) is represented as 

  
  .)848528.08.13.0(416667.0tanh13024

)848528.08.13.0(416667.0tanh112),(






  (53)

Since the standard order mathematical model does not carry past memory of the model, for 
analyzing the complete memory of AC equation, we change the integer derivative of Equation (51) 
by the Caputo–Katugampola fractional order derivative, then we have 
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,),(),( 3
2

2
, 




 



DKC  (54)

with initial condition given by Equation (52). 
Now by exerting generalized LT both sides of Equation (54), we obtain 

  .),(),( 3
2

2
,














 










  LDL KC  (55)

Now utilizing Equation (8) and Equation (52), we have 

  .0),(1)0,(),( 3
2

2














 







  L

ss
L  (56)

Further, we consider an operator as given as follows 

,ߴ)߮]ܰ ;ߠ [(ݍ = ఏആܮ

ఎ
,ߴ)߮] ;ߠ [(ݍ −

1
ݏ

,ߴ)߮ ;ߠ  (0ା)(ݍ

−
1
ఓݏ ఏആܮ

ఎ
ቈ
߲ଶ߮(ߴ, ;ߠ (ݍ

ଶߴ߲ + ,ߴ)߮ ;ߠ (ݍ − ߮ଷ(ߴ, ;ߠ ቉(ݍ = 0, 
(57)

and the value of )( 1 ll   is given as follows 

(௟ିଵߦ)௟߆ = ఏആܮ

ఎ
[௟ିଵߦ] − ቀ1 −

௟ߢ

݊
ቁ

,ߴ)ߦ 0)
ݏ

−
1
ఓݏ ఏആܮ

ఎ
ቈ
߲ଶߦ௟ିଵ(ߴ, (ߠ

ଶߴ߲ + ,ߴ)௟ିଵߦ (ߠ − ଷܣ
௟ିଵ቉. (58)

Next, the deformation Equation of thl  order is given in the subsequent way 

).()],(),([ 11   lllllL 



  (59)

Now by employing the inverse generalized LT on Equation (59), we obtain 

 .)(),(),( 1
1

1 


  lllll L 



  (60)

Then, by putting ,...3,2,1l  we get the values of )...,,(),,( 21  in a similar way 
as discussed in Examples 1 and 2. 

The series solution of Equation (51) is represented as follows 

...),(1),(1),(),( 2

2

10 





 
nn

 (61)

which a required solution of Equation (51) in the series form. 
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5. Numerical Simulation and Discussions 
Here, we analyze numerical outcomes for diffusion Equation and AC Equation with 

the Caputo–Katugampola derivative for several values of   and other effective pa-
rameters by using Maple 13. Figure 1 reveals the behavior of the q-HAGTM solution 

),(   when 1,1  nh  and 1  for diffusion Equation (27). Figure 2 narrates 
response of exact solution ),(   when 1,1  nh  and 1  for diffusion Equa-
tion (27). Figure 3 demonstrates error between approximate solutions and exact solutions. 
Figure 4 represents the response of the q-HAGTM solution ),(   for diverse values of 
arbitrary order   at .1  Figure 5 yields q-HAGTM solution ),(   for numerous 
values of non-integer order   at .1  Figure 6 shows the  curve for several val-
ues of order .  Figure 7 reveals the n curve for different values of order .  Figure 8 
reveals the q-HAGTM solution ),(   for AC Equation (41) when 1,1  nh , and 

1  . Figure 9 shows the exact solution ),(   for AC Equation (41) when 
1,1  nh , and ߤ = 1. Figure 10 represents the error between approximate solutions 

and exact solutions for AC Equation (41) when 1,1  nh , and ߤ = 1 . Figure 11 
demonstrates behavior of q-HAGTM solution ),(   for AC Equation (41) for numer-
ous values of fractional order   at .1  Figure 12 yields the behavior of q-HAGTM 
solution ),(   for AC Equation (41) for various values of non-integer order   at 

.1.0  Figure 13 shows the characteristic of q-HAGTM solution ),(   for AC 
Equation (54) when 1,1  nh , and ߤ = 1 . Figure 14 imparts the exact solution 

),(   for AC Equation (54) when 1,1  nh , and ߤ = 1. Figure 15 shows the error 
between approximate solutions and exact solutions for AC Equation (54) when 

1,1  nh , and ߤ = 1. Figure 16 demonstrates characteristic of q-HAGTM solution 
),(   for AC Equation (54) for various values of non-integer order   at ,1  and 

Figure 17 represents response of q-HAGTM solution ),(   for AC Equation (54) for 
diverse values of fractional order   at .1  
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Figure 1. Behavior of q-HAGTM solution ),(   for diffusion Equation (27) when 

1,1  nh , and 1 . 

 
Figure 2. Response of exact solution ),(   for diffusion Equation (27) when 1,1  nh , 

and .1  

 
Figure 3. Error between approximate solutions and exact solutions for diffusion Equation (27) when 

1,1  nh , and .1  
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Figure 4. Behavior of q-HAGTM solution ),(   of diffusion Equation (27) for diverse values of 

 at .1  

 
Figure 5. q-HAGTM solution ),(   of diffusion Equation (27) for several values of fractional 

order  at .1  
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Figure 6. Curve of diffusion of Equation (27) for numerous values of order .  

 
Figure 7. Curve of diffusion of Equation (27) for several values of order .  
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Figure 8. Characteristic of q-HAGTM solution ),(   for AC Equation (41) when 

1,1  nh , and 1 . 

 
Figure 9. Exact solution ),(   for AC Equation (41) when 1,1  nh , and 1 . 
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Figure 10. Error between approximate solutions and exact solutions for AC Equation (41) when 

1,1  nh , and 1 . 

 
Figure 11. Response of q-HAGTM solution ),(   for AC Equation (41) for numerous values of 

order  at 1 . 
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Figure 12. Characteristic of q-HAGTM solution ),(   for AC Equation (41) for diverse values 

of order   at 1.0 . 

 
Figure 13. Characteristic of q-HAGTM solution ),(   for AC Equation (54) when 

1,1  nh , and 1 . 



Mathematics 2022, 10, 3827 18 of 21 
 

 

 
Figure 14. Exact solution ),(   for AC Equation (54) when 1,1  nh , and 1 . 

 
Figure 15. Error between approximate solutions and exact solutions for AC Equation (54) when 

1,1  nh , and 1 . 
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Figure 16. q-HAGTM solution ),(   for AC Equation (54) for various values of order   at 

1 . 

 
Figure 17. Response of q-HAGTM solution ),(   for AC Equation (54) for different values of 

fractional order   at 1 . 
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6. Conclusions 
In this article, to study the characteristic of diffusion equation and AC equation oc-

curring in oil pollution associated with the Caputo–Katugampola derivative, an effective 
technique, namely, q-HAGTM has been proposed. By analyzing numerical results and 
graphical simulations, we observe that q-HAGTM is successfully applied to solve the dif-
fusion equation and AC equation pertaining to the Caputo–Katugampola derivative. The 
displacement imparts an advanced characteristic for fractional order derivative compar-
ing to classical order derivative. Hence, it is concluded that the employed technique is 
very efficient, accurate, and can be applied to analyze a wide category of fractional order 
models appearing in oil pollution. 
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