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Abstract: Evolutionary ecology may be described as explaining ecology through evolution and vice
versa, but one may also view it as an integration of the two fields, where one takes the view that
ecology and evolution are inseparable, and one can only begin to understand the biology of organisms
by synthesizing the two fields. An example of such a synthesis is the biology of high fecundity and
the associated concept of sweepstakes reproduction, or skewed individual recruitment success. As an
illustration, we consider selection at linked sites under various dominance and epistasis mechanisms
in a diploid population evolving according to random sweepstakes and experiencing recurrent
bottlenecks. Using simulations, we give a few examples of the impact of the stated elements on
selection. We show that depending on the dominance mechanisms, random sweepstakes can shorten
the time to fixation (conditional on fixation) of the fit type at all sites. Bottlenecks tend to increase the
fixation time, with random sweepstakes counteracting the effects of bottlenecks on the fixation time.
Understanding the effect of random sweepstakes, recurrent bottlenecks, dominance mechanisms
and epistasis on the fate of selectively advantageous mutations may help with explaining genetic
diversity in natural highly fecund populations possibly evolving under sweepstakes reproduction.

Keywords: high fecundity; random sweepstakes; natural selection; fixation; bottleneck; evolution;
ecology; recruitment dynamics; epistasis

MSC: 92-04; 92-10

1. Introduction

Central to understanding the evolution and the ecology and, indeed, the evolutionary
ecology of natural populations is recruitment dynamics, i.e., the distribution of individual
recruitment success or, in other words, the offspring number distribution. The number
of offspring contributed by each individual affects population size and geographic distri-
bution, genetic diversity and the resilience of natural populations [1]. The Wright–Fisher
population model of genetic reproduction has been almost universally applied in modeling
evolutionary history of natural populations. However, it may be a poor choice for highly
fecund populations.

Highly fecund populations provide an important contrast to low fecundity and
model organisms, have enormous reproductive potential, are diverse and found widely
[1] and may share a key characteristic that is not captured by the Wright–Fisher model,
namely, sweepstakes reproduction [2,3]. By “sweepstakes reproduction” we refer to a
high variance in individual reproductive success, much higher than is captured by the
classical Wright–Fisher model [4]. The population model we apply allows us to define high
fecundity without involving sweepstakes reproduction. There are two main forms of sweep-
stakes reproduction involving different mechanisms turning high fecundity into a skewed
individual recruitment success. In one mechanism, referred to as random sweepstakes,
Type III survivorship and chance matching of reproduction with favorable environmental
conditions, for example in broadcast spawners, combine to form a jackpot of surviving
offspring won by a few parents. The other form of sweepstakes reproduction has been
referred to as selective sweepstakes [5]. The idea is that potential offspring are viewed
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as passing through selective filters on their way to maturity, and the surviving offspring
have on average a different genetic constitution than the nonsurviving ones; the next
time around, another set of types confers advantage [6]. In our formulation, a population
may be highly fecund without evolving according to random or selective sweepstakes.
Understanding recruitment dynamics in highly fecund populations necessarily centers
on identifying sweepstakes reproduction in data and the mechanisms of sweepstakes
reproduction, given evidence of it.

Random sweepstakes have been precisely formulated for both haploid and diploid
populations [7–13]. As far as we know selective sweepstakes incorporating high fecundity
and random sweepstakes have not been explicitly modeled. An extensive analysis of whole-
genome sequences provides evidence for the evolution of the highly fecund diploid Atlantic
cod being driven by positive selection [5]. A population model of recurrent sweeps of a new
mutation each time, the Durrett–Schweinsberg model [14] essentially explains the Atlantic
cod data, while models of random sweepstakes derived for diploid populations [7,15,16]
do not, even accounting for complex demography and background selection [5]. In the
Durrett–Schweinsberg model [14], the population evolves according to the Moran model
of genetic reproduction, where at any given time, one individual is randomly picked to
produce one offspring and another individual perishes to keep the population size constant,
and so by itself, it does not model high fecundity. To properly take high fecundity into
account when modeling selective sweepstakes, where high fecundity is defined as a high
reproductive capacity in the absence of selection, one might want, for example, to model
recurrent sweeps in a background of random sweepstakes. The main conclusion from
the analysis of the Atlantic cod data is that strong pervasive positive selection should be
considered in any further analysis of the data. Identifying sweepstakes reproduction in
genomic data and resolving the mechanisms of sweepstakes reproduction given evidence
of it are two of the main open problems in biology.

To better understand if and how random and selective sweepstakes might interact
to shape the evolution of natural populations, it is necessary to illuminate how random
sweepstakes affect the fate of advantageous mutations. Here, we use simulations to
consider the fate of advantageous types for a simple model of viability selection acting
at linked sites in a diploid population evolving according to random sweepstakes and
recurrent bottlenecks. With linked sites, we can impose various forms of dominance
mechanisms and epistatic interactions between the sites. Similar investigations based on
simulations have focused on unlinked sites [17] and a single site [18]. The results indicate
that random sweepstakes reduce both the probability of fixation of new advantageous
types and the average time to fixation conditional on fixation. We claim that the models of
random sweepstakes applied in [17,18], and here as well, have better properties than the
original one [10] leading to the multiple-merger Beta(2− α, α)-coalescent. Multiple-merger
coalescents [9,19–22], in which a random number of lineages merge each time, arise in
different contexts, for example, through a large sample size [23], through recurrent strong
bottlenecks [24] or recurrent selective sweeps [14], and may be essential for explaining
genetic diversity in natural populations across domains of life [25].

Population models of random sweepstakes and recurrent bottlenecks are in the domain
of attraction of jump diffusions and multiple-merger coalescents [24,26]. For an overview
of the mathematical formulation of random sweepstakes and the connection to jump
diffusions, consult, e.g., [26]. We only draw attention to the SDE

dYt =
√

Yt−(1−Yt−)dWt +
∫
(0,t]×(0,1]×[0,1]

(
1{u≤Yt−}r(1−Yt−)− 1{u>Yt−}rYt−

)
N(dsdrdu) (1)

describing the evolution of a type frequency in a haploid population evolving according to
random sweepstakes [26]. In Equation (1), {Yt} is the solution of the SDE in Equation (1) and
tracks the frequency of a given type in a haploid population evolving according to random
sweepstakes, {Wt} is a standard Brownian motion, N is a Poisson process on [0, ∞) ×
(0, 1]× [0, 1] independent of {Wt} equipped with intensity measure dt⊗ r−2F(dr)⊗ du, and
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F is a finite measure without an atom at zero and corresponds to the random sweepstakes
mechanism (the offspring number distribution) [26]. Comparing the probability of fixation
of a neutral type evolving according to Equation (1) to one evolving according to the Wright–
Fisher diffusion (i.e., dYt =

√
Yt−(1−Yt−)dBt), whose fixation probability is proportional

to the initial frequency of the type, would be informative about how the jump term in
Equation (1) corresponding to random sweepstakes affects the evolution of the population.
In [27], generalized Wright-Fisher models for haploid populations were studied, where

E[Yk+1|Yk] = Yk

Var[Yk+1|Yk] =
N

N − 1
Var[Yk+1|{Yk = 1}]Yk

(
1− Yk

N

) (2)

with {Yk} ≡ {Yk; k ∈ N} tracking the number of copies of a given type in a haploid
population of fixed size N. The idea was to study a process that matched the Wright-Fisher
model only in the first two moments of {Yk} and without imposing any specific constraints
on the higher moments of {Yk} [27]. Upon adding selection to the generalized Wright–
Fisher model, conditions could be identified where a beneficial type fixed with probability
one as N → ∞ [27]. Furthermore, [27] identified a continuum limit operator, where

Gu(x) = γx(1− x)u′(x) + σ2x(1− x)
∫ 1

0

u(y)− u(x)− u′(x)(y− x)
(y− x)2 dΩx(y) (3)

(assuming the absence of mutation), where Ωx is a probability measure. Given that a
generator as in Equation (3) can be identified, it can be applied, at least in theory, to obtain
expressions, e.g., fixation probabilities [27,28]. In our case of a diploid population evolving
under random sweepstakes, with random pairing of diploid individuals, identifying a con-
tinuum limit operator as in Equation (3) seems far from trivial. Mathematical investigations
of the effect of random sweepstakes on selection are restricted to a single site in a haploid
population [29–32]. Considering a model of selection in a haploid population evolving
according to random sweepstakes, where the reproduction mechanism is a mixture of
“small” and “large” reproduction events [31], Bah and Pardoux studied the SDE

Xt = x− α
∫ t

0
Xs(1− Xs)ds +

∫ t

0

√
F({0})Xs(1− Xs)dWs

+
∫
[0,t]×[0,1]2

p
(
1{u≤Xs−} − Xs−

)
M(dsdudp)

(4)

where {Wt} is standard Brownian and M(ds, du, dp) = M(ds, du, dp)− p−2dsduΛ(dp) with
M taken as a Poisson point measure on R+ × [0, 1]× [0, 1] with intensity dsdup−2Λ(dp).
In [31], Equation (4) is referred to as the Λ-Wright–Fisher SDE with selection. For compari-
son, the SDE

dX = σXt−(1− Xt−)dt +
√

Xt−(1− Xt−)dWt

(simplified to a single population) with σ denoting the strength of selection is the starting
point for investigating the time to fixation (conditional on fixation) in a structured pop-
ulation [33]. Equations (1), (3) and (4) have in common the inclusion of a term due to
random sweepstakes, i.e., they are mixtures of a process corresponding to small families
(the Wright–Fisher diffusion), and a term corresponding to large families. The model we
employ in the simulations (see Section 2) is also composed of such processes.

Our aim is to investigate the joint fixation of a fit type jointly at two or more linked
sites in a diploid population evolving according to random sweepstakes and experiencing
recurrent bottlenecks. Even though the algorithm developed for the simulations works for
any number of sites, the number of possible phased L-site types increases exponentially
with L, and thus there are computational restrictions (e.g., amount of computer memory)
to how many sites can be included. This may not be much of a restriction, however, since
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adaptation may mostly be due to few new mutations each of large effect [34,35]; this has
been referred to as the oligogenic model [36].

In Section 2, we describe the model we apply in the simulations, in Section 3, we
present and discuss the results, in Section 4, we briefly summarize the results and remaining
open problems, in Appendix A, we present further simulation results and in Appendix B,
we provide an overview of the simulation algorithm in the form of a pseudocode.

2. Materials and Methods

We consider a diploid population evolving in discrete (nonoverlapping) generations.
In any given generation, the current individuals randomly form pairs, the pairs indepen-
dently produce potential offspring (juveniles), and from the pool of juveniles, we sample
a specified number who will survive and produce a new set of reproducing individuals.
Thus, we are essentially modeling a supercritical multitype branching process, which is
at times conditioned to be at a given value. Incorporating potential offspring into our
model allows us to formulate the concepts of high fecundity and sweepstakes reproduction.
We define high fecundity as the ability of organisms to produce numbers of juveniles at
least on the order of the population size. In our formulation, high fecundity is a necessary
but not sufficient ingredient for sweepstakes reproduction to occur; what is missing is a
mechanism turning high fecundity into sweepstakes reproduction. Here, we take sweep-
stakes reproduction to refer to a high variance in individual reproductive output. One such
mechanism is random sweepstakes, whereby Type III survivorship and chance matching of
reproduction with favorable environmental conditions, for example among marine broad-
cast spawners, combine to generate a jackpot so that a few individuals produce the bulk of
the surviving offspring. This mechanism has previously been referred to as sweepstakes
reproduction [2,3]. Natural selection is not involved in random sweepstakes, but is a
key player in another conceptual mechanism turning high fecundity into sweepstakes
reproduction, selective sweepstakes [5,6].

Now we formulate random sweepstakes. Our formulation is based on the haploid
population model of random sweepstakes in the domain of attraction of the Beta(2− α, α)-
coalescent for 1 ≤ α < 2 [10]. Let X, X1, . . . , XM for M ∈ N := {1, 2, . . .} denote i.i.d. copies
of positive random variables, where X1, . . . , XM denote the independent and identically
distributed random number of juveniles produced by M parent pairs (randomly formed)
in a given generation. Note that our formulation of randomly forming pairs of parents is in
contrast to some models involving “diploid” populations. Sometimes, the only notion of
diploidy is to assume an even number of individuals (population size 2N), and the actual
mechanism in the model is more often than not strictly haploid (e.g., [14]). Take

P(X = k) = C
(

1
kα
− 1

(k + 1)α

)
, k ∈ {2, 3, . . . , u(N)},

P(X ∈ {0, 1}) = 1− ∑
2≤k≤u(N)

P(X = k),
(5)

where α and C are positive constants. Before we explain where Equation (5) comes from,
we add the following. For the simulations, we take P(X ∈ {0, 1}) = 0 without loss of
generality and choose α and C so that

P(X = k) ≥ P(X = k + 1), k ∈ {2, . . . , u(N)},
P(X ≤ u(N)) = 1,

P(X1 + · · ·+ XN ≥ 2N) = 1,

and u(N) is an upper bound on the number of juveniles. The limiting coalescent (i.e., a
coalescent is a probabilistic description of the random ancestral relations of sampled gene
copies from a hypothetical population evolving according to a given population model,
e.g., Equation (5)) is being investigated for a planned future publication. One can argue
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that the assumption u(N)/N → K where K is a positive constant is biologically realistic.
The juveniles represent fertilized eggs, and it is plausible, in particular for marine broadcast
spawners, that the number of fertilized eggs produced even over the lifetime of a given
individual is at most a fraction of the population size. The cutoff u(N) also provides a
means of formally defining a highly fecund population. A population evolving according
to Equation (5) is taken to be highly fecund if u(N)/N > 0 as N → ∞. The model in
Equation (5) is a variant of the model in [10] where, with C > 0 a normalizing constant,
the law for the random number of juveniles (X) produced by a given individual behaves as

lim
x→∞

CxαP(X ≥ x) = 1 (6)

The model in Equation (6) is defined in terms of the tail probability P(X ≥ x). The cor-
responding tail probability for Equation (5) is P(X ≥ k) = C(1/kα − 1/(u(N) + 1)α).
Note that P(X = k) = P(X ≥ k) − P(X ≥ k + 1) ∼ 1/kα − 1/(k + 1)α. The formula-
tion in Equation (5) is in terms of the mass function to guarantee that the mass function
is monotonically decreasing as k increases (P(X = k + 1) ≤ P(X = k)), when an upper
bound (u(N)) on X is applied. Thus, the model in Equation (5) is a natural way of model-
ing random sweepstakes, where the number of juveniles produced by each individual is
random. The model is realistic in the sense that we give each individual (or pair of individ-
uals) the capacity to produce a large enough number of juveniles to impact the population
without asking for unrealistic numbers as is being done in Equation (6). The random gene
genealogy of a sample of gene copies from a haploid population evolving according to
Equation (6) is described by a discrete-time Ξ-coalescent (admitting simultaneous multiple
mergers of ancestral lineages) in the case 0 < α < 1, by the Beta(2 − α, α)-coalescent
when 1 ≤ α < 2 and if α ≥ 2, one obtains the Kingman coalescent [10]. Thus, one may
describe a population evolving according to Equation (5) as evolving according to random
sweepstakes if 0 < α < 2 and the cutoff u(N) is at least on the order of the population size.
In addition to being a natural model of random sweepstakes, the model in Equation (5)
also serves as a natural, biologically realistic and a mathematically tractable alternative to
the Wright–Fisher model. Given our formulation, a highly fecund population may or may
not evolve according to random sweepstakes.

For 1 < α < 2 the ancestral process describing the random ancestral relations of
sampled gene copies from a haploid population evolving according to Equation (6) con-
verges (in the sense of convergence of finite-dimensional distributions) to a multiple-merger
coalescent with time measured in units of O(Nα−1) generations [10]. However, recovering
the observed number of mutations in a sample becomes problematic for estimates of α
close to one [18]. One way to get around this difficulty may be to assume a simple mixture
distribution on α in Equation (5). Fix 0 < α1 < 2 and α2 ≥ 2. Suppose with probability
ε, we take α = α1, and with probability 1− ε, we take α = α2. In this way, we model
random sweepstakes in a broadcast spawner, where most of the time (i.e., with probability
1− ε) individuals produce a small number of juveniles (through α = α2), but occasionally
reproduction matches favorable environmental conditions so that individuals have an
increased chance of producing a large number of juveniles (through α = α1). Thus, we can
write, with L(α, u(N)) denoting the law in Equation (5) for given α and u(N),

X1, . . . , XN ∼
{

L(α2, u(N)) with probability 1− ε

L(α1, u(N)) with probability ε
(7)

Similar mixture models of random sweepstakes as described in Equation (7) have been
shown to yield nontrivial limits with less problematic scaling of time [11,37].
We claim that a scaling of ε can be obtained so that the ancestral process converges to
a nontrivial limit (the details are being worked out for a planned future publication). A sim-
ilar mechanism based on the Moran model, where a single parent produces a fixed number
(bψNc for some fixed 0 < ψ < 1) of surviving offspring with probability ε and one offspring
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with probability 1− ε, leads to a mixture of a Kingman coalescent and a multiple-merger
coalescent [11] (see also [37] for a more thorough investigation of the resulting coalescents
derived from a Moran model extended in this way). Each juvenile inherits gene copies
according to Mendel’s laws; we exclude mutation.

If the total number of juveniles SM produced in any given generation exceeds a fixed
carrying capacity C, viability selection kicks in. We assume the environment can sustain
at most C diploid individuals. Given the phased genome of a juvenile, we compute the
weight as in Equation (8) for some given weight function f . For each given juvenile, a
random exponential is then sampled with, as its rate, the viability weight of the juvenile.
The juveniles with the C smallest realized exponentials (in case the total number of juveniles
exceeds C) survive to form the next generation of reproducing individuals. This is a way
of using viability selection to sample the juveniles. The probability of surviving generally
increases with the number of copies of the fit type one carries. The exact configuration
of the types in any given juvenile may also play a role. When SM ≤ C, all the juveniles
survive. Viability selection only kicks in when the number of juveniles exceeds the carrying
capacity. Under recurrent bottlenecks, the population may evolve neutrally for periods of
time when recovering from a bottleneck.

In any given generation a bottleneck occurs with a fixed probability b. When a
bottleneck occurs, a fixed number B of individuals are sampled uniformly and without
replacement to survive the bottleneck and produce juveniles. Clearly, it would be more
realistic to sample a random number of juveniles to survive a bottleneck; however, we elect
to keep b and B constant. The population size Nt+1 at time t + 1 is then given by

Nt+1 = min
(
C, SbM/2c

)
where M is the number of individuals in generation t available for (randomly) forming
bM/2c parent pairs producing juveniles,

M = B1{bottleneck occurs} + Nt1{bottleneck does not occur}

In the total absence of bottlenecks (b = 0), viability selection acts in every generation
(recall Equation (5)). In the presence of bottlenecks (b > 0), the population evolves neutrally
after a bottleneck occurred until the number of juveniles exceeds the carrying capacity.
In Appendix B, we describe the algorithm for the simulations.

Throughout, let L denote the number of linked sites. At each site, there are two
types, a wild type, or the type already present in the population, and a fit type arising by
mutation and conferring advantage. Let G denote the set of all possible phased L-site types.
We define a viability weight for a juvenile with genome G ∈ G as the map

G 7→ 1 + s f (G) (8)

where s > 0 is the strength of selection and f is a weight function f : G → [0, ∞). To give an
example, let us write a genome G as (g1, . . . , gL) ∈ {0, 1, 2}L for the genotypes at the L sites,
where zero stands for homozygous for the wild type (0/0), one for the heterozygous state
(0/1) and two for the homozygous state for the fit type (1/1). For example, writing 1{A} :=
1 if A holds and zero otherwise, we can take the weight function f from Equation (8) as

(g1, . . . , gL) 7→
L

∑
`=1

1{g`=2} (9)

where we add one to the value of the weight function if the fit type is found in a homozygous
state at a site for each site; in other words, the fit type is recessive at all the sites (see Figure 1).
In Equation (9), we exclude epistasis. A juvenile with a genotype of all wild types (i.e.,
homozygous for the wild type at all sites) will (in general) be assigned a weight of one,
thus forming a baseline fitness value.
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Figure 1. Fixation at two sites with weight function as in Equation (9). Examples of excursion to
fixation at two sites (L = 2) with weight as given by Equation (8) with weight function as given
by Equation (9) for carrying capacity C = 106, cutoff u(N) = C (see Equation (5)), probability of
recombination r = 0.25 between adjacent sites, α1 = 0.75, α2 = 3, with ε (see Equation (7)) and b (the
probability of a bottleneck in a given generation) as shown, strength of selection s = 0.1, bottleneck
B = 103 throughout, number of replicates 102 except ten for (a). Each trajectory traces, as a function
of time, the number of diploid individuals homozygous for the fit type at all sites relative to the
population size (the number of diploid individuals). The panels on the right (b,d,f,h) show the
corresponding excursions from the left panels (a,c,e,g) where the time to fixation for each excursion
is normalized by the time to fixation for the excursion. The scale of the abscissa (time axis) may vary
between panels; in each panel, the trajectories were all obtained under identical conditions.
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Considering two sites and assuming at which site a fit type occurs is irrelevant, we
have the following seven configurations; with (a, b) denoting a haplotype with type a at
site one and type b at site two, we have the configurations {(0, 0), (0, 0)}, {(0, 0), (0, 1)},
{(0, 1), (0, 1)}, {(1, 0), (0, 1)}, {(0, 0), (1, 1)}, {(0, 1), (1, 1)}, and {(1, 1), (1, 1)}. In this
notation, configuration {(a, b), (c, d)}means haplotypes (a, b) and (c, d) and genotypes a/c
at site one and b/d at site two.

Fully taking into account the phase between two sites yields sixteen possible ge-
nomic configurations (22L if L sites), where the possible haplotypes are (0, 0), (0, 1), (1, 0),
and (1, 1). The possible configurations are shown in Table 1, where the entries are exam-
ples of the values of the weight function (h1, h2) 7→ [0, ∞), with h1, h2 denoting the two
haplotypes.

Table 1. The possible genomic configurations with two sites; (a, b) for a, b ∈ {0, 1} denotes a
haplotype with type a at site one and type b at site two; the entries are example values of the weight
function in Equation (8).

h1/h2 (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 0 1/2 1/2 1/2
(0, 1) 1/2 1 0 1
(1, 0) 1/2 0 1 1
(1, 1) 1/2 1 1 2

To put our model in context, the effect of sites on an additive trait with trait value z
was formulated as

z =
L

∑
`=1

γ`φ(g`) (10)

where g` is the genotype at site `, φ is a map for translating the given genotype into a
contribution to the trait value and γ` is the effect of site ` on the trait value [38]. The formu-
lation in Equation (10) corresponds to our weight function f in Equation (8). Quite often a
so-called Gaussian fitness is then assumed with the fitness computed according to

z 7→ exp
(
−1

2
s(z− zo)

2
)

(11)

where zo denotes the optimal trait value and s the strength of selection [38]. Then, the
formulation in Equation (11) corresponds to our map in Equation (8).

3. Results

Let Y`(t) ∈ [0, 1] denote the frequency of the fit type at site ` at time t and let us write,
for any A ⊂ [0, 1],

Ty(A) := inf{t ≥ 0 :
L

∏
`=1

Y`(t) ∈ A, Y`(0) = y` for 1 ≤ ` ≤ L },

for some given starting frequency y ∈ (0, 1)L. In the simulations, we start with the fit type in
one copy at each site, i.e., L individuals are heterozygous at a single site, and homozygous
for the wild type at all other sites, and y = (1/(2C), . . . , 1/(2C)). We define “fixation” as
the event {Y`(t) = 1 ∀ ` ∈ {1, . . . , L}}. If the fit type is lost (Y`(t) = 0) at any site, fixation
by definition cannot occur. Given the definition of Ty(A), we can define the probability of
fixation at L sites and the expected time to fixation conditional on fixation

py(1) := P
(
Ty({1}) < Ty({0})

)
τy(1) := E

[
Ty({1})|Ty({1}) < Ty({0})

] (12)
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A mathematical investigation of py(1) or τy(1) would necessarily have to consider the
L-dimensional process {(Y1(t), . . . , YL(t)); t ≥ 0} since one would need to keep track of the
number of copies of the fit type at all sites. Here, we do not aim for precise estimates of py(1)
or τy(1), but only give a few examples of how random sweepstakes, recurrent bottlenecks,
dominance mechanisms and epistasis affect the statistics. The fixation probability carries
both historical and practical weight, as it can inform about adaptation, loss of genetic
variation and the speed of emergence of the resistance to antibiotics among pathogens [39].
The time to fixation (conditional on fixation) is also important [40]. A strongly advantageous
type in a single population evolving according to the Moran model takes on the order of
log(N) time units to fix (given it will fix) on average [14]; in a structured population the
time to fixation depends on the migration rate between the subpopulations [33].

Figure 1 records examples of excursions to fixation at two linked sites with the weight
function given by Equation (9). In Equation (9), the weight function increases by one if
the fit type is found in a homozygous state at a site; there is no epistasis. In all graphs
of fixation trajectories (Figure 1 and Figures A1–A8 in Appendix A) the trajectories in
each panel were all obtained under identical conditions. We also remark that the scale of
the abscissa (time axis) may differ between panels in each figure. The panels record the
excursions for ε (the probability of taking α = 0.75 in Equation (5)) and b (the probability of
a bottleneck in any given generation) as shown. The excursions in Figure 1 are shown as
the number of diploid individuals homozygous for the fit type at both sites relative to the
population size as a function of time. The panels in the right column (b, d, f and h) record the
corresponding trajectories in the left column (a, c, e and g) with the time of each trajectory
normalized by the time to fixation for the trajectory so that each trajectory reaches the
value one at time one. A fixation trajectory for a single mutation with selective advantage
1/N � s� 1 has been described as consisting of “phases”, with the phase in which the
mutation sweeps from a “low” (k � N) frequency to a “high” frequency lasting on the
order of 1/s generations [41]. The 1/s estimate, coupled with the approximation ln(2Ns)/s
for the average time it takes a mutation to sweep in a population evolving according to
the Wright–Fisher model necessarily requires 2Ns > e. In Figure 1a, we see that it takes
roughly 300–400 generations for a mutation to fix in the absence of random sweepstakes,
which matches reasonably well with the estimate O(ln(2Ns)/s) of the time to fixation
conditional on fixation for a single mutation in a diploid population evolving according
to the Wright–Fisher model [42], even though in our case, the trajectories represent the
joint fixation at two sites. In Figure 1a, we also see that the time it takes the trajectory to
increase from a “low” to “high” frequency is roughly 100 generations, or around tenfold
the estimate 1/s given in [41].

The logistic differential equation

dp
dt

= sp(1− p) (13)

has been applied in describing how an advantageous type at a single site with selective
advantage s increasing in frequency in a population during a sweep [43]. A different
approach based on random partitions governed by a stick-breaking construction has
also been investigated [44]. In our case, with multiple (at least two) sites, we suggest
extending the random partitions approach of [44] (see also [45]) to incorporate multiple
sites might be feasible. We are interested in investigating how well fixation trajectories
tracing the joint fixation at two or more sites compare to the sigmoidal shape predicted by
Equation (13) traditionally used to describe fixation trajectories. The shape of the trajectories
in Figure 1 is clearly not captured by Equation (13). An extensive analysis of genomic
data from Atlantic cod indicates that strong positive selection is pervasive, leading to a
convex (or U-shaped) site-frequency spectrum being consistently observed throughout
the genome. Suppose that many of the mutations observed in a U-shaped site-frequency
spectrum are selectively advantageous mutations traveling along a fixation trajectory.
Then, we would like to understand if a particular shape of a fixation trajectory predicts a
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U-shaped site-frequency spectrum and another particular shape not. Knowing the potential
correspondence between the shape of a fixation trajectory and the shape of a site-frequency
spectrum may also inform about the likely dominance mechanism of positive mutations.

The trajectories in Figure 1a (and hence also those in Figure 1b) are from ten experi-
ments, and in all other panels, from one hundred (102) experiments; thus, random sweep-
stakes and recurrent bottlenecks reduce py(1) somewhat. We emphasize that we are not aim-
ing for precise estimates of py(1) or τy(1) defined in Equation (12).
Bottlenecks in the absence of random sweepstakes clearly tend to increase the time to
fixation (Figure 1e), with the effect of bottlenecks on the time to fixation negated by random
sweepstakes (Figure 1g). In our framework, we keep the cutoff u(N) in Equation (5) fixed
at the carrying capacity. When a bottleneck occurs the population size is reduced to some
given value, which is less than the carrying capacity. The individuals producing juveniles
right after a bottleneck do so with the cutoff higher than the current population size, re-
sulting in individuals having a higher chance of producing a large (relative to the current
population size) number of juveniles. Simulation results have shown that increasing the
cutoff relative to the population size reduces the fixation time (conditional on fixation)
[46]. In Figure 1c, we see little effect of random sweepstakes on the time to fixation in the
absence of bottlenecks; we claim this is due to taking the cutoff the same as the population
size, or the carrying capacity in this case.

Normalizing the time to fixation (Figure 1b,d,f,h where the time to fixation for each
trajectory is normalized by the time to fixation for the trajectory) informs about the time
spent in each “phase” of the trajectory. The normalized trajectories (dimensionless in
time) show the cumulative proportions of each particular realization’s time to fixation.
For example, in Figure A2b, the time to fixation is clearly dominated with the fit type
at high frequencies at both sites. In contrast, in Figure 1b, the trajectory is increasing
essentially linearly from low to high frequencies and in doing so spends around 20% of
the time to fixation at “intermediate” frequencies. Given the estimate 1/s stated in [41],
a type taking on average of order log(2Ns)/s generations to travel to fixation should
then be spending on average about 1/ log(2Ns) of the time to fixation in “intermediate”
frequencies. For N = 106 and s = 0.1, this is around 8%.

Further examples of fixation trajectories are given in Figures A1–A8 in Appendix A.
Comparing the results for the given weight functions reveals that there are two main
patterns. One pattern is the one in Figure 1, which is essentially mirrored in Figures A1,
A4, A5, A7 and A8. In Figure A1, we took the weight function as in Equation (A1), as in
Equation (A4) for Figure A4, in Equation (A5) for Figure A5 and as in Equation (A4) for
Figures A7 and A8. In Figure A7, we took s = 0.1, and in Figure A8, we took s = 0.01,
the other parameter values being the same.

The other pattern is represented in Figures A2 and A3 (both for two sites), and in
Figure A6 (for three sites). Taking the weight function as in Equation (A2) yields the
results in Figure A2, in Equation (A3) the results in Figure A3 (two sites) and in Figure A6
(three sites). In this pattern the trajectories without random sweepstakes or bottlenecks
(Figure A2a) have the shape of a completely dominant type at a single site (see e.g., [18]),
although the weight function (Equation (A2) resembles one for a recessive type. In addition,
random sweepstakes clearly shorten the time to fixation in the absence of bottlenecks (e.g.,
Figure A6c), and counteract the effect of bottlenecks on the time to fixation (conditional on
fixation; e.g., Figure A7g).

4. Discussion

We gave examples of the joint effects of random sweepstakes, recurrent bottlenecks
and dominance mechanisms on the fate of selectively advantageous mutations at linked
sites. We showed that, depending on the dominance mechanism, random sweepstakes
could shorten the time to fixation (conditional on fixation at all the sites).
Bottlenecks could increase the fixation time, and random sweepstakes counteracted the
effect of bottlenecks on the fixation time regardless of the dominance mechanism. The shape
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of the fixation trajectories could be broadly divided into two categories in the absence of
bottlenecks, one with a linear increase from “low” to “high” frequencies and another where
the trajectories spent nearly the whole time with the fit type in high frequencies at all sites.
We emphasize that we did not aim for precise estimates of the probability of fixation or
the time to fixation (conditional on fixation) or to investigate many possible scenarios.
However, our algorithm provided a tool for further investigations of various demographic
and molecular mechanisms on selection. Similar results on the interaction between bottle-
necks and random sweepstakes have been obtained for selection acting at a single site [18]
and unlinked sites [17].

Studies of selection acting at more than one site generally focus on how a trait value
affected by the sites evolves, in particular in reference to a given optimum (e.g., [38]).
The effects of the sites on the trait value may vary, and some studies have investigated the
evolution of a trait given a change in the optimum when the trait value is determined by
many sites (or loci) [47,48]. Our simulation algorithm can, in principle, handle any number
of linked sites. However, in particular given that we need to keep track of the number of
copies of the fit type at all sites, there are practical considerations (for example computer
memory) that limit the number of sites that in practice can be considered. In addition,
adaptation may be at least to a large degree due to a few genes of major effect [36].

Our algorithm keeps track of phased haplotypes, so we can investigate the effect of
epistasis on selection. Epistasis may be a key player in adaptation [49–51].
Significant amounts of genetic variation despite pervasive strong selection may indicate
that there is considerable amount of “genetic constraints” [52]. Maybe selection acting on
two or more sites with epistatic interactions between the sites can be a way of incorporating
genetic constraints.

Evolution can occur “rapidly”, as many examples from nature show [53–58].
Our results showed that the joint fixation at two or more sites occurred on a timescale com-
parable to O(ln(2Ns)/s), the order of time it took a sweep of a single beneficial mutation
of advantage s to complete. Understanding the time to fixation at two or more sites may be
important in the battle against antibiotic and pesticide resistance [59–61].

An open problem is rigorously verifying the simulation results. Here, multitype
branching process theory [62–67] may be useful. The mathematical analysis of the model
of random sweepstakes given in Equation (7) and applied in the simulations is ongoing.
There is also a need for further mathematical theory for inferring evolutionary histories
of natural populations, in particular in view of the results of [5]. There may be a high
cost of selection in populations evolving according to recurrent selective sweepstakes [68].
We anticipate that models of random sweepstakes incorporating strong positive selection in
the form of recurrent selective sweeps of strongly advantageous types arising by mutation
will be necessary for understanding high fecundity. In particular, high fecundity and
random sweepstakes might enable populations to “pay for selection”, i.e., withstand the
cost of strong pervasive positive selection.
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Appendix A

In this section, we give further examples of fixation trajectories (Figures A1–A8) for
various weight functions. Throughout, the viability weight was computed as in Equation (8).
In each graph, a trajectory to fixation traces, as a function of time, the number of diploid
individuals homozygous for the fit type at all sites relative to the population size (the
number of diploid individuals). Throughout, we considered viability selection acting at
linked sites in a diploid population evolving according to Equation (7) with α1 = 0.75
and α2 = 3 and the cutoff u(N) in Equation (5) set to the carrying capacity C. Every time,
we started with the fit type in a single copy at each site for all sites. Furthermore, each
diploid individual was heterozygous at most at one site to begin with, i.e., at the start, each
individual carried at most one copy of a fit type. The algorithm is given as a pseudocode in
Appendix B.

Let hi for i = 1, 2 denote haplotype i (arbitrarily labeled) in a given juvenile. In
Figure A1, we record examples of excursions to fixation at two sites with the weight
function (recall the definition of a viability weight in Equation (8)) given by

f (G) = 1{h1=(1,...,1)} + 1{h2=(1,...,1)} (A1)

and recall that we denote a genome by G. Compare Equation (A1) with Equation (9).
In Equation (A1), the value of the weight function increases by one for each haplotype
carrying the fit type at all sites.

Figure A2 records examples of excursions to fixation at two sites for the weight
function

f (G) = 1{at least three copies of the fit type} (A2)

The idea behind the mechanism in Equation (A2) is to model essentially a recessive fit
type; however, the excursions in Figure A2a resemble the ones for a dominant type.

In Figure A3, with a weight function for two sites given by (with hi for i ∈ {1, 2}
denoting haplotype i, arbitrarily labeled, in a given juvenile)

f (G) = 1{{h1=(1,...,1)}∪{h2=(1,...,1)}} (A3)

The weight function in Equation (A3) takes the value one if and only if at least one
of the two haplotypes in a given juvenile carries the fit type at all sites. In Figure A6, we
record fixation trajectories for three sites with the weight function given by Equation (A3).

Figure A4 records trajectories for two sites when the weight function is of the form

f (G) = 1{{h1 6=(1,...,1)}∩{h2 6=(1,...,1)}}
1
2 + 1{{h1=(1,...,1)}∩{h2=(1,...,1)}} (A4)

In Equation (A4), a juvenile homozygous for the fit type at all sites has maximum
fitness, but having one haplotype carrying only a fit type brings disadvantage if the other
haplotype does not follow suit. In Figures A7 and A8, we record fixation trajectories for
three sites with weight function as in Equation (A4) and in Figure A8, with s = 0.01.

In Figure A5, we record fixation trajectories for three sites with weight function
given by

f (G) = 1{{h1=(1,1,1)}∩{h2=(1,1,1)}} (A5)

In Equation (A5), the weight function in Equation (8) takes the value one if a juvenile
is homozygous for the fit type at all three sites, otherwise the value zero.
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(g) ε = b = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Normalized timeF
re
q
u
en

cy
o
f
d
o
u
b
ly
-h
o
m
o
zy
g
o
u
s
in
d
iv
id
u
al
s

(h) Norm. time for (g)

Figure A1. Two sites with weight function as in Equation (A1). Examples of trajectories to fixation
at two sites with weight determined by Equation (8) with weight function as in Equation (A1) for
carrying capacity C = 106, cutoff u(N) = C, probability of recombination r = 0.25 between adjacent
sites, α1 = 0.75, α2 = 3, ε (see Equation (7)) and probability of a bottleneck b as shown, strength of
selection s = 0.1 and bottleneck B = 103. Each panel shows the trajectories from ten experiments
for (a,b) otherwise from 102 experiments. Each trajectory traces, as a function of time, the number of
diploid individuals homozygous for the fit type at all sites relative to the population size (the number
of diploid individuals). The panels on the right (b,d,f,h) show the corresponding excursions from the
left panels (a,c,e,g), where the time to fixation for each excursion is normalized by the time to fixation
for the excursion. The scale of the abscissa (time axis) may vary between panels; in each panel the
trajectories were all obtained under identical conditions.
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Figure A2. Two sites with weight function as in Equation (A2). Examples of trajectories to fixation
at two sites with weight determined by Equation (8) with weight function as in Equation (A2) for
carrying capacity C = 106, cutoff u(N) = C, probability of recombination r = 0.25 between adjacent
sites, α1 = 0.75, α2 = 3, ε (see Equation (7)) and probability of a bottleneck b as shown, strength
of selection s = 0.1, bottleneck B = 103 and results out of ten experiments for (a); 102 experiments
for (c); 103 experiments for (e,g). Each trajectory traces, as a function of time, the number of diploid
individuals homozygous for the fit type at all sites relative to the population size (the number of
diploid individuals). The panels on the right (b,d,f,h) show the corresponding excursions from the
left panels (a,c,e,g), where the time to fixation for each excursion is normalized by the time to fixation
for the excursion. The scale of the abscissa (time axis) may vary between panels. In each panel, all the
trajectories were obtained under the same conditions.
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Figure A3. Two sites with weight function as in Equation (A3). Examples of excursions to fixation
at two sites with weight function as given by Equation (A3) for carrying capacity C = 106, cutoff
u(N) = C, probability of recombination r = 0.25 between adjacent sites, α1 = 0.75, α2 = 3, ε (see
Equation (7)) and probability of a bottleneck b as shown, strength of selection s = 0.1, bottleneck
B = 103 and results out of ten experiments for (a); otherwise 102 experiments. Each trajectory traces,
as a function of time, the number of diploid individuals homozygous for the fit type at all sites
relative to the population size (the number of diploid individuals). The panels on the right (b,d,f,h)
show the corresponding excursions from the left panels (a,c,e,g), where the time to fixation for each
excursion is normalized by the time to fixation for the excursion. The scale of the abscissa (time axis)
may vary between panels; in each panel, the trajectories were all obtained under identical conditions.
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Figure A4. Two sites with weight function as in Equation (A4). Examples of excursions to fixation
at two sites with weight function as given by Equation (A4) for carrying capacity C = 106, cutoff
u(N) = C, probability of recombination r = 0.25 between adjacent sites, α1 = 0.75, α2 = 3, ε (see
Equation (7)) and probability of a bottleneck b as shown, strength of selection s = 0.1 and bottleneck
B = 103; results from ten experiments for (a,c); otherwise, from 102 experiments. Each trajectory
traces, as a function of time, the number of diploid individuals homozygous for the fit type at all sites
relative to the population size (the number of diploid individuals). The panels on the right (b,d,f,h)
show the corresponding excursions from the left panels (a,c,e,g), where the time to fixation for each
excursion is normalized by the time to fixation for the excursion. The scale of the abscissa (time axis)
may vary between panels; in each panel, the trajectories were all obtained under identical conditions.
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Figure A5. Three sites with weight function as in Equation (A5). Examples of fixation trajectories
at three sites with weight function as in Equation (A5), carrying capacity C = 106, cutoff u(N) = C,
probability of recombination r = 0.25 between adjacent sites, α1 = 0.75, α2 = 3, ε (see Equation (7))
and probability of a bottleneck b as shown, strength of selection s = 0.1 and bottleneck B = 103;
excursions’ trajectories from ten trials in (a,c) and from 102 trials in (e,g). Each trajectory traces, as a
function of time, the number of diploid individuals homozygous for the fit type at all sites relative to
the population size (the number of diploid individuals). The panels on the right (b,d,f,h) show the
corresponding excursions from the left panels (a,c,e,g), where the time to fixation for each excursion
is normalized by the time to fixation for the excursion. The scale of the abscissa (time axis) may vary
between panels; in each panel, the trajectories were all obtained under identical conditions.
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Figure A6. Three sites with weight function as in Equation (A3). Examples of fixation trajectories
for fixation at three sites with weight function given by Equation (A3), carrying capacity C = 106,
cutoff u(N) = C, probability of recombination r = 0.25 between adjacent sites, α1 = 0.75, α2 = 3,
ε (see Equation (7)) and probability of a bottleneck b as shown, strength of selection s = 0.1 and
bottleneck B = 103; (a,c) from ten experiments, (e,g) from 102 experiments. Each trajectory traces, as a
function of time, the number of diploid individuals homozygous for the fit type at all sites relative to
the population size (the number of diploid individuals). The panels on the right (b,d,f,h) show the
corresponding excursions from the left panels (a,c,e,g), where the time to fixation for each excursion
is normalized by the time to fixation for the excursion. The scale of the abscissa (time axis) may vary
between panels; in each panel, the trajectories were all obtained under identical conditions.
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Figure A7. Three sites with weight function as in Equation (A4). Examples of fixation trajectories
for fixation at three sites with weight function as in Equation (A4), carrying capacity C = 106, cutoff
u(N) = C, probability of recombination r = 0.25 between adjacent sites, α1 = 0.75, α2 = 3, ε (see
Equation (7)) and probability of a bottleneck b as shown, strength of selection s = 0.1 and bottleneck
B = 103. In (a,c,e) trajectories from ten experiments, in (g) from 102 experiments. Each trajectory
traces, as a function of time, the number of diploid individuals homozygous for the fit type at all sites
relative to the population size (the number of diploid individuals). The panels on the right (b,d,f,h)
show the corresponding excursions from the left panels (a,c,e,g), where the time to fixation for each
excursion is normalized by the time to fixation for the excursion. The scale of the abscissa (time axis)
may vary between panels; in each panel, the trajectories were all obtained under identical conditions.
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Figure A8. Three sites with weight function as in Equation (A4). Examples of fixation trajectories
at three sites with weight function as given by Equation (A4) ; carrying capacity C = 106, cutoff
u(N) = C, probability of recombination r = 0.25 between adjacent sites, α1 = 0.75, α2 = 3, ε (see
Equation (7)) and probability of a bottleneck b as shown, strength of selection s = 0.01 and bottleneck
B = 103. In (a,c), trajectories are from ten experiments; trajectories in (e,g) are from 102 experiments.
Each trajectory traces, as a function of time, the number of diploid individuals homozygous for the fit
type at all sites relative to the population size (the number of diploid individuals). The panels on
the right (b,d,f,h) show the corresponding excursions from the left panels (a,c,e,g), where the time to
fixation for each excursion is normalized by the time to fixation for the excursion. The scale of the
abscissa (time axis) may vary between panels; in each panel, the trajectories were all obtained under
identical conditions.
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Appendix B

In this section, we give the algorithm for the simulations in the form of a pseudocode.
Each and every time, we started with the fit type in one copy at each site, with any given
diploid individual initially carrying at most one copy of a fit type. Each and every time, the
population size was initially set to the carrying capacity C.

1. Initialize the frequency of the fit type at each site, i.e.,

(Y1(0), . . . , YL(0))←
(

1
2C , . . . , 1

2C

)
with any diploid individual being heterozygous at most at one site.

2. While
{

0 < ∏`∈[L] Y`(t) < 1
}

holds, then for generation t + 1 started
with Nt individuals:

(a) Sample a random uniform U ← on (0, 1) to check if a bottleneck occurs;
(b) M← 1{U≤b}B + 1{U>b}Nt where b is the probability of a bottleneck and B the

number of individuals surviving a bottleneck;
(c) In the case of a bottleneck, the M surviving individuals are sampled uniformly

at random without replacement from among the Nt individuals;
(d) The M individuals randomly form bM/2c pairs that will go on to produce

juveniles;
(e) Sample SbM/2c := X1 + · · ·+ XbM/2c random number of juveniles according

to Equation (7) produced independently by bM/2c randomly formed parent
pairs;

(f) Assign types to the juveniles according to Mendel’s laws allowing for recombi-
nation between sites (we exclude mutation);

(g) If SbM/2c > C, for each juvenile independently, sample a random exponential
with rate as in Equation (8), compute the Cth largest exponential E(C), and a
juvenile with exponential E ≤ E(C) survives;

(h) If SbM/2c ≤ C, all the juveniles survive, so that Nt+1 = min
(

SbM/2c,C
)

for any
t ∈ N.

3. Record the result of the trajectory; if the event
{

∏`∈[L] Y`(t) = 0
}

occurred, a fit type

was lost, and if
{

∏`∈[L] Y`(t) = 1
}

occurred, the fit type reached fixation at all sites,
with [L] := {1, 2, . . . , L}.
The documented CWEB (C++) code is freely available at https://github.com/eldonb/

fixation_many_sites (accessed on 13 December 2022).
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