
Citation: Choi, T.; Cho, K.; Sung, Y.

Approaches That Use

Domain-Specific Expertise:

Behavioral-Cloning-Based

Advantage Actor-Critic in Basketball

Games. Mathematics 2023, 11, 1110.

https://doi.org/10.3390/

math11051110

Academic Editor: Sam Ganzfried

Received: 30 January 2023

Revised: 20 February 2023

Accepted: 21 February 2023

Published: 22 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Approaches That Use Domain-Specific Expertise:
Behavioral-Cloning-Based Advantage Actor-Critic
in Basketball Games
Taehyeok Choi, Kyungeun Cho * and Yunsick Sung *

Department of Multimedia Engineering, Dongguk University-Seoul, 30, Pildongro-1-gil, Jung-gu,
Seoul 04620, Republic of Korea
* Correspondence: cke@dongguk.edu (K.C.); sung@dongguk.edu (Y.S.);

Tel.: +82-2-2260-3834 (K.C.); +82-2-2260-3338 (Y.S.)

Abstract: Research on the application of artificial intelligence (AI) in games has recently gained
momentum. Most commercial games still use AI based on a finite state machine (FSM) due to
complexity and cost considerations. However, FSM-based AI decreases user satisfaction given that it
performs the same patterns of consecutive actions in the same situations. This necessitates a new AI
approach that applies domain-specific expertise to existing reinforcement learning algorithms. We
propose a behavioral-cloning-based advantage actor-critic (A2C) that improves learning performance
by applying a behavioral cloning algorithm to an A2C algorithm in basketball games. The state
normalization, reward function, and episode classification approaches are used with the behavioral-
cloning-based A2C. The results of the comparative experiments with the traditional A2C algorithms
validated the proposed method. Our proposed method using existing approaches solved the difficulty
of learning in basketball games.

Keywords: game AI; reinforcement learning; imitation learning; basketball game

MSC: 91A25

1. Introduction

Recently, research on the application of artificial intelligence (AI) in games has been
on the increase. Most commercial games still use AI based on a finite state machine
(FSM) due to complexity and cost considerations. However, FSM-based AI decreases user
satisfaction given that it performs the same patterns of consecutive actions in the same
situations. Various studies have applied reinforcement learning to AI to replace a non-
player character or a player [1]. Since reinforcement learning can be applied to model-free
environments, it is suitable for complicated game environments. For example, a study
applied a deep Q-network (DQN) [2] to Atari games [3]. The Atari game environment is
effectively used to verify reinforcement learning since it provides interfaces to experiment
with various games [3]. DQN succeeded in human-level AI learning by applying deep
neural networks to Q-learning [4]. In addition, DQN solved the problem of complexity
through a convolutional neural network (CNN).

Three heuristic pre-processes are required to successfully apply reinforcement learning
in a basketball game. The first pre-process involves normalizing the state representation
for learning in a complex environment of a basketball game. Since the raw data generated
in the basketball game environment increases the amount of learning, it is necessary
to sort selected raw data and process them to be easily understood. For example, it
is necessary to reduce the state space of reinforcement learning by representation using
relative values. Learning can be stabilized by normalizing raw data in an unstable basketball
game environment [5]. The second pre-process is designing the reward function that

Mathematics 2023, 11, 1110. https://doi.org/10.3390/math11051110 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051110
https://doi.org/10.3390/math11051110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2219-0848
https://orcid.org/0000-0003-3732-5346
https://doi.org/10.3390/math11051110
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051110?type=check_update&version=3

Mathematics 2023, 11, 1110 2 of 14

evaluates the actions of the AI. Defining the reward function to be applied to reinforcement
learning in a basketball game may be difficult [6–8]. Accordingly, it is necessary to consider
the correlation among various rewards generated in this complex environment during
the design process. The third pre-process is classifying various episodes for learning.
Learning various episodes at once increases learning complexity [7]. To classify episodes
per situation, it is necessary to define and classify representative situations as offense,
defense, and loose ball to reduce the complexity.

Additionally, reinforcement learning for basketball games requires an approach to
improve its performance limitation given that reinforcement learning starts learning with
a uniform policy and faces lots of trials and errors at the beginning of learning. Such
trials and errors reduce learning performance [9]. Thus, a new AI approach that applies
domain-specific expertise to existing reinforcement learning algorithms is needed.

We propose a behavioral-cloning-based advantage actor-critic (A2C), which improves
learning performance by applying a behavioral cloning algorithm [10] to an A2C algo-
rithm [11,12], a reinforcement learning algorithm, in a basketball game. We introduce
three pre-processing methods, namely, state representation, reward function, and episode
classification, that can be used to apply the behavioral-cloning-based A2C to a basketball
game. The present study aims to solve the issues related to learning time and state space
generated during reinforcement learning in complex basketball games.

This paper is configured as follows. Section 2 discusses studies related to the state
representation, reward function, episode classification, and behavioral cloning algorithm.
Section 3 explains the behavioral-cloning-based A2C proposed in this paper and pre-
processes applied to improve reinforcement learning. Section 4 compares the performance
of FSM-based AI applied to commercial games with the AI trained by the proposed method.
Section 5 describes the experimental results achieved by the proposed method and areas of
further study.

2. Background

Reinforcement learning is a circular structure that exchanges states, rewards, and
actions, and the control is generally handled by the agent. First, the agent requests a state
and reward from the environment. Furthermore, when the state and reward come from the
environment, the agent determines the action and sends it back to the environment. The
environment takes action, undergoes a transition to the environment, and then regenerates
the state and reward in the next step.

The DQN algorithm contributed three methods to solve the problem that reward
graphs fail to converge with unstable learning when combining deep neural networks
and reinforcement learning. The DQN algorithm defined an image as a state in the Atari
game and enabled effective learning with a relatively small image, even in the environment
requiring a high-level sensor, by applying a CNN. Furthermore, the use of CNNs made
the performance better as compared to the performance when the conventional simple
linear function neural networks were used. The DQN algorithm used a replay buffer using
previous experiences, which solved the sample correlation problem and stabilized the
distribution of the data. The DQN algorithm used a target network to solve the problem of
unstable target values.

The double deep Q network (DDQN) algorithm proves that the DQN algorithm can
be overoptimistic. The DDQN algorithm also shows that the overestimation of the DQN
algorithm is more common by analyzing the value estimation. The DDQN algorithm solved
the existing problem and proved to be more stable. The DDQN algorithm proposed an im-
plementation method that simply modifies the loss function without changing the network
or other tasks. The DDQN algorithm obtained good results in the Atari 2600 domain.

The A2C algorithm is designed to reduce variance by adding the concept of a critic
in the policy gradient method. There is an actor that updates parameters to find a policy
and a critic that updates parameters to estimate a value. In the process of making a policy
gradient, subtracting the constant value unrelated to the action can reduce the variance

Mathematics 2023, 11, 1110 3 of 14

without affecting the estimation. Therefore, the advantage A(s, a) can be expressed as a
state-action value Q(s, a) and a state value V(s). Additionally, applying the time difference
(TD) method is efficient because the number of parameters can be reduced.

The self-imitation learning (SIL) algorithm proposed a learning method that imitates
past good decisions. The SIL algorithm provided a theoretical justification for their objective
function. The SIL algorithm was simply implemented and could be applied to the A2C
algorithm. The SIL algorithm validated the good performance in several Atari games.
The SIL algorithm was applied to the proximal policy optimization (PPO) algorithm and
improved performance.

The DQN algorithm and DDQN algorithm estimate the value of actions and states to
determine the next actions, which is called a value-based algorithm. It is difficult to apply
the proposed method given that there is no explicit policy. The SIL algorithm imitates past
decisions, which may not be enough to achieve an optimal policy. Since the A2C algorithm
has an explicit policy, it is suitable to imitate an expert policy. There are limitations to the
A2C algorithm itself that make it insufficient for application to complex basketball game
environments, but the method presented in this paper can be improved upon.

3. Related Work

This section discusses existing reinforcement learning studies, including the state
representation, reward function, and episode classification in reinforcement learning. We
also introduce a behavioral cloning algorithm.

3.1. Reinforcement Learning

Reinforcement learning can be applied to various industries, such as games, stocks,
and automobiles. However, in the beginning of the learning stage, reinforcement learning
undergoes trials and errors, so a simulation environment is essential. Without such a
simulation environment, researchers would lose huge amounts of stock in stocks or suffer
from car accidents in automobiles. Since the game environment is advantageous for the
application of techniques such as several times of speed and synchronization that are
helpful for learning, many reinforcement learning studies have been conducted on the
game environment.

Schaul et al. [13] introduced a priority-based sampling method in operating replay
buffers proposed in a deep Q-network (DQN). Another study modified and improved
the loss function of a DQN [14]. Another study modified and applied the network to
make the state value not the state-action value in DQN [15]. There is a study that uses
this distribution and performs well in certain Atari games [16]. Another study performed
reinforcement learning in multiple environments using an asynchronous method [12]. In
the policy-based reinforcement-learning algorithm, an algorithm applied clipping using
epsilon [17]. Other studies improved an A2C algorithm using a higher TD error in the replay
buffer [18]. A framework study used an Atari environment for reinforcement learning [19].
Another study defined a state and reward for applying reinforcement learning to StarCraft
2 and applied reinforcement learning to a mini-game using the reinforcement learning
used in the Atari game [20]. Other studies implemented the environment for applying
multi-agent reinforcement learning to StarCraft 2; they defined the state, reward, and action
and experimented using various multi-agent reinforcement learning algorithms [21]. Shao
et al. [6] enhanced the performance of an AI using curriculum transfer learning in the
StarCraft micromanagement environment. Kurach et al. [22] developed a soccer game
engine for reinforcement learning, experimented with reinforcement learning algorithms,
and finally, provided an experimental environment, including a soccer game benchmark
and a soccer game academy. Other studies used multi-agent reinforcement learning,
position learning, episode-classification learning, and curriculum learning in basketball
games [7]. Liu et al. [23] introduced a deep reinforcement learning (DRL) approach for
a vehicle dispatching problem by designing the corresponding simulator and a specific

Mathematics 2023, 11, 1110 4 of 14

vehicle dispatching algorithm. The DRL approach simplifies the problem of the requirement
for a large number of agents.

3.2. State Representation, Reward Function, and Episode Classification

State refers to environmental data given to an agent at a specific time. An agent
determines the course of action based on the state. The performance of a reinforcement
learning-based agent depends on the state definition [24]. Mnih et al. [2] defined an image
as a state in the Atari game. When it is difficult to define an image as a state, the state is
defined using values. Shao et al. [6] adopted a normalized relative coordinate value based
on the agent to be learned. The merits of a normalized state are the reduction of risks of
falling into local minima and making optimization by an optimizer faster [5].

Reward refers to the value assigned to the action of an agent at a specific time. Since
the action policy depends on the methods defining the reward function, it is important to
define the reward function [8]. Ng et al. [8] verified the change of the action policy of an
agent depending on the reward. Shao et al. [6] demonstrated that the winning rate of an
agent depended on reward in a StarCraft micromanagement environment. Even with the
same algorithm, the learning performance converged faster with a denser reward.

Jia et al. [7] introduced a learning method that classified episodes per situation when it
was difficult to learn for the entire episode and experimentally verified the performance im-
provement.

3.3. Behavioral-Cloning Algorithm

A behavioral cloning algorithm [10] is a representative imitation learning algorithm [25].
The behavioral cloning algorithm collects states and actions from game data collected by
experts and uses them as learning data. Based on the collected data, it is possible to train an
AI that acts similarly to the policy of the expert. However, behavioral cloning algorithms
improve performance only in states included in the game data of experts. Ross et al. [26]
improved a behavioral cloning algorithm by adjusting the ratio of the actions of an expert
and other actions. Goecks et al. [9] introduced a method to simultaneously solve the
problems of imitation learning and reinforcement learning.

3.4. Comparison of Proposed Method to Related Works

Jia et al. [7] performed multi-agent reinforcement learning, position learning, episode
classification learning, and curriculum learning for a basketball game. The offense episode
of a shooting guard in a basketball game has 42 actions. The multi-agent reinforcement
learning assigned rewards to successful actions, including score, block, mark, steal, and
pick. The episode-classification learning classified offense episodes into three categories:
attack, assist, and ball clear.

The proposed method defines the offense episodes into 11 actions: movement in eight
directions, shoot, breakthrough, and pass. Since the number of actions is reduced, the
learning space is reduced, and learning performance can be improved in the same episode.
The proposed method gives rewards in situations, including mark and avoid, in addition
to completed actions, including shoot and breakthrough. In episode classification learning,
the entire episode is classified into offense, defense, and loose ball. The offense episode is
not segmented for correlation considerations.

Goecks et al. [9] explained the algorithm that adds imitation learning to reinforcement
learning. Learning is performed with state, action, and reward data collected from an
expert and exploration by reinforcement learning AI. The proposed method uses pre-
defined policies without directly applying the state, action, and reward collected from an
expert; it uses the state value, not the action value.

Table 1 summarizes the key differences and similarities between our work and the others.
The contents in black illustrate the similarities, and items in red illustrate the differences.

Mathematics 2023, 11, 1110 5 of 14

Table 1. Summarizing key differences and similarities.

Ours Jia et al. [7] Goecks et al. [9]

State Normalized relative values based
on basketball game data Basketball game data Various values

Reward Values based on state and action Values based on success of the action Conventional values

Episode Offense, defense, and loose ball Attack, assist, defense, free ball, and
ball clear Single episode

Algorithm Behavioral-cloning-based A2C Multi-agent reinforcement learning Reinforcement learning that
combines imitation learning

4. Behavioral-Cloning-Based A2C and Application in Basketball Games

This section proposes a behavioral-cloning-based A2C and the method to apply it to a
basketball game. The loss function for learning by behavioral-cloning-based A2C using the
policies of an expert is explained. Furthermore, this section describes the structure used to
apply behavioral-cloning-based A2C to a basketball game and the series of pre-processes,
which include state representation, reward function, and episode classification.

4.1. Behavioral-Cloning-Based A2C

We propose a method to reduce the learning time of A2C using the behavioral-
cloning algorithm [10] when the policy of an expert is provided. In general, the to-
tal loss function La2c = Es,a∼πθ

[
Lpolicy + Lvalue] [12] is calculated using the sum of

the policy loss function Lpolicy = −logπθ(a|s)(R−Vθ(s)) − αHπθ [12] and the value
loss function Lvalue = 1

2 (R−Vθ(s))
2 [12]. The entropy loss function is defined as

Hπθ = −∑a πθ(a|s)logπθ(a|s) [12]. The entropy loss function prevents the soft-max
distribution from exceeding a certain range. We propose a policy loss function Lpolicy as
specified in Equation (1) below. Where −logπθ(a|s)(R−Vθ(s))− αHπθ is the same as
the policy loss function of A2C Lpolicy, and −β logπθ(a

expert |s) is the behavioral cloning
loss function. When the action of an expert is determined as aexpert ∼ πexpert(aexpert|s), the
loss of πθ(aexpert |s) is calculated using a log function.

Lpolicy = −logπθ(a|s)(R−Vθ(s))− αHπθ − β logπθ

(
aexpert |s

)
(1)

Algorithm 1 is the pseudo-code for the proposed method. Learning is repeated until
the return converges. The action at is calculated at πθ using the state st, and the action
of the expert aexpert

t is calculated at πexpert using the state st. The reward rt is determined
based on the state st and action at. The action at, action of the expert aexpert

t , and reward rt
are written on the update buffer

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 14

Algorithm 1 Proposed behavioral-cloning-based A2C.

1 Initialize parameter θ, θv

2 Initialize update buffer Ɛ ← ∅

3 When the return does not converge, do

4 rt←Execute an action at~πθ(at|st)

5 Get expert action at
expert

~πexpert(at
expert

|st)

6 Store transition Ɛ←Ɛ∪ {st,at, at
expert

, rt}

7 If the episode is done

8 Compute return Rt = Σk=1
∞ γk−trk for all t in Ɛ

9 # Perform actor update

10 θ←θ− πθ(a|s)(R − Vθv(s)) − αℋπθ − βlogπθ(aexpert|s)

11 # Perform critic update

12 θv←θv +
1

2
(R − Vθv(s))

2

13 Clear update buffer Ɛ ← ∅

14 End If

15 End While

4.2. Application of Behavioral-Cloning-Based A2C

We applied the proposed method to the Freestyle learning simulator environment

for a 3 to 3 basketball game (hereinafter referred to as “basketball game”). The learning

simulator had the same game rules as the basketball game shown in Figure 1 and provided

the speed control, AI command interface, and learning data. Figure 1 was extracted from

the basketball game, Freestyle (Joycity Corp, Seongnam-si, Republic of Korea).

Figure 1. Freestyle basketball game screen (Freestyle, Windows PC, Joycity Corp. 2004).

The basketball court was a half-court, which was 15 m wide and 11 m long in the

virtual environment. Foul regulations such as outs or double dribbles were not applied.

The ball could not go out of the court. When the offensive team failed at offense within 20

s, it was considered a foul, and the offense’s turn went to the opposing team. Each team

had three players. At the end of the game, the team with the higher scores won.

Figure 2 describes the behavioral-cloning-based A2C structure proposed in this pa-

per. An agent is a basketball game character determining an action after receiving the state

from the environment of the learning simulator. The actions are movement in eight direc-

tions, shoot, pass, mark, steal, rebound, and breakthrough.

. When the episodes end, the parameter θ of the actor
and parameter θv of the critic are updated as explained below. The return Rt is calculated
by multiplying the reward rk with gamma γk−t. The parameter θ of the actor is updated
using Equation (1). The parameter θv of the critic is updated using the value loss function
Lvalue. When the update for one episode is completed, the update buffer is initialized.

Mathematics 2023, 11, 1110 6 of 14

Algorithm 1 Proposed behavioral-cloning-based A2C.

1. Initialize parameter θ, θv

2. Initialize update buffer

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 14

Algorithm 1 Proposed behavioral-cloning-based A2C.

1 Initialize parameter θ, θv

2 Initialize update buffer Ɛ ← ∅

3 When the return does not converge, do

4 rt←Execute an action at~πθ(at|st)

5 Get expert action at
expert

~πexpert(at
expert

|st)

6 Store transition Ɛ←Ɛ∪ {st,at, at
expert

, rt}

7 If the episode is done

8 Compute return Rt = Σk=1
∞ γk−trk for all t in Ɛ

9 # Perform actor update

10 θ←θ− πθ(a|s)(R − Vθv(s)) − αℋπθ − βlogπθ(aexpert|s)

11 # Perform critic update

12 θv←θv +
1

2
(R − Vθv(s))

2

13 Clear update buffer Ɛ ← ∅

14 End If

15 End While

4.2. Application of Behavioral-Cloning-Based A2C

We applied the proposed method to the Freestyle learning simulator environment

for a 3 to 3 basketball game (hereinafter referred to as “basketball game”). The learning

simulator had the same game rules as the basketball game shown in Figure 1 and provided

the speed control, AI command interface, and learning data. Figure 1 was extracted from

the basketball game, Freestyle (Joycity Corp, Seongnam-si, Republic of Korea).

Figure 1. Freestyle basketball game screen (Freestyle, Windows PC, Joycity Corp. 2004).

The basketball court was a half-court, which was 15 m wide and 11 m long in the

virtual environment. Foul regulations such as outs or double dribbles were not applied.

The ball could not go out of the court. When the offensive team failed at offense within 20

s, it was considered a foul, and the offense’s turn went to the opposing team. Each team

had three players. At the end of the game, the team with the higher scores won.

Figure 2 describes the behavioral-cloning-based A2C structure proposed in this pa-

per. An agent is a basketball game character determining an action after receiving the state

from the environment of the learning simulator. The actions are movement in eight direc-

tions, shoot, pass, mark, steal, rebound, and breakthrough.

←∅
3. When the return does not converge, do
4. rt←Execute an action at ∼ πθ(at |st)

5. Get expert action aexpert
t ∼ πexpert

(
aexpert

t |st)

6. Store transition

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 14

Algorithm 1 Proposed behavioral-cloning-based A2C.

1 Initialize parameter θ, θv

2 Initialize update buffer Ɛ ← ∅

3 When the return does not converge, do

4 rt←Execute an action at~πθ(at|st)

5 Get expert action at
expert

~πexpert(at
expert

|st)

6 Store transition Ɛ←Ɛ∪ {st,at, at
expert

, rt}

7 If the episode is done

8 Compute return Rt = Σk=1
∞ γk−trk for all t in Ɛ

9 # Perform actor update

10 θ←θ− πθ(a|s)(R − Vθv(s)) − αℋπθ − βlogπθ(aexpert|s)

11 # Perform critic update

12 θv←θv +
1

2
(R − Vθv(s))

2

13 Clear update buffer Ɛ ← ∅

14 End If

15 End While

4.2. Application of Behavioral-Cloning-Based A2C

We applied the proposed method to the Freestyle learning simulator environment

for a 3 to 3 basketball game (hereinafter referred to as “basketball game”). The learning

simulator had the same game rules as the basketball game shown in Figure 1 and provided

the speed control, AI command interface, and learning data. Figure 1 was extracted from

the basketball game, Freestyle (Joycity Corp, Seongnam-si, Republic of Korea).

Figure 1. Freestyle basketball game screen (Freestyle, Windows PC, Joycity Corp. 2004).

The basketball court was a half-court, which was 15 m wide and 11 m long in the

virtual environment. Foul regulations such as outs or double dribbles were not applied.

The ball could not go out of the court. When the offensive team failed at offense within 20

s, it was considered a foul, and the offense’s turn went to the opposing team. Each team

had three players. At the end of the game, the team with the higher scores won.

Figure 2 describes the behavioral-cloning-based A2C structure proposed in this pa-

per. An agent is a basketball game character determining an action after receiving the state

from the environment of the learning simulator. The actions are movement in eight direc-

tions, shoot, pass, mark, steal, rebound, and breakthrough.

←

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 14

Algorithm 1 Proposed behavioral-cloning-based A2C.

1 Initialize parameter θ, θv

2 Initialize update buffer Ɛ ← ∅

3 When the return does not converge, do

4 rt←Execute an action at~πθ(at|st)

5 Get expert action at
expert

~πexpert(at
expert

|st)

6 Store transition Ɛ←Ɛ∪ {st,at, at
expert

, rt}

7 If the episode is done

8 Compute return Rt = Σk=1
∞ γk−trk for all t in Ɛ

9 # Perform actor update

10 θ←θ− πθ(a|s)(R − Vθv(s)) − αℋπθ − βlogπθ(aexpert|s)

11 # Perform critic update

12 θv←θv +
1

2
(R − Vθv(s))

2

13 Clear update buffer Ɛ ← ∅

14 End If

15 End While

4.2. Application of Behavioral-Cloning-Based A2C

We applied the proposed method to the Freestyle learning simulator environment

for a 3 to 3 basketball game (hereinafter referred to as “basketball game”). The learning

simulator had the same game rules as the basketball game shown in Figure 1 and provided

the speed control, AI command interface, and learning data. Figure 1 was extracted from

the basketball game, Freestyle (Joycity Corp, Seongnam-si, Republic of Korea).

Figure 1. Freestyle basketball game screen (Freestyle, Windows PC, Joycity Corp. 2004).

The basketball court was a half-court, which was 15 m wide and 11 m long in the

virtual environment. Foul regulations such as outs or double dribbles were not applied.

The ball could not go out of the court. When the offensive team failed at offense within 20

s, it was considered a foul, and the offense’s turn went to the opposing team. Each team

had three players. At the end of the game, the team with the higher scores won.

Figure 2 describes the behavioral-cloning-based A2C structure proposed in this pa-

per. An agent is a basketball game character determining an action after receiving the state

from the environment of the learning simulator. The actions are movement in eight direc-

tions, shoot, pass, mark, steal, rebound, and breakthrough.

∪{st , at, aexpert
t , rt}

7. If the episode is done
8. Compute return Rt = Σ∞

k=1γ
k−trk for all t in

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 14

Algorithm 1 Proposed behavioral-cloning-based A2C.

1 Initialize parameter θ, θv

2 Initialize update buffer Ɛ ← ∅

3 When the return does not converge, do

4 rt←Execute an action at~πθ(at|st)

5 Get expert action at
expert

~πexpert(at
expert

|st)

6 Store transition Ɛ←Ɛ∪ {st,at, at
expert

, rt}

7 If the episode is done

8 Compute return Rt = Σk=1
∞ γk−trk for all t in Ɛ

9 # Perform actor update

10 θ←θ− πθ(a|s)(R − Vθv(s)) − αℋπθ − βlogπθ(aexpert|s)

11 # Perform critic update

12 θv←θv +
1

2
(R − Vθv(s))

2

13 Clear update buffer Ɛ ← ∅

14 End If

15 End While

4.2. Application of Behavioral-Cloning-Based A2C

We applied the proposed method to the Freestyle learning simulator environment

for a 3 to 3 basketball game (hereinafter referred to as “basketball game”). The learning

simulator had the same game rules as the basketball game shown in Figure 1 and provided

the speed control, AI command interface, and learning data. Figure 1 was extracted from

the basketball game, Freestyle (Joycity Corp, Seongnam-si, Republic of Korea).

Figure 1. Freestyle basketball game screen (Freestyle, Windows PC, Joycity Corp. 2004).

The basketball court was a half-court, which was 15 m wide and 11 m long in the

virtual environment. Foul regulations such as outs or double dribbles were not applied.

The ball could not go out of the court. When the offensive team failed at offense within 20

s, it was considered a foul, and the offense’s turn went to the opposing team. Each team

had three players. At the end of the game, the team with the higher scores won.

Figure 2 describes the behavioral-cloning-based A2C structure proposed in this pa-

per. An agent is a basketball game character determining an action after receiving the state

from the environment of the learning simulator. The actions are movement in eight direc-

tions, shoot, pass, mark, steal, rebound, and breakthrough.

9. # Perform actor update
10. θ←θ− πθ(a|s)(R−Vθv (s))− αHπθ − β logπθ

(
aexpert |s

)
11. # Perform critic update
12. θv←θv + 1

2 (R−Vθv (s))2

13. Clear update buffer

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 14

Algorithm 1 Proposed behavioral-cloning-based A2C.

1 Initialize parameter θ, θv

2 Initialize update buffer Ɛ ← ∅

3 When the return does not converge, do

4 rt←Execute an action at~πθ(at|st)

5 Get expert action at
expert

~πexpert(at
expert

|st)

6 Store transition Ɛ←Ɛ∪ {st,at, at
expert

, rt}

7 If the episode is done

8 Compute return Rt = Σk=1
∞ γk−trk for all t in Ɛ

9 # Perform actor update

10 θ←θ− πθ(a|s)(R − Vθv(s)) − αℋπθ − βlogπθ(aexpert|s)

11 # Perform critic update

12 θv←θv +
1

2
(R − Vθv(s))

2

13 Clear update buffer Ɛ ← ∅

14 End If

15 End While

4.2. Application of Behavioral-Cloning-Based A2C

We applied the proposed method to the Freestyle learning simulator environment

for a 3 to 3 basketball game (hereinafter referred to as “basketball game”). The learning

simulator had the same game rules as the basketball game shown in Figure 1 and provided

the speed control, AI command interface, and learning data. Figure 1 was extracted from

the basketball game, Freestyle (Joycity Corp, Seongnam-si, Republic of Korea).

Figure 1. Freestyle basketball game screen (Freestyle, Windows PC, Joycity Corp. 2004).

The basketball court was a half-court, which was 15 m wide and 11 m long in the

virtual environment. Foul regulations such as outs or double dribbles were not applied.

The ball could not go out of the court. When the offensive team failed at offense within 20

s, it was considered a foul, and the offense’s turn went to the opposing team. Each team

had three players. At the end of the game, the team with the higher scores won.

Figure 2 describes the behavioral-cloning-based A2C structure proposed in this pa-

per. An agent is a basketball game character determining an action after receiving the state

from the environment of the learning simulator. The actions are movement in eight direc-

tions, shoot, pass, mark, steal, rebound, and breakthrough.

← ∅
14. End If
15. End While

4.2. Application of Behavioral-Cloning-Based A2C

We applied the proposed method to the Freestyle learning simulator environment
for a 3 to 3 basketball game (hereinafter referred to as “basketball game”). The learning
simulator had the same game rules as the basketball game shown in Figure 1 and provided
the speed control, AI command interface, and learning data. Figure 1 was extracted from
the basketball game, Freestyle (Joycity Corp, Seongnam-si, Republic of Korea).

Mathematics 2023, 11, 1110 6 of 14

Algorithm 1 Proposed behavioral-cloning-based A2C.

1 Initialize parameter θ, θv

2 Initialize update buffer Ɛ ← ∅

3 When the return does not converge, do

4 rt←Execute an action at~πθ(at|st)

5 Get expert action at
expert

~πexpert(at
expert

|st)

6 Store transition Ɛ←Ɛ∪ {st,at, at
expert

, rt}

7 If the episode is done

8 Compute return Rt = Σk=1
∞ γk−trk for all t in Ɛ

9 # Perform actor update

10 θ←θ− πθ(a|s)(R − Vθv(s)) − αℋπθ − βlogπθ(aexpert|s)

11 # Perform critic update

12 θv←θv +
1

2
(R − Vθv(s))

2

13 Clear update buffer Ɛ ← ∅

14 End If

15 End While

4.2. Application of Behavioral-Cloning-Based A2C

We applied the proposed method to the Freestyle learning simulator environment

for a 3 to 3 basketball game (hereinafter referred to as “basketball game”). The learning

simulator had the same game rules as the basketball game shown in Figure 1 and provided

the speed control, AI command interface, and learning data. Figure 1 was extracted from

the basketball game, Freestyle (Joycity Corp, Seongnam-si, Republic of Korea).

Figure 1. Freestyle basketball game screen (Freestyle, Windows PC, Joycity Corp. 2004).

The basketball court was a half-court, which was 15 m wide and 11 m long in the

virtual environment. Foul regulations such as outs or double dribbles were not applied.

The ball could not go out of the court. When the offensive team failed at offense within 20

s, it was considered a foul, and the offense’s turn went to the opposing team. Each team

had three players. At the end of the game, the team with the higher scores won.

Figure 2 describes the behavioral-cloning-based A2C structure proposed in this pa-

per. An agent is a basketball game character determining an action after receiving the state

from the environment of the learning simulator. The actions are movement in eight direc-

tions, shoot, pass, mark, steal, rebound, and breakthrough.

Figure 1. Freestyle basketball game screen (Freestyle, Windows PC, Joycity Corp. 2004).

The basketball court was a half-court, which was 15 m wide and 11 m long in the
virtual environment. Foul regulations such as outs or double dribbles were not applied.
The ball could not go out of the court. When the offensive team failed at offense within
20 s, it was considered a foul, and the offense’s turn went to the opposing team. Each team
had three players. At the end of the game, the team with the higher scores won.

Figure 2 describes the behavioral-cloning-based A2C structure proposed in this paper.
An agent is a basketball game character determining an action after receiving the state from
the environment of the learning simulator. The actions are movement in eight directions,
shoot, pass, mark, steal, rebound, and breakthrough.

Mathematics 2023, 11, 1110 7 of 14Mathematics 2023, 11, 1110 7 of 14

Figure 2. Structure of proposed method.

The normalization module in the basketball game receives only the state and normal-

izes it. The state st includes the location, angle, distance, conditions, time, and points in

a basketball game and is expressed as shown in Table 2. Team(AI, n) means the nth player

in the AI team. Enemy(AI, m) means the mth player in the opposing team. Mark(AI)

means the AI’s target player.

Location means the location of a character, ball, and rim. Each character took their

location as the origin and expressed other characters, the ball, and the rim as relative lo-

cations. Figure 3 illustrates the normalization process. The blue dot is the reference char-

acter, and the red dots are other objects. The AI location uses the relative value around the

center of a court. The location is expressed in 2D, but in the case of a ball, height is con-

sidered. The maximum height of a ball is 5 m, with zero (0) as the basic level.

Figure 3. AI location normalization process in a basketball game.

The angle is not state-provided in the environment but is calculated and used as a

state value. It is used as the reference value to identify whether the character is open. The

distance is calculated by dividing the distance between the reference object and another

object by the maximum allowable distance (10 m). It uses the unit meter. The conditions

are whether the AI team clears the ball (ball_clear(AI)) and whether the AI pivots

(pivot(AI)). The conditions have the values 0 or 1.

Figure 2. Structure of proposed method.

The normalization module in the basketball game receives only the state and normal-
izes it. The state st includes the location, angle, distance, conditions, time, and points in a
basketball game and is expressed as shown in Table 2. Team(AI, n) means the nth player in
the AI team. Enemy(AI, m) means the mth player in the opposing team. Mark(AI) means
the AI’s target player.

Table 2. A2C basketball game state.

State Equation

AI location −z(AI)
7.5 ,

((
x(AI)−1

11

)
− 0.5

)
× 2

Team location z(AI)−z(team(AI, n))
15 , x(team(AI,n))−x(AI)

11

Enemy location z(AI)−z(enemy(AI, m))
15 , y(enemy(AI, m))−x(AI)

11

Ball location z(AI)−z(ball)
15 , x(ball)−x(AI)

11

Ball height min
(

1.0, y(ball)
5

)
Rim location z(AI)

7.5 , 10.5−x(AI)
9.5

Team angle arccosine
(

vector(rim, AI)·vector(team(AI, m), AI)
|vector(rim, AI)|×|vector(team(AI, m), AI)|

)
π

Enemy angle arccosine
(

vector(rim, AI)·vector(enemy(AI, m), AI)
|vector(rim, AI)|×|vector(enemy(AI, m), AI)|

)
π

Mark angle arccosine
(

vector(rim, mark(AI))·vector(AI, mark(AI))
|vector(rim, mark(AI))|×|vector(AI, mark(AI)|

)
π

Ball distance min
(

1.0, dist(ball, AI)
10

)
Rim distance min

(
1.0, dist(rim, AI)

10

)
Whether ball is clear or not ball_clear(AI)

Whether pivoting or not pivot(AI)

Game time remaining quarter_time
240

Foul time remaining violation_time
20

Team scores min
(

1.0, score(AI)
30

)

Mathematics 2023, 11, 1110 8 of 14

Location means the location of a character, ball, and rim. Each character took their
location as the origin and expressed other characters, the ball, and the rim as relative
locations. Figure 3 illustrates the normalization process. The blue dot is the reference
character, and the red dots are other objects. The AI location uses the relative value around
the center of a court. The location is expressed in 2D, but in the case of a ball, height is
considered. The maximum height of a ball is 5 m, with zero (0) as the basic level.

Mathematics 2023, 11, 1110 7 of 14

Figure 2. Structure of proposed method.

The normalization module in the basketball game receives only the state and normal-

izes it. The state st includes the location, angle, distance, conditions, time, and points in

a basketball game and is expressed as shown in Table 2. Team(AI, n) means the nth player

in the AI team. Enemy(AI, m) means the mth player in the opposing team. Mark(AI)

means the AI’s target player.

Location means the location of a character, ball, and rim. Each character took their

location as the origin and expressed other characters, the ball, and the rim as relative lo-

cations. Figure 3 illustrates the normalization process. The blue dot is the reference char-

acter, and the red dots are other objects. The AI location uses the relative value around the

center of a court. The location is expressed in 2D, but in the case of a ball, height is con-

sidered. The maximum height of a ball is 5 m, with zero (0) as the basic level.

Figure 3. AI location normalization process in a basketball game.

The angle is not state-provided in the environment but is calculated and used as a

state value. It is used as the reference value to identify whether the character is open. The

distance is calculated by dividing the distance between the reference object and another

object by the maximum allowable distance (10 m). It uses the unit meter. The conditions

are whether the AI team clears the ball (ball_clear(AI)) and whether the AI pivots

(pivot(AI)). The conditions have the values 0 or 1.

Figure 3. AI location normalization process in a basketball game.

The angle is not state-provided in the environment but is calculated and used as a
state value. It is used as the reference value to identify whether the character is open. The
distance is calculated by dividing the distance between the reference object and another
object by the maximum allowable distance (10 m). It uses the unit meter. The conditions are
whether the AI team clears the ball (ball_clear(AI)) and whether the AI pivots (pivot(AI)).
The conditions have the values 0 or 1.

There are two kinds of time in seconds, the time indicating the game time remaining
until the game finishes and the foul time. These are divided into a maximum of 240 s and
20 s, respectively, and normalized to values between 0 and 1. The scores display the current
scores of the AI team, and the value divided by the maximum allowable scores (30 points)
was used as the state.

The reward module in the basketball game established a reward system to apply A2C.
The reward rt was defined as a shoot, pass, breakthrough, mark, avoid, etc., as shown in
Table 3, and is calculated by adding all rewards generated. The importance of the frequency
of the actions breakthrough, mark, avoid, and pick is considered when the corresponding
rewards are calculated.

Table 3. A2C basketball game reward.

Rewards Equation

Shoot Open status (0.0/1.0)×Within the range (0.0/1.0)× Shoot status (0.0/1.0)

Pass Pivot status (0.0/1.0)× Pass status (0.0/1.0)

Breakthrough Within the range (0.0/1.0)× Breakthrough status (0.0/1.0)×Weighted value (0.5)

Mark Mark angle ≤ 30 (0.0/1.0)×Mark distance ≤ 2(0.0/1.0)×Weighted value (0.002)

Avoid Open status (0.0/1.0)×Within the range (0.0/1.0)×Weighted value (0.01)

Ball clear Ball clear status (0.0/1.0)

Pick Pick status (0.0/1.0)−Movement away from a ball (0.0/1.0)×Weighted value (0.002)

Under rim Rim distance ≤ 2 m (0.0/1.0)×Weighted value (0.001)

The episode classification module classifies the state st, action at, and reward rt into
the offense, loose ball, and defense situation and sends them to the corresponding A2C
module. The episode classification criteria depend on the ball possession status. When
a team has the ball, it is an offense episode. When an enemy has the ball, it is a defense
episode. When no team has the ball, it is a loose ball episode.

Mathematics 2023, 11, 1110 9 of 14

According to the episode classification results, the state, reward, and action used in
learning depend on the offense, loose ball, and defense situation. To control the characters
by the situation, A2C was applied to offense and loose ball episodes, and the proposed
method was applied to defense episodes. The defense episode is a situation in which the
enemy has the ball, and the AI team needs to be within ±30 degrees from the marked
angle and within 2 m from the mark distance, as specified in the rewards in Table 2.
The behavioral-cloning-based A2C learning designs expert policies through distance and
coordinates calculations and imitates expert actions. The proposed method, applied to
defense, can also be applied to offense and loose ball situations.

5. Experiment

The proposed behavioral-cloning-based A2C was experimentally evaluated. This
section compares the performance of the proposed algorithm with the conventional A2C
algorithm and analyzes the experimental results. Moreover, this section analyzes the
experimental results from the conventional FSM-based AI match experiment and the
expert-designed FSM-based AI match experiment.

The architecture used for learning consists of two networks with dense layers with
128 units as the actor and critic. A rectified linear activation function was used as an
activation function. The output layer applies a soft-max function for determining the
action and a linear function for estimating the state value in each network. All values were
initialized with the default parameters defined in TensorFlow.

The environment used for learning was a basketball game simulator. The simulator
provided an accelerated learning and multi-client learning environment and provided all
information about the basketball game per each frame. The agent that communicated with
the environment consisted of one or more models concurrently. Many tasks covering the
entire learning process, such as determining learning algorithms and defining models, were
handled here. Briefly, in Figure 2, all parts except the basketball game box were actually
processed inside this agent. Therefore, our proposed method was also carried out in the
agent. The data received from the simulator were normalized by each state equation. We
were able to reduce the complexity of basketball game states through state normalization.
At this time, the reward was also calculated by each equation. The calculated state and
reward went through an episode classification process that was classified according to the
ball’s ownership. In the reduced and classified state, the model had repeatedly experienced
similar states. Therefore, the model could experience various states even with episode-level
online learning and offline learning rather than hindered learning. If an expert policy was
available, the state and expert action were stored to calculate additional loss when updating
the model. This agent was also used in experiments for verification after all learning had
ended. The agent loaded the saved model after the learning was completed, conducted
performance experiments with the opponent through the match, and stored the results
as logs.

5.1. Behavioral-Cloning-Based A2C Experiment

During the experiment, the model learned the offense episode without the policy of
an expert and the defense episode reflecting the policy of an expert, and the number of
rewards per episode was measured. A total of 400,000 actions performed by the AI were
consecutively collected from all episodes, and the number of rewards for the actions avoid
and mark were recorded after every 1000 actions.

Figure 4 shows the A2C learning experiment results, applying the proposed behavioral
cloning. Figure 4a shows the number of rewards for the avoid action, and Figure 4b shows
the number of rewards for the mark action.

Mathematics 2023, 11, 1110 10 of 14

Mathematics 2023, 11, 1110 10 of 14

cording to the ball’s ownership. In the reduced and classified state, the model had repeat-

edly experienced similar states. Therefore, the model could experience various states even

with episode-level online learning and offline learning rather than hindered learning. If

an expert policy was available, the state and expert action were stored to calculate addi-

tional loss when updating the model. This agent was also used in experiments for verifi-

cation after all learning had ended. The agent loaded the saved model after the learning

was completed, conducted performance experiments with the opponent through the

match, and stored the results as logs.

5.1. Behavioral-Cloning-Based A2C Experiment

During the experiment, the model learned the offense episode without the policy of

an expert and the defense episode reflecting the policy of an expert, and the number of

rewards per episode was measured. A total of 400,000 actions performed by the AI were

consecutively collected from all episodes, and the number of rewards for the actions avoid

and mark were recorded after every 1000 actions.

Figure 4 shows the A2C learning experiment results, applying the proposed behav-

ioral cloning. Figure 4a shows the number of rewards for the avoid action, and Figure 4b

shows the number of rewards for the mark action.

Figure 4. Experimental results of the proposed method

Figure 5 illustrates the experimental results of the conventional A2C learning, which

did not adopt behavioral cloning. Figure 5a shows the number of rewards for the avoid

action, and Figure 5b shows the number of rewards for the mark action.

Figure 5. Conventional A2C experiment results.

Figure 4. Experimental results of the proposed method.

Figure 5 illustrates the experimental results of the conventional A2C learning, which
did not adopt behavioral cloning. Figure 5a shows the number of rewards for the avoid
action, and Figure 5b shows the number of rewards for the mark action.

Mathematics 2023, 11, 1110 10 of 14

cording to the ball’s ownership. In the reduced and classified state, the model had repeat-

edly experienced similar states. Therefore, the model could experience various states even

with episode-level online learning and offline learning rather than hindered learning. If

an expert policy was available, the state and expert action were stored to calculate addi-

tional loss when updating the model. This agent was also used in experiments for verifi-

cation after all learning had ended. The agent loaded the saved model after the learning

was completed, conducted performance experiments with the opponent through the

match, and stored the results as logs.

5.1. Behavioral-Cloning-Based A2C Experiment

During the experiment, the model learned the offense episode without the policy of

an expert and the defense episode reflecting the policy of an expert, and the number of

rewards per episode was measured. A total of 400,000 actions performed by the AI were

consecutively collected from all episodes, and the number of rewards for the actions avoid

and mark were recorded after every 1000 actions.

Figure 4 shows the A2C learning experiment results, applying the proposed behav-

ioral cloning. Figure 4a shows the number of rewards for the avoid action, and Figure 4b

shows the number of rewards for the mark action.

Figure 4. Experimental results of the proposed method

Figure 5 illustrates the experimental results of the conventional A2C learning, which

did not adopt behavioral cloning. Figure 5a shows the number of rewards for the avoid

action, and Figure 5b shows the number of rewards for the mark action.

Figure 5. Conventional A2C experiment results. Figure 5. Conventional A2C experiment results.

The reward for the avoid action in the offense episode without the policy of the expert
is similar in both of the above methods. For the defense episode with behavioral cloning
and the policy of the expert, the average number of rewards in the final 100 data counts
was 224 that of the conventional A2C experiment, and that for the proposed method was
428, showing its marked success, achieving values approximately 1.9 times higher than the
conventional A2C.

The experimental results of the proposed method and the conventional A2C were
compared using the linear trend curve with zero as the reference point because of the
unstable number of avoid and mark actions. The red line in Figure 4b is the trend curve
showing the number of rewards for the mark action in the experiment with the proposed
method. The red line in Figure 5b is the trend curve showing the number of rewards for
the mark action in the experiment with the conventional A2C. The slope of the proposed
method is approximately 1.47, compared with 0.68 for the conventional A2C method.
The slope of the proposed method is approximately 2.1 times higher than that of the
conventional A2C. This implies that the proposed method selected and performed the
actions, generating relatively more rewards than the conventional A2C.

Mathematics 2023, 11, 1110 11 of 14

5.2. Conventional FSM-Based AI Match Experimental Results and Analysis

Figure 6 presents the learning experiment results of the match with conventional
FSM-based AI. Figure 6a shows the scores of the proposed method, and Figure 6b shows
the scores of the conventional FSM-based AI. Figure 6c displays the accumulated number
of wins, draws, and losses. These are the results of accumulating the number of wins
(+1), draws (+0), and losses (−1) for the behavioral-cloning-based A2C AI from the match
results. Figure 6d shows the total rewards per match acquired by AI in the proposed
method of learning.

Mathematics 2023, 11, 1110 11 of 14

The reward for the avoid action in the offense episode without the policy of the expert

is similar in both of the above methods. For the defense episode with behavioral cloning

and the policy of the expert, the average number of rewards in the final 100 data counts

was 224 that of the conventional A2C experiment, and that for the proposed method was

428, showing its marked success, achieving values approximately 1.9 times higher than

the conventional A2C.

The experimental results of the proposed method and the conventional A2C were

compared using the linear trend curve with zero as the reference point because of the

unstable number of avoid and mark actions. The red line in Figure 4b is the trend curve

showing the number of rewards for the mark action in the experiment with the proposed

method. The red line in Figure 5b is the trend curve showing the number of rewards for

the mark action in the experiment with the conventional A2C. The slope of the proposed

method is approximately 1.47, compared with 0.68 for the conventional A2C method. The

slope of the proposed method is approximately 2.1 times higher than that of the conven-

tional A2C. This implies that the proposed method selected and performed the actions,

generating relatively more rewards than the conventional A2C.

5.2. Conventional FSM-Based AI Match Experimental Results and Analysis

Figure 6 presents the learning experiment results of the match with conventional

FSM-based AI. Figure 6a shows the scores of the proposed method, and Figure 6b shows

the scores of the conventional FSM-based AI. Figure 6c displays the accumulated number

of wins, draws, and losses. These are the results of accumulating the number of wins (+1),

draws (+0), and losses (−1) for the behavioral-cloning-based A2C AI from the match re-

sults. Figure 6d shows the total rewards per match acquired by AI in the proposed method

of learning.

Figure 6. Experimental results for the conventional FSM-based AI match.

The proposed method shows relatively higher scores; the total average score differ-

ence is about 0.43. The average gap of scores in the matches from the first to the 1000th

match with the FSM-based AI had a higher winning rate of approximately 0.4, which is

Figure 6. Experimental results for the conventional FSM-based AI match.

The proposed method shows relatively higher scores; the total average score difference
is about 0.43. The average gap of scores in the matches from the first to the 1000th match
with the FSM-based AI had a higher winning rate of approximately 0.4, which is higher
than that of the proposed method. The proposed method achieved a higher score of
approximately 0.83 in the average gap of scores in the final 1000 matches, in which the AI in
the proposed method showed a higher winning rate. For accumulated wins/draws/losses,
the proposed method had a relatively higher number of losses in the early stage of learning.
As learning continued, the AI in the proposed method gradually reduced losses and
increased the winning rate. The total rewards also converged into a constant value after
gradually increasing from lower rewards at the beginning. For the final 1000 matches, the
proposed method achieved a winning rate of 60%, with 512 wins, 146 draws, and 342 losses.

5.3. Expert-Designed FSM-Based AI Match Experimental Results and Analysis

The experimental match was between the AI of the proposed method and the expert-
designed FSM-based AI. Figure 7 shows the match’s experimental results. A total of
103 experimental matches were played. The proposed method achieved a winning rate of
66%, with 68 wins and 35 losses.

Mathematics 2023, 11, 1110 12 of 14

Mathematics 2023, 11, 1110 12 of 14

higher than that of the proposed method. The proposed method achieved a higher score

of approximately 0.83 in the average gap of scores in the final 1000 matches, in which the

AI in the proposed method showed a higher winning rate. For accumulated

wins/draws/losses, the proposed method had a relatively higher number of losses in the

early stage of learning. As learning continued, the AI in the proposed method gradually

reduced losses and increased the winning rate. The total rewards also converged into a

constant value after gradually increasing from lower rewards at the beginning. For the

final 1000 matches, the proposed method achieved a winning rate of 60%, with 512 wins,

146 draws, and 342 losses.

5.3. Expert-Designed FSM-Based AI Match Experimental Results and Analysis

The experimental match was between the AI of the proposed method and the expert-

designed FSM-based AI. Figure 7 shows the match’s experimental results. A total of 103

experimental matches were played. The proposed method achieved a winning rate of

66%, with 68 wins and 35 losses.

Figure 7. Accumulated wins/losses in the matches with expert-designed FSM-based AI.

The experimental results can be analyzed using the number of successful actions by

a character as well as wins/losses or scores. Table 4 illustrates the average number of suc-

cessful actions per match for each AI. The AI in the proposed method achieved relatively

higher numbers in offense episodes (2 points) and defense episodes (block and steal) than

the expert-designed FSM-based AI. The expert-designed FSM-based AI showed a higher

number of rebounds than the AI in the proposed method. The AI in the proposed method

can be improved through learning in loose ball episodes, including the timing for the re-

bounds and preoccupying positions.

Table 4. Average number of successful actions per match with expert-designed FSM-based AI.

Team 2 Points 3 Points Rebound Block Steal

FSM AI 5.3 0.06 7.2 0.68 0.38

Proposed AI 6.76 0 2.4 5.3 2.33

6. Conclusions

This paper proposed a behavioral-cloning-based A2C performing actions that reflect

the policy of an expert by applying a behavioral-cloning algorithm to A2C in a basketball

game. The state was normalized to apply the proposed method to a complicated basket-

ball game, and the reward function was proposed based on the state generated from

matches. Learning was performed by classifying various episodes to solve the learning

Figure 7. Accumulated wins/losses in the matches with expert-designed FSM-based AI.

The experimental results can be analyzed using the number of successful actions
by a character as well as wins/losses or scores. Table 4 illustrates the average number
of successful actions per match for each AI. The AI in the proposed method achieved
relatively higher numbers in offense episodes (2 points) and defense episodes (block and
steal) than the expert-designed FSM-based AI. The expert-designed FSM-based AI showed
a higher number of rebounds than the AI in the proposed method. The AI in the proposed
method can be improved through learning in loose ball episodes, including the timing for
the rebounds and preoccupying positions.

Table 4. Average number of successful actions per match with expert-designed FSM-based AI.

Team 2 Points 3 Points Rebound Block Steal

FSM AI 5.3 0.06 7.2 0.68 0.38

Proposed AI 6.76 0 2.4 5.3 2.33

6. Conclusions

This paper proposed a behavioral-cloning-based A2C performing actions that reflect
the policy of an expert by applying a behavioral-cloning algorithm to A2C in a basketball
game. The state was normalized to apply the proposed method to a complicated basketball
game, and the reward function was proposed based on the state generated from matches.
Learning was performed by classifying various episodes to solve the learning time challenge
of reinforcement learning. The proposed method improved performance by approximately
twice the performance of the conventional A2C method.

The winning rate of the proposed method was approximately 60% in the matches
against the conventional FSM-based AI and approximately 66% in the matches against the
expert-designed FSM-based AI. The proposed method showed a relatively higher number
of successes in 2 points, steal, and block than the expert-designed FSM-based AI. However,
the proposed method demonstrated a relatively lower number of successes in 3 points and
rebound actions.

In future research, we plan to investigate the optimal basketball game learning algo-
rithm by enhancing the proposed A2C algorithm. A human-level AI will be developed
by analyzing the data collected from players and using it to improve the AI. Through
such efforts, future research can develop a method that makes players more interested in
the game.

Author Contributions: Conceptualization, T.C.; Funding acquisition, K.C.; Investigation, T.C.;
Methodology, Y.S.; Project administration, K.C.; Supervision, K.C.; Validation, T.C. and Y.S. All

Mathematics 2023, 11, 1110 13 of 14

authors will be informed about each step of manuscript processing including submission, revision,
revision reminder, etc. via emails from our system or assigned Assistant Editor. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the Culture, Sports and Tourism R&D Program through
the Korea Creative Content Agency grant funded by the Ministry of Culture, Sports and Tourism in
2022 (Project Name: Education & research group for advanced AI technology in the field of sports
games, Project Number: R2022020003, Contribution Rate: 100%).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev,

P.; et al. Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning. Nature 2019, 575, 350–354. [CrossRef]
[PubMed]

2. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef]
[PubMed]

3. Bellemare, M.G.; Naddaf, Y.; Veness, J.; Bowling, M. The Arcade Learning Environment: An Evaluation Platform for General
Agents. J. Artif. Intell. Res. 2013, 47, 253–279. [CrossRef]

4. Watkins, C.J.C.H.; Dayan, P. Q-Learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
5. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML’15), Lille, France,
6–11 July 2015; Volume 37, pp. 448–456.

6. Shao, K.; Zhu, Y.; Zhao, D. StarCraft Micromanagement with Reinforcement Learning and Curriculum Transfer Learning. IEEE
Trans. Emerg. Top. Comput. Intell. 2019, 3, 73–84. [CrossRef]

7. Jia, H.; Hu, Y.; Chen, Y.; Ren, C.; Lv, T.; Fan, C.; Zhang, C. Fever Basketball: A Complex, Flexible, and Asynchronized Sports
Game Environment for Multi-Agent Reinforcement Learning. arXiv 2020, arXiv:2012.03204.

8. Ng, A.Y.; Harada, D.; Russell, S. Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping.
In Proceedings of the Sixteenth International Conference on Machine Learning (ICML ‘99), Bled, Slovenia, 27–30 June 1999;
pp. 278–287.

9. Goecks, V.G.; Gremillion, G.M.; Lawhern, V.J.; Valasek, J.; Waytowich, N.R. Integrating Behavior Cloning and Reinforcement
Learning for Improved Performance in Dense and Sparse Reward Environments. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS’20), Auckland, New Zealand, 9–13 May 2020; pp. 465–473.

10. Bain, M.; Sammut, C. A Framework for Behavioural Cloning. Mach. Intell. 1995, 15, 103–129.
11. Konda, V.; Tsitsiklis, J. Actor-Critic Algorithms. In Proceedings of the 12th International Conference on Neural Information

Processing Systems (NIPS’99), Cambridge, MA, USA, 29 November–4 December 1999.
12. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for

Deep Reinforcement Learning. In Proceedings of the 33rd International Conference on International Conference on Machine
Learning (ICML’16), New York, NY, USA, 19–24 June 2016; Volume 48, pp. 1928–1937.

13. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. In Proceedings of the International Conference on
Learning Representations (ICLR), San Juan, PR, USA, 2–4 May 2016.

14. Hasselt, H.V.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence (AAAI’16), Phoenix, AZ, USA, 12–17 February 2016; pp. 2094–2100.

15. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.V.; Lanctot, M.; Freitas, N.D. Dueling Network Architectures for Deep Reinforcement
Learning. In Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML’16), New
York, NY, USA, 19–24 June 2016; Volume 48, pp. 1995–2003.

16. Bellemare, M.G.; Dabney, W.; Munos, R. A Distributional Perspective on Reinforcement Learning. In Proceedings of the 34th
International Conference on Machine Learning (ICML’17), Sydney, Australia, 6–11 August 2017; Volume 70, pp. 449–458.

17. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

18. Oh, J.; Guo, Y.; Singh, S.; Lee, H. Self-Imitation Learning. In Proceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 3878–3887.

19. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,
arXiv:1606.01540.

http://doi.org/10.1038/s41586-019-1724-z
http://www.ncbi.nlm.nih.gov/pubmed/31666705
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1613/jair.3912
http://doi.org/10.1007/BF00992698
http://doi.org/10.1109/TETCI.2018.2823329

Mathematics 2023, 11, 1110 14 of 14

20. Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhnevets, A.S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou, J.; Schrittwieser,
J.; et al. StarCraft II: A New Challenge for Reinforcement Learning. arXiv 2017, arXiv:1708.04782.

21. Samvelyan, M.; Rashid, T.; Witt, C.S.D.; Farquhar, G.; Nardelli, N.; Rudner, T.G.J.; Hung, C.M.; Torr, P.H.S.; Foerster, J.; Whiteson,
S. The StarCraft Multi-Agent Challenge. In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS’19), Montreal, QC, Canada, 13–17 May 2019; pp. 2186–2188.

22. Kurach, K.; Raichuk, A.; Stańczyk, P.; Zając, M.; Bachem, O.; Espeholt, L.; Riquelme, C.; Vincent, D.; Michalski, M.; Bousquet, O.;
et al. Google Research Football: A Novel Reinforcement Learning Environment. Proc. AAAI Conf. Artif. Intell. 2020, 34, 4501–4510.
[CrossRef]

23. Liu, Y.; Wu, F.; Lyu, C.; Li, S.; Ye, J.; Qu, X. Deep dispatching: A deep reinforcement learning approach for vehicle dispatching
on online ride-hailing platform. In Proceedings of the 4th International Symposium on Multimodal Transportation (ISMT’21),
Nanjing, China, 14–15 December 2021. [CrossRef]

24. Peng, X.B.; Panne, M.V.D. Learning Locomotion Skills Using DeepRL: Does the Choice of Action Space Matter. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’17), Los Angeles, CA, USA, 28–30 July 2017;
pp. 1–13.

25. Osa, T.; Pajarinen, J.; Neumann, G.; Bagnell, J.A.; Abbeel, P.; Peters, J. An Algorithmic Perspective on Imitation Learning. Found.
Trends Robot. 2018, 7, 1–179. [CrossRef]

26. Ross, S.; Gordon, G.J.; Bagnell, J.A. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning.
In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), Ft. Lauderdale, FL, USA,
11–13 April 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1609/aaai.v34i04.5878
http://doi.org/10.1016/j.tre.2022.102694
http://doi.org/10.1561/2300000053

	Introduction
	Background
	Related Work
	Reinforcement Learning
	State Representation, Reward Function, and Episode Classification
	Behavioral-Cloning Algorithm
	Comparison of Proposed Method to Related Works

	Behavioral-Cloning-Based A2C and Application in Basketball Games
	Behavioral-Cloning-Based A2C
	Application of Behavioral-Cloning-Based A2C

	Experiment
	Behavioral-Cloning-Based A2C Experiment
	Conventional FSM-Based AI Match Experimental Results and Analysis
	Expert-Designed FSM-Based AI Match Experimental Results and Analysis

	Conclusions
	References

