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Abstract: The incremental energy minimization principle provides a compact variational formulation
for evolutionary boundary problems based on constitutive models of rate-independent dissipative
solids. In this work, we develop and implement a versatile computational tool for the resolution of
these problems via the finite element method (FEM). The implementation is coded in the MATLAB
programming language and benefits from vector operations, allowing all local energy contributions
to be evaluated over all degrees of freedom at once. The monolithic solution scheme combined with
gradient-based optimization methods is applied to the inherently nonlinear, non-smooth convex
minimization problem. An advanced constitutive model for shape memory alloys, which features a
strongly coupled rate-independent dissipation function and several constraints on internal variables,
is implemented as a benchmark example. Numerical simulations demonstrate the capabilities of the
computational tool, which is suited for the rapid development and testing of advanced constitutive
laws of rate-independent dissipative solids.

Keywords: vectorized FEM implementation; incremental minimization principle; dissipative solids;
shape memory alloys

MSC: 74A15; 74S05

1. Introduction

New experimental techniques enable more thorough investigation of the complex
response of materials to mechanical loading, which opens space for the development of
more elaborate material models and physical simulations. On the macroscopic (continuum
thermodynamics) level of modeling, such development involves deducing more complex
constitutive laws which complement the fundamental balance laws and side conditions
(boundary and initial) so that the response of a material body in time to external stimuli can
be determined via solving evolutionary boundary value problems. For the development
of complex constitutive laws characterizing the materials and material systems, various
thermodynamic frameworks have been developed in the literature [1–5]. They allow for the
formulation of a wide range of models in a very concise and consistent way. The incremental
energy minimization approach can be considered a compact variational formulation of the
evolutionary boundary value problem for models of rate-independent dissipative solids
which were derived within such frameworks [6–9]. Let us note that rate-independent
processes are invariant under a change in time scale [10].
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To obtain a time discretization of an evolutionary boundary value problem which is
suitable for implementation in finite-element software, we introduce a partition of the time
interval from time 0 to T in the form 0 = t0 ≤ t1 ≤ · · · ≤ tN = T . In the time-discrete
setting, the response of the system at time tn+1 can then be determined by solving the
incremental (energy) minimization problem

inf
α

Jτ(α, αn) (1)

with α representing the set of all thermodynamic descriptors of the system (e.g., ther-
modynamic variables vital for the system’s evolution). The superscript τ denotes the
time-discretized counterparts of time-continuous functionals of the corresponding weak
formulation, and the subscript n denotes the values of the previous time step. The (La-
grangian) functional Jτ usually combines three physically motivated terms:

Jτ(α, αn) := Eτ(α, αn) + Dτ(α, αn)− Pτ(α, αn) (2)

where the incremental energy functional is Eτ , the incremental dissipation functional is
Dτ , and the incremental external work functional is Pτ . Let us note that the minimization
can be subject to some additional internal constraints (kinematic and physically-based).
For (hyper)elastic materials, Dτ disappears, α reduces to the displacement field (u), and Eτ

involves only gradient(s) of u (cf. [11]).
Through different mathematical forms, the dissipation functional allows one to de-

scribe different types of path-dependent material responses. Rate-independent (also termed
activated) dissipative processes are characterized by a positively one-homogeneous dissipa-
tion (i.e., such a unction d(α) satisfies the relation d(sα) = sd(α) for all positive scalars s) and
hence, the dissipation functional Dτ is inherently non-smooth. Maybe the most common
example is the conventional model of (isothermal) von Mieses plasticity, with displacement
and inelastic strain as two thermodynamic descriptors appearing in α (e.g., [4]).

The rate-independent problem in Equation (1) can be resolved via different numerical
approaches. Often, the particular form of Equation (2) allows splitting the minimization
problem into a nested form and solving a sequence of “structural” nonlinear minimization
problems and “material” nonlinear minimization problems [5]. The form of the “structural”
problem formally corresponds to the principle of minimum potential energy, and the solu-
tion procedure is analogous to resolving an elastic body problem. The process of resolving
the “material” problem is often termed a state update procedure. Specific numerical tech-
niques have been intensively developed even for the most common constitutive laws [12].
Many finite-element suites allow straightforward implementation of the nested form—they
effectively utilize the alternative minimization approach—and require a material tangent
stiffness operator for the interconnection between the two problems (see, for example, the
examples for smart materials in [13–15]).

On the other hand, the variational structure of Equation (1) allows the direct appli-
cation of optimization methods borrowed from mathematical programming. Such an
approach may be particularly attractive for models of materials with multiple, strongly
coupled dissipative processes, such as coupled plastic flow, phase transformation, and
micro-damage in so-called TRIP steels [16], coupling of phase transformation and plasticity
in NiTi shape memory alloys [17], or the coupling of damage and plasticity in sensitive
clays [18]. Indeed, in such (rate-independent) systems, the evolution cannot be split into
mutually independent processes and treated separately, such as by conventional active
set search strategies [18]. Instead, only a single “global yield function” (borrowing the
conventional plasticity terminology) driving the evolution can be derived, and the conven-
tional numerical treatment may then become elaborate and conditional upon the particular
mathematical form of the model [17].

Recently, Moskovka and Valdman [11] developed and successfully verified the fully
vectorized implementation of hyperelastic constitutive models into the finite element
method (FEM) through mathematical optimization. Their approach relies on a concurrent
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(loop-free) evaluation of (both linear and gradient) energy contributions to the global
energy functional and efficient evaluation of energy gradients (needed in optimization)
by employing the concept of nodal patches. The applied vectorization has already been
shown to be efficient and flexible in developing versatile FEM implementations [19,20] of
nodal and edge basis functions and assemblies of stiffness matrices (cf. [21]).

Inspired by their work, the present contribution aims to further extend that concept
for the energy functional of the type in Equation (2) (i.e., with a non-negligible dissipative
contribution). As a representative example, we employ the previously developed consti-
tutive model for the phase transformation and reorientation processes in shape memory
alloys [22], which belongs to the class of models with strongly coupled rate-independent
dissipation processes. This requires several extensions and modifications of the computa-
tional framework in [11]: (1) The set of thermodynamic descriptors of the system is enriched
by internal variables (and temperature) fields. (2) Both the displacement field and fields of
internal variables enter the minimization process. (3) Since the time evolution of the system
becomes path-dependent (i.e., the evolution strongly depends on the particular loading
history of the system), the values of the descriptors from the previous time step, αn, must
be stored. (4) Finally, due to the activated nature (rate-independence) of the dissipation pro-
cesses, the objective function becomes non-smooth (although it remains convex). Moreover,
concerning common loading modes of shape memory alloys, temperature parametrization
and the Neumann boundary condition must be implemented.

The main aim of this work, however, goes beyond the mere implementation of the
particular constitutive model. Our activity targets the development of a versatile tool for the
development and testing of new constitutive laws for materials with multiple dissipative
processes. Such efforts often require an iterative approach consisting of repetitive tuning
of several contributions to energy or dissipation functionals and comparing the basic
experimental datasets with computational simulations performed with the model. The
numerical implementation is usually the most laborious part of the process, especially when
the resolution procedure requires tailored coding (e.g., related to active set search strategies).
In this sense, an in-house built FEM-based computational tool—which combines versatile
variational approaches, universal optimization methods, and a user-friendly programming
environment—may often provide a reasonable alternative to “heavy-duty” commercial
engineering computation platforms. Indeed, straightforward and rapid adaptation of the
code to a new constitutive law outbalances the limited computational efficiency (due to
the employment of uncustomized optimization algorithms) and user comfort. The present
work constitutes a first step for recasting this concept into a viable paradigm.

This paper is organized as follows. The constitutive model is briefly introduced in
Section 2, where the mathematical formulation of the incremental energy minimization
problem is also provided. Section 3 deals with the numerical implementation, particularly
the optimization approach based on finite element discretization. Computational examples
and conclusions are presented in Sections 4 and 5, respectively.

2. Constitutive Model of Shape Memory Alloys and Incremental Energy
Problem Formulation

We briefly summarize the core constitutive model for shape memory alloys originally
introduced in [22,23] and further refined in [24–26]. Let us note that more experimental
details on this important class of functional materials can be found in [27], for example, and
a great variety of constitutive models tackling the peculiarities of their thermomechanical
response can be found in the literature (e.g., the recent works of [28–33]).

The common additive decomposition of the total strain ε to the elastic part εel and the
transformation-related part are employed in the small strain realm [28,30]:

ε =
1
2
(∇u +∇u>) = εel + ξεtr. (3)
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Scalar ξ denotes the volume fraction of martensite, and εtr is the mean transformation
strain tensor of martensite, which is symmetric and traceless; in other words, it holds that

εtr
11 + εtr

22 + εtr
33 = 0 (4)

for the diagonal components εtr
ii , and εtr

ij = εtr
ji for the non-diagonal components. The natural

constraint on ξ is complemented by a directional constraint on the transformation strain:

0 ≤ ξ ≤ 1, 〈εtr〉 ≤ 1, (5)

where the material function 〈·〉 takes a specific form (see [22]) so that the tension-compression
asymmetry and material anisotropy are recovered:

〈εtr〉 = I2(Dεtr)

k

cos
(

1
3 arccos(1− a(I3(Dεtr) + 1))

)
cos
(

1
3 arccos(1− 2a)

) , (6)

where I2(x) =
√

2
3‖x‖ and I3(x) = 4 det(x)

I2(x)3 , with x being a tensor.
Two particular functions constitute the core of the model. The first one is the energy

function (thermodynamic potential) f T , consisting of the elastic part (the first two terms),
the chemical part (the third and fourth terms), and the reorientation-hardening part (the
last term):

f T(ε(u), ξ, εtr) =
1
2

Ktr(ε(u))2 +
GAGM

ξGA + (1− ξ)GM ‖dev(ε(u))− ξεtr‖2

+ ∆sAM(T − Teq)ξ + q(T) + kEhrd ξ〈εtr〉2
(1− 〈εtr〉)4 , (7)

where tr(x) and dev(x) stand for the trace and the deviatoric parts of a tensor x, respec-
tively. The second one is the dissipation function dT , in which both transformation and
reorientation of martensite are considered:

dT(εtr, ξ, ε̇tr, ξ̇) =


∆sAM[(Teq −Ms) + ξ(Ms −Mf)]ξ̇
+ σreo(T)‖ξ̇εtr + ξ ε̇tr‖ if ξ̇ ≥ 0,

∆sAM[(Teq − Af) + ξ(As − Af)]ξ̇
+ σreo(T)

[
|ξ̇| · ‖εtr‖+ ξ · ‖ε̇tr‖

]
if ξ̇ < 0.

(8)

Let us note that the superscript T emphasizes that the temperature T is considered only as
a prescribed (albeit variable) parameter in quasistatic loading regimes, which is the focus
of this work. The implicit dependence of descriptor fields on space coordinates is omitted
for brevity. Function q(T) in Equation (7) is purely temperature-dependent, and hence its
particular form is not relevant for minimization. The table in Section 4 provides a brief
description of all model parameters (see [22] for further details).

In the time-discrete setting, the rate of the constitutive state is considered to be constant
in the time increment τ. Hence, the one-homogeneous dissipation function dT can be
reformulated into an algorithmic expression as follows (see [23] for details):

δT(εtr, ξ; εtr
n , ξn) =



∆sAM
[

Teq −Ms +
ξn+ξ

2 (Ms −Mf)
]

1
τ |ξ − ξn|

+ σreo(T) 1
τ ‖(ξ − ξn)εtr + ξn(εtr − εtr

n )‖ if ξ ≥ ξn,

∆sAM
[

Af − Teq +
ξn+ξ

2 (As − Af)
]

1
τ |ξ − ξn|

+ σreo(T) 1
τ

[
‖(ξ − ξn)εtr‖+ ξ‖εtr − εtr

n ‖
]

if ξ < ξn.

(9)
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Now, we consider a uniform time discretization with τ = T /N and t0 = 0 so that
tn+1 = (n + 1)τ, n ∈ {0, . . . , N − 1}. We can specify the incremental functionals for a body
from shape memory alloys as

Eτ
SMA(u, ξ, εtr; un, ξn, εtr

n ) =
∫

Ω
f Tn+1(u, ξ, εtr)− f Tn(un, ξn, εtr

n )dV, (10)

Dτ
SMA(ξ, εtr; ξn, εtr

n ) =
∫

Ω
τ δTn+1(ξ, εtr; ξn, εtr

n )dV, (11)

Pτ
SMA(u; un) =

∫
Ω

Fn+1
vol (u− un)dV +

∫
ΓN

Fn+1
surf (u− un)dS, (12)

and construct the complete functional according to Equation (2):

Jτ
SMA(u, ξ, εtr; un, ξn, εtr

n ) = Eτ
SMA(u, ξ, εtr; un, ξn, εtr

n ) + Dτ
SMA(ξ, εtr; ξn, εtr

n )

− Pτ
SMA(u; un). (13)

Here, Ω ⊂ R3 is the geometric representation of the physical body with (assumed Lipschitz)
boundary ∂Ω, and ΓN ⊂ ∂Ω represents its subset where the Neumann boundary condition
is applied. The terms Fvol

n+1, Fsurf
n+1, and Tn+1 represent the corresponding time discretization

of the prescribed volumetric forces, surface forces, and temperature, respectively.
The reformulated incremental energy minimization problem in Equation (1) determin-

ing the (discrete) time evolution at tn+1 then reads as

{un+1, ξn+1, εtr
n+1} = argmin

u,ξ,εtr

{
Jτ
SMA(u, ξ, εtr; un, ξn, εtr

n )
}

with ξ, εtr bounded, (14)

on the proper functional spaces also incorporating the Dirichlet boundary condition. The
reader is referred to [23] for details regarding the rigorous mathematical justification, treat-
ment, and solution existence results of this formulation, relying on the “energetic solution
concept” deeply elaborated upon in [9]. Let us note that due to the one-homogeneous
nature of the dissipation function, time plays a role of a mere parameter in the response of
the material, as expected for rate-independent constitutive laws.

3. Numerical Implementation

Within the incremental minimization approach, the time evolution of the material
system is fully determined by resolving a sequence of time-incremental minimization
problems given by Equation (14). We combine the finite element method (FEM) with
classical optimization methods in order to solve each problem of this sequence efficiently
(cf. [8]).

3.1. Minimization Strategy

In contrast to the common nested procedure, where the minimization problem in
Equation (14) is split into two subproblems and resolved via alternating minimization [5],
we stick to the monolithic approach (i.e., minimizing all control variables at once). Thus,
we avoid the procedure of transferring the results from one subproblem to the other,
involving the construction of the material Jacobian matrix (material tangent modulus) and
its incorporation into the structural Jacobian matrix.

As shown in [23], each single-minimization problem is convex, the objective functional
is naturally non-smooth (i.e., not continuously differentiable due to asymmetry with respect
to the sign of ξ̇ and the Frobenius norms in Equation (8)), and the design variables ξ and εtr

are constrained by the inequalities in Equation (5). Hence, after finite element discretization,
we face a non-linear, non-smooth constrained convex minimization problem, which is tractable
by local optimization methods.
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Inspired by [22], and with no real impact on the physical background of the model,
we further restrict the internal variables as follows (cf. Equation (5)):

0 < ξ < 1, 0 < 〈εtr〉 < 1. (15)

Indeed, from the thermodynamics point of view, the system is always a phase mixture at
transformation-relevant temperatures, even though the volume fraction of the unfavorable
phase may be macroscopically negligible.

We then impose a non-linear smooth transform between these bounded sets and
suitable unbounded ones (see the details in Appendix A for details) so that respective
minimization problems can be reformulated as

{un+1, ξn+1, εtr
n+1} = argmin

u,ξ,εtr

{
Jτ
SMA(u, ξ, εtr; un, ξn, εtr

n )
}

, (16)

with unconstrained variables ξ, εtr.
In this way, it is possible to employ lightweight unconstrained minimization methods

instead of constrained ones. Let us note that to circumvent the common troubles linked
with setting the correct values of the internal variables at the initial point of calculation
ξ0, εtr

0 (cf. [34]), a specific “zero increment” computation is performed first (see details in
Appendix B).

3.2. Details on Implementation in MATLAB

The complete computational tool extends the FEM codes of [11] related to a 3D
minimization of hyperelastic energies. The complete code is freely available at (accessed on
21 October 2022)

https://www.mathworks.com/matlabcentral/fileexchange/119538

for downloading and testing. The constitutive core of the code of [11] was modified because
the determination of the material response now additionally depends on the fields of
internal variables and temperature. Not only do the internal variable fields ξ and εtr enter
the minimization process as the subject of minimization (together with the displacement
field), but the distribution of them in Ω in the previous time step also appears in non-linear
terms in Dτ

SMA. Such a dependence on the values in the previous time step is inevitable
in dissipative models and imposes their “path dependence” (cf. linear dependence of the
displacement field in the previous time step in Pτ

SMA, which effectively does not enter the
minimization process). Hence, internal variables must be stored within the code, and their
values from the previous step must be made available for the minimization procedure. In
contrast, no particular treatment is needed for the temperature field, since the distribution
of the temperature is prescribed. Thus, it is a priori known within each time step and each
element of triangulation. Let us note that the uniform temperature distribution within the
body is assumed in the present implementation; the necessary modifications toward a full
thermally coupled model were elaborated upon in [26].

The computational domain Ω ⊂ R3 is approximated by its triangulation T into
closed tetrahedral elements in the sense of Ciarlet [35]. The displacement field u is then
approximated in components in the space of globally continuous and piecewise linear
nodal basis functions P1(T) defined in T, which is the lowest-order polynomial choice
possible. Consequently, the small strain tensor ε(u) is approximated as a piecewise constant
function P0(T). Thanks to Equation (4), five independent components of the symmetric
traceless tensor εtr and one scalar ξ add up to six independent design variables, which are
also approximated in P0(T).

The code heavily utilizes vectorized evaluations of the gradients∇u for the prescribed
triangulations T inherited from the previous work [11]. All necessary gradients of basis
functions in P1(T) are precomputed and stored in a structure-type data object “mesh”
together with the geometrical properties of the triangulation. An additional structure

https://www.mathworks.com/matlabcentral/fileexchange/119538
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“patches” is utilized for the evaluation of the gradient ∇u Jτ
SMA. It contains information

about the nodal patches (i.e., about sets of tetrahedral elements adjacent to every node of
the triangulation, including gradients of the corresponding basis functions defined over
them). Since in each computation increment the values of the internal variables from the
previous increment are needed, an additional structure “varstruct” is constructed to store
them. It also contains the prescribed value of the temperature and (density of) the surface
forces, which can evolve. The values of the internal variables, stress, strain, and other
parameters resulting from the computation are stored in the structure “output”.

As an extension of [11], the surface traction term
∫

ΓN
Fn+1

surf (u− un)dS is included. We

implement the simplest case Fn+1
surf = gn+1

surf ν, where the vector ν denotes the normalized
outer normal to the boundary part ΓN, and gn+1

surf is a given (density of) constant scalar
surface force per unit area. Then, the vectorized implementation in the spirit of [36] utilizing
information about the faces of ΓN and their outer normals reads as follows:

1 f u n c t i o n b = eva lua te_sur face_t rac t i on_vec to r_3D (mesh , g s u r f )
2 X=[3∗mesh . n face s2nodes −2 3∗mesh . n face s2nodes −1 3∗mesh . n f a c e s2node s ] ;
3 Z=( g s u r f /3) ∗mesh . n f a c e s2no rma l ( : , [ 1 1 1 2 2 2 3 3 3 ] ) ;
4 b=sp a r s e (X, 1 ,Z ,3∗ mesh . nn , 1 ) ;
5 end

Remark 1. An example of a cube triangulation T of Section 4.1 is shown in Figure 1 (left). It
consists of 48 tetrahedral elements (created by the same triangulation applied to 8 equivalent cuboids)
and 27 nodes. The Dirichlet boundary conditions prescribe zero values of the displacement u in
23 nodes, of which the following apply:

• Two nodes are constrained in all three directions (indicated by red circles);
• Nine nodes are constrained in two directions (indicated by violet circles);
• Twelve nodes are constrained in one direction (indicated by green circles).

Together, they fix 2 · 3 + 9 · 2 + 12 = 36 components of the displacement vector. Therefore,
the remaining 27 · 3− 36 = 45 components of the displacement vector are searched together with
6 · 48 = 288 components of internal variables. Thus, the total size of the minimization problem in
Equation (14) is equal to 45 + 288 = 333.

Figure 1 (right) illustrates the corresponding Hessian sparsity pattern. The blue dots mark
the nonzero entries of the square block related only to 45 displacement degrees of freedom, and the
black dots form the lines of the nonzero entries in the square block related to internal variables only.
The clusters of red dots denote the nonzero entries in the remaining two blocks; they indicate the
coupling between the components of displacement and the internal variables.

For the minimization, we employ the trust region optimization method available in the
MATLAB Optimization Toolbox. As demonstrated in [37], providing additional information
in terms of the gradients and sparsity pattern of the Hessian matrix (i.e., positions (indices)
of its nonzero entries) substantially accelerates the computations. Numerical determination
of the gradients (with a difference scheme) needed in optimization requires relatively little
additional effort, and thus, it can be particularly advantageous for the development and
refinement of constitutive laws of new materials with complex microstructural processes,
where the quest for a particular form of the constitutive law is the principal endeavor.

The finite element discretization directly affects the construction of the gradient and the
sparsity pattern. Whereas internal variables are approximated in P0(T), there are hence no
inter-elemental links, and P1(T) is used for components of the displacement field. Thus, a
nodal perturbation directly modifies the computations for all adjacent tetrahedral elements.
The vectorized evaluation of the gradient components was developed and described in
detail in [11], and the full vectorization of the constitutive core implemented in this work
are thus vital for the efficient integration of gradient-evaluating minimization methods.
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1 45 333

1

45

333

Figure 1. An illustrative triangulation of a cubic domain (see Examples 1 and 2 in Section 4) with
nodes with restricted displacement marked by circles (left) and the corresponding sparsity pattern of
the Hessian matrix (right). See text for details.

4. Computational Examples

In this section, we present three computational simulations to demonstrate the capa-
bilities of our computational tool. All computations were performed on a MacBook Air
(M1 processor, 2020) with 16 GB of memory. Table 1 presents the values of the material
parameters inspired by [38] and used in all computational examples in this section, where
D is set to the fourth-order identity tensor in Equation (6).

The first two subsections validate the constitutive law in simple loading modes com-
mon for shape memory alloys. The simulations were performed on a simple computational
cubic domain of a unit length of 1 cm, which was subjected to variations in temperature,
and mechanical loading was applied on the top face. The displacements on the bottom
and two side faces were fixed in directions parallel with the corresponding face normals
(to avoid rigid body motion). The domain was divided into eight equal cuboids, each
consisting of six equal tetrahedral elements. Due to the invoked uniform loading modes,
the results within all the elements were equal within the numerical error.

The example in the last subsection deals with a more complex (inhomogenous) me-
chanical state of the material body to demonstrate the capabilities of the complete compu-
tational tool.

Table 1. Table of material parameters with their brief descriptions. A and M denote austenite and
martensite, respectively.

Parameter Value Unit Brief Description

K 150 GPa Bulk modulus common to both phases.
GA, GM 18, 11 GPa Shear moduli of A and M.
k 0.062 1 Maximum transformation strain in tension.
a 0.95 1 Asymmetry parameter.
As, Af 5, 7 }

◦C

}
Temperature parameters related to the direct phase
transformation between A and M.Ms, Mf −5,−8

Teq 0
σreo 100 MPa Reorientation stress of M at 25 ◦C.
∆sAM 0.36 MPa/◦C Difference between specific entropies of M and A.
creg 0.06 MPa Parameter of regularization function r in [22].
Ehrd 0.6 MPa Parameter of reorientation-hardening function.

4.1. Example 1: Uniaxial Tension–Compression Tests at Different Temperatures

First, we present the results of uniaxial tests performed via Dirichlet-type bound-
ary conditions. Figure 2 presents the results of the simulation of the uniaxial tension–
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compression tests at five different constant temperatures, namely −50 ◦C, −25 ◦C, 0 ◦C,
25 ◦C, and 50 ◦C. Each simulation was divided into four steps (distinguished by “relative
time” in the plots): (1) the temperature of the body was changed from room temperature
(25 ◦C, or above Af) to the desired one under no change in displacement, (2) the correspond-
ing displacement of nodes on the top face of the cube was increased up to 0.06, (3) the
displacement was decreased to −0.05, and (4) the displacement was again increased to
zero. Except for the first step, the temperature was held constant (and uniform).

The results in Figure 2a show the evolution typical for the shape memory alloys: a
pseudoplastic type of response at low temperatures (−50 ◦C and −25 ◦C, with coinciding
graphs), superelastic type of response at high temperatures (25 ◦C and 50 ◦C), and an
intermediate response in between (0 ◦C). This interpretation is backed by the plot of the
evolution of the volume fraction of martensite within the steps in Figure 2c. For the two
lowest temperatures, the almost full martensitic state was reached after cooling (end of
step 1, i.e., relative time equals 1), whereas for the rest, transformation to martensite was
induced after loading was applied (step 2). Since 0 ◦C was below the temperature needed
for the initiation of the reverse transformation to austenite, most of the martensite remained
stable even during the unloading stages of the test (in steps 3 and 4). This contrasted with
the two higher temperatures, where austenite was recovered during unloading. Figure 2d
shows the evolution of the relevant component of the transformation strain tensor, where
the difference between the minimum and maximum reached values imposed via Equa-
tion (5), and Equation (6) resulted in the pronounced tension–compression asymmetry in
Figure 2a. For instance, the critical stress for the transition to martensite was higher, and
the plateau strain was lower in compression compared with the tension in the superelastic
regime. The complex processes linked with energy storage and dissipation gave rise to
the patterns of Jτ

SMA-functional minimum in Figure 2b, which are entirely distinct from the
quadratic ones known in Hookean elasticity.
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Figure 2. Uniaxial tests at five different temperatures (Example 1).
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4.2. Example 2: One-Way Shape Memory Effect and Martensite Stabilization Effect

To demonstrate the ability to employ the Neumann type of boundary condition, we
simulated the so-called one-way shape memory effect, an important phenomenon utilized
in applications [27]. The cube was cooled down to −25 ◦C first and then loaded to 600 MPa
(via imposing the Neumann condition on the top cube face), unloaded via complete removal
of the stress, and finally heated to room temperature (25 ◦C). The results in terms of the
stress–strain–temperature space and the evolution of the volume fraction of martensite
with the temperature are depicted in Figure 3a,b, respectively. After unloading (at −25 ◦C),
the material remained martensitic, with the strain reaching almost 4%. Only when it was
heated enough did it transform back to austenite and return to the original configuration
(shape). Hence, the strain was released, as observed in the experiments in [27].

For comparison, Figure 3b also includes the situation, in which the interlude of loading
and unloading was omitted (i.e., the material was just cooled down and heated up without
straining). It is worth noting that the temperature interval for the reverse transition in
the one-way shape memory effect (approximately between 10 ◦C and 20 ◦C) significantly
shifted upward with respect to the stress-free thermal cycle (0 ◦C and 10 ◦C, cf. Ms and
Mf in Table 1). This temperature shift was due to the so-called “martensite (mechanical)
stabilization”, and it has been experimentally well-documented [39–41]. In the constitutive
model, this is due to the particular form of the dissipation function in Equation (8), which
also recognizes the contribution linked with the reverse transformation of reoriented
martensite.
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Figure 3. One-way shape memory effect (Example 2).

4.3. Example 3: Bending of a Shape Memory Alloy Beam

The performance of the complete FEM computational tool is now demonstrated in the
example of the bending of a beam. Beams manufactured from shape memory alloys have
been intensively investigated due to their superb actuation and energy harvesting capabili-
ties [42–44]. Although analytical models can be very useful for quick concept validation and
preliminary design studies [45–47], full-scale FEM simulations are often indispensable in
detailed studies [42,44,48,49], since they are not constrained by assumptions on a particular
geometry, material response, boundary conditions, etc. The simulated problem mimics
a simple beam with a rectangular cross-section (with its width being half of the height)
loaded at both ends and supported in the middle so that bending is invoked. Thanks to the
expected structural symmetry of the situation with respect to two (out of three) symmetry
planes of the beam, it was enough to model only one-fourth of the structure and hence fix
the displacement of nodes adjacent to those planes of symmetry in a direction normal to
the planes. The particular geometric model of the symmetry segment (length of 0.4 cm,
height of 0.1 cm, and width of 0.025 cm) together with applied triangulation is depicted in
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Figure 4. The structured mesh with 20× 1× 10 identical small cuboids each containing
6 tetrahedral elements was used to capture primarily the details in the x-z symmetry plane.
Nodes on the plane x = 0 cm and y = 0.025 cm were constrained according to the sym-
metry requirements, nodes satisfying x = 0 cm and z = 0 cm were also constrained in z
displacement (avoiding rigid body motion), and nodes satisfying x = 0.4 cm and z = 0 cm
(“bottom end edge”) were linearly prescribed uniform displacement in a direction z so that
they reached position z = −0.06 cm in 6 increments. A uniform temperature of 25 ◦C was
considered during the whole simulation, and hence superelastic behavior was induced.
Let us remind the reader that the current work adopted small strain and isothermality
assumptions; a discussion of the influence of such premises on the results of computational
simulations of shape memory beams can be found in [49].

0.4

x
0

0.1

0.025y

z

0
0

Figure 4. Finite element model of a shape memory alloy beam with the initial mesh layout
(Example 3).

The deformed configurations overlaid with contour plots showing the distribution of
the volume fraction of martensite in each computational increment are shown in Figure 5.
A continuous transformation was documented, starting from both the upper and lower
sides of the beam and penetrating toward the central part containing the neutral plane.
Let us note that validation of the SMA model via comparison with the experimentally
determined distribution of phases has been performed recently [24,50].
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Figure 5. Simulation of bending a beam at 25 ◦C. The color maps show the distribution of volume
fraction of martensite (VFM) at six loading increments; the colorbar applies to all six plots (Example 3).
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Figure 6a shows the distribution of the diagonal component of the stress tensor in
the x direction in the reference configuration in the last increment, (i.e., corresponding to
Equation (6) in Figure 5). Due to the tension-compression asymmetry, its maximum tension
was approximately 2/3 of the absolute maximum in compression, and the neutral plane
shifted toward the compressed part of the material (cf. analytical computations in [46,51]).
For comparison, the same computational simulation was performed at −25 ◦C (i.e., in the
pseudoplastic regime of the material), and the distribution of the diagonal component of
the stress tensor in the x direction is shown in Figure 6b. Both plots use the same color
coding, which allows for direct comparison of the numerical values. Clearly, thanks to the
lower net stiffness of martensite (which was reoriented during loading), the stress maxima
in this were lower than in the superelastic case in Figure 6a. Such strong temperature
dependence of the structural stiffness is employed in many applications [52].

  1000

  0

1000

MPa

  500

500

1500

(a) Temperature T = 25 ◦C.
(b) Temperature T = −25 ◦C.

Figure 6. Deformed configuration with a contour plot of the normal stress component parallel to the
x axis (within the reference configuration). The color bar applies to both plots (Example 3).

5. Conclusions and Future Outlook

This work presents a successful implementation of the incremental energy minimiza-
tion approach for rate-independent dissipative solids within a finite element framework.
A model of shape memory alloys rigorously formulated in [23] served as a benchmark
example of such a type of constitutive law. It features a strongly coupled, rate-independent
dissipation function. The solution of an evolutionary boundary value problem of a solid
body is constructed as a sequence of solutions of adjacent time-incremental boundary
value problems in the spirit of the energetic solution concept for rate-independent mate-
rials [9]. Each of these fixed-time problems is considered to be a genuine minimization
task (Equation (1)) discretized in space via the finite element method and resolved by con-
ventional optimization tools. In this respect, the chosen monolithic approach represents a
consistent alternative to the staggering minimization strategy employed in [23] and follows
a thus far unexplored pathway offered by the energetic solution concept.

The vectorized implementation into MATLAB also presents the first step in a long-
term activity focused on building a lightweight FEM-based computational tool tailored
for rapid development, preliminary testing, and validation of new constitutive laws of
dissipative materials with complex microstructural processes. Here, the motivation comes
from material science and engineering, where the rapid progress in the manufacturing and
characterization of new materials is often not fully exploited by the constitutive models.
Among other factors, this is because the process of validation of new constitutive laws
utilizing tailored implementation into computationally-aided engineering software suites
is usually laborious and time-consuming. Employing a versatile FEM-based tool provides a
viable alternative, especially in the initial stage of constitutive law development. Of course,
when the form of the constitutive law is finally established, its tailored implementation in
such suites (including developing its own constitutive subroutines) is inevitable for the
resolution of more complex boundary problems (e.g., with geometry requiring adaptive
remeshing or involving additional engineering phenomena as contacts). Following this
idea, we adopted and substantially modified the vectorized code from [11] so that it could
be used for both hyperelastic and rate-independent constitutive laws. The modifications
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include the introduction of internal variables and their history into the minimization
process, adding a solution parameter (representing the temperature field), or handling the
Neumann boundary conditions. The capabilities of the whole computational tool were
tested on a problem of bending a shape memory alloy beam. The version presented in this
work can be downloaded for free from a dedicated website.

The benefits of the applied approach come hand in hand with some limitations. The
first one is related to the variational formulation. Although the class of constitutive models
complying with Equation (2) is wide, a special mathematical and numerical treatment is
needed for some types of models (e.g., the concept of bipotential [53] for materials with
non-associative laws or the homogenization techniques for heterogeneous materials [54])
(see also the mathematical background in [9]). Second, the dimension of the minimization
problem in the monolithic formulation is naturally higher than in the case when the prob-
lem is split in the nested formulation, which poses a challenge for computational resources.
Third, applying universal minimization methods is often less efficient than employing cus-
tomized algorithms and may lead to prohibitive computational time consumption for more
complex evolutionary boundary problems. Whereas the first issue may require completely
new numerical development, relatively milder modifications such as parallelization or
algorithms of non-smooth optimization can help to at least partially remove a burden from
the other two constraints.

Hence, one direction of planned future refinements of the numerical implementation
resides in improving the computational speed. The time needed for the computation of
gradient inputs to the optimization routines could be reduced, such as by including the
methods of automatic differentiation (cf. [55]). Alternatively, one can even abandon the
intrinsic MATLAB optimization tools and employ some progressive optimization methods
tailored to the inherent structure of the rate-independent constitutive laws as, for example,
fast iterative shrinkage-thresholding algorithms adapted for non-smooth functions [56].
Reformulation of the models within the finite strain (large deformation) theory poses
another challenge, both from the modeling and from the implementation (vectorization)
points of view. Inspiring attempts involving these aspects have been carried out (e.g.,
in [13,48,57]).

Author Contributions: Conceptualization, M.F.; methodology, M.F. and J.V.; software, M.F. and
J.V.; validation, M.F. and J.V.; investigation, M.F. and J.V.; resources, J.V.; data curation, M.F. and
J.V.; writing—original draft preparation, M.F. and J.V.; writing—review and editing, M.F. and J.V.;
visualization, M.F. and J.V.; funding acquisition, M.F. and J.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Czech Science Foundation within projects numbers 22-
20181S (M.F.) and 21-06569K (J.V.) and supported by MEYS CR within project number LTAUSA18199.
J. Valdman also acknowledges the hospitality of LAAS-CNRS Toulouse during his stay in September
2022 under the French-Czech project Barrande: Solving non-convex calculus of variations problems
with the Lasserre hierarchy.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank A. Moskovka for providing algorithms for
geometric discretizations of the computational domains.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 4412 14 of 17

Appendix A. Treatment of Constraints for Employing Unconstrained
Minimization Algorithms

We apply nonlinear smooth transforms of bounded sets to unbounded ones. For ξ, we
define a bijection ξ ↔ ξ for mapping between domains (0, 1) ⊂ R and R as follows:

ξ := arctanh(2ξ − 1), (A1)

ξ :=
tanh(ξ) + 1

2
. (A2)

Similarly, we define a bijection εtr ↔ εtr providing one-to-one mapping between the
set {x ∈ R3×3

sym,tr=0 : 0 < 〈x〉 < 1} and {x ∈ R3×3
sym,tr=0} as follows:

εtr :=
1− 〈εtr〉 −

√
−3〈εtr〉2 + 2〈εtr〉+ 1

2(〈εtr〉 − 1)〈εtr〉 · εtr, (A3)

εtr :=
1

〈εtr〉+ 1
〈εtr〉+1

· εtr, (A4)

where R3×3
sym,tr=0 denotes a set of all 3 × 3 symmetric tensors with zero trace and 〈·〉 is

defined in Equation (6). Let us note that there was no particular physical necessity to
employ the exact forms of transformations as suggested above. They were chosen thanks
to their smoothness, bijectivity, and simple algorithmic implementation. Additionally, to
concurrently increase the regularity of the minimized function and the smoothness of the
material response close to phase fraction limits, the regularization term cregξ

2
was added to

the free energy. For admissible values of the volume fraction, this regularization term was
significantly lower than the free energy except for the close neighborhood of the interval
boundary (see [22] for further details).

Appendix B. Initiation of Internal Variables

Due to the strong influence of the thermomechanical history on the microstructural
state of shape memory alloys, the initiation of the internal variables must be treated carefully.
The optimal reference state would be pure austenite under stress-free conditions. Such an
ideal situation is hard to reach both thermodynamically (since structural imperfection is an
inevitable consequence of a thermodynamic equilibrium above the absolute temperature)
and also in the model, as ξ > 0 is assumed, see Equation (15). Hence, the computational
tool requires an initial temperature T0 > Af and a stress-free state of the whole material
body. For the computation of the initial values of the internal variables ξ0 and εtr

0 , a simple
“increment zero” minimization procedure is applied:

{ξ0, εtr
0 } = argmin

ξ,εtr

∫
Ω

f T0(u, ξ, εtr), (A5)

with u0 being zero displacements in all components in all nodes and with the initial
minimization guess satisfying Equation (15). One benefits from the fact that the material
body is in the reference configuration before any loads are applied, and hence, the phase
equilibrium can be established by omitting the dissipation contributions.

Appendix C. Mesh Sensitivity Inspection

To gain a basic insight into the influence of the mesh size on the results, we performed
additional computational simulations of the problem presented in Section 4.3 (i.e., bending
of the beam in a superelastic regime). In addition to the original mesh presented in that
subsection and shown in Figure 4, we generated one coarser and one finer mesh. Table A1
provides the details on all three cases. All the meshes were structured with varying numbers
of small cuboids, each containing six tetrahedral elements. The coarse mesh consisted of
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15× 1× 8 cuboids which were mutually identical cuboids, and the fine mesh consisted of
24× 1× 12 cuboids.

Table A1. Brief characterization of meshes used in the mesh sensitivity inspection.

Mesh DOFs DOFs DOFs
Label Nodes Elements Displacement Int. Variables Total

coarse 288 720 698 4320 5018
original 462 1200 1129 7200 8329

fine 650 1728 1595 10,368 11,963

We plotted the values of the dominant component of stress (also visualized in Figure 6)
at the end of loading in two important sets of nodes. Set A consists of all nodes with fixed
coordinates y = 0.025, z = 0.1 in the reference configuration, and set B consists of all nodes
with fixed coordinates x = 0.0, y = 0.025 in the reference configuration (cf. Figure 4). Hence,
the two sets correspond to the top side of the beam and the plane of bending symmetry
(most bent cross-section) (i.e., the left and top edges in Figure 6a). Let us note that the
number of nodes in the sets increased with the refinement of the mesh, and the value in
each node was obtained as a weighted average of the values in all node-adjacent elements.

Figure A1a shows the spatial variation of the normal component of stress parallel with
the x axis (in the reference configuration) on the top side of the bent beam for the three
meshes. One can observe a very good mutual match with the highest variation close to
the plane of bending symmetry, where the phase transformation occurred dominantly. For
x > 0.05, the difference between the coarse and fine meshes did not exceed a few MPa.
Figure A1b compares the same stress component values on the plane of bending symmetry,
where a huge variation in the volume fraction of martensite developed from the bending (cf.
the last plot in Figure 5). Whereas the variation of the maximum and minimum (i.e., values
on the outer surfaces of the beam) was about 3% only, a higher variation can be observed
in the central part (i.e., close to the neutral fiber (more precisely, the neutral plane)). Due
to the expected high gradient of phase composition, an even more refined mesh in the z
direction would be needed to investigate the strong phase gradients in this region, which
was, however, beyond the scope of this paper.
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(a) Node set A: the top side of the beam.
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(b) Node set B: plane of bending symmetry.

Figure A1. Variation of the normal stress component parallel with the x axis with positions of nodes
for three different mesh densities (Example 3).
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