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Abstract: Much effort has recently been expended in developing efficient models that can depict
the true picture for COVID-19 mortality data and help scientists choose the best-fit models. As a
result, this research intends to provide a new G family for both theoretical and practical scientists
that solves the concerns typically encountered in both normal and non-normal random events. The
new-G distribution family is able to generate efficient continuous univariate and skewed models that
may outperform the baseline model. The analytic properties of the new-G family and its sub-model
are investigated and described, as well as a theoretical framework. The parameters were estimated
using a classical approach along with an extensive simulation study to assess the behaviour of the
parameters. The efficiency of the new-G family is discussed using one of its sub-models on COVID-19
mortality data sets.

Keywords: power function distribution; Rényi entropy; hazard rate function; Bonferroni and Lorenz curves;
inference; COVID-19
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1. Introduction

Lifetime models are important for representing simple to complicated random occur-
rences, especially in the physical and natural sciences. In the statistical literature, many
probability distributions are used to describe business failure data and are implemented in a
diverse range of scenarios. Because of their established superiority in a number of contexts,
gamma, lognormal, and Weibull distributions play an essential role. The one-parameter
lifetime model, power function distribution (PFD), that occurs in several scientific disci-
plines and is a special case of uniform distribution. On the other side, the interest in the
closed-form feature of PFD has grown and increased the curiosity of authors. Consequently,
various generalizations and extensions have been previously established. For this, we
urge the readers to look at the practices of Dallas [1], Saran and Pandey [2], Zaka et al. [3],
Tahir et al. [4], Haq et al. [5], Okorie et al. [6], Hassan and Assar [7], and Meniconi and
Barry [8], among others.

In several fields, actual data have been carefully modelled using a variety of classical
distributions. To increase these distributions’ flexibility and goodness of fit, however, there
is often an obvious need for extended versions of them. As a consequence, generated
families (G families) are established by modifying the baseline distribution by one or
more additional shape parameters. Some of the well-known families recently developed
by notable authors include: the Marshall–Olkin family generated by [9], QRTM by [10],
Beta generated by [11], Gamma generated by [12], Kumaraswamy generated by [13], T-X
family generated by [14], Weibull generated by [15], Type-I-Half-Logistic generated by [16],
Topp–Leone generated by [17], and new power class by [18], to mention a few. Readers
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who are interested in learning more about the COVID-19 mortality and the analysis are
encouraged to refer to the work of Al-Babtain et al. [19], Liu et al. [20], Nagy et al. [21],
Hossam et al. [22], Riad et al. [23], Alsuhabi et al. [24], and Meriem et al. [25].

In this scientific article, we are motivated to develop a simple and easy-to-understand
new-G family that better depicts the complex nature of COVID-19 mortality events and
assists scientists in selecting the most appropriate model. The flexible and attractive features
of pdf and hrf are suitable for modelling an increasing, decreasing, upside-down bathtub-
shaped failure rate and a wide range of data along with the events that are particularly
associated with the COVID-19 pandemic issues in order to improve the characteristics of
the baseline (parent) model and improve fit to data.

The present study is structured as follows. Section 2 presents some useful structural
properties of the new family. Section 3 describes the analytical expressions and provides
a graphical illustration of a new PFD. Section 4 estimates the parameters using classical
techniques. Section 5 briefly illustrates the parameter behaviours based on an extensive
simulation study. Section 6 describes the application of the proposed new-PFD to the
COVID-19 mortality rate data along with a comparison with other well-known competitors.
A summary and conclusions are stated in Section 7, and last, future recommendations are
illustrated in Section 8.

2. The New Family of Distributions

New sub-models and corresponding baseline models see (Table 1)

Table 1. New sub-models and corresponding baseline models.

Model Base Model New Model

Exponential 1− e−גx (1 + α)[1−e−גx ] − α[1−e−גx ]
2 ∣∣∣

α,0<ג

Weibull 1− e−גxi
(1 + α)[1−e−גxi ] − α[1−e−גxi ]

2
∣∣∣∣
α,ג,i>0

Rayleigh 1− e−x2/22ג

(1 + α)[1−e−x2/22ג
] − α[1−e−x2/22ג

]
2
∣∣∣∣
α,ג,i>0

Gompertz 1− e−ג(e
ix−1)

(1 + α)[1−e−ג(eix−1) ] − α[1−e−ג(eix−1) ]
2
∣∣∣∣
α,ג,i>0

Lomax 1− [1 + (x/ג)]−i (1 + α)[1−[1+(x/ג)]−i] − α[1−[1+(x/ג)]−i]
2
∣∣∣∣
α,ג,i>0

Burr 1−
[
1 + xג

]−i
(1 + α)[1−[1+xג]−i] − α[1−[1+xג]−i]

2
∣∣∣∣
α,ג,i>0

Pareto 1− (x/xmin)
i

(1 + α)[1−(x/xmin)
i] − α[1−(x/xmin)

i]
2
∣∣∣∣
α,i>0

Half Log-Logistic
(

1− e−גx
)

/
(

1 + e−גx
) [

(1 + α)[(1−e−גx)/(1+e−גx)] − α[(1−e−גx)/(1+e−גx)]
2]∣∣∣

α,0<ג

Kumaraswamy 1−
(

1− xג
)i

(1 + α)[1−(1−xג)i] − α[1−(1−xג)i]
2
∣∣∣∣
α,ג,i>0

Power Function [x/M]θ (1 + α)[x/M]θ − α[x/M]2θ
∣∣∣∣
α,θ>0,M≥x

Uniform x/M (1 + α)[x/M] − α[x/M]2
∣∣∣
α>0,M≥x

Definition 1. If X ~ new-G (x; α, Θ) with scale (α > 0) and vector space (Θ), the cdf ( F|x;Θ) of the
new-G is presented as follows:

F|x;α,Θ = (1 + α)G|x;Θ − α[G|x;Θ ]2
∣∣∣
α>0,x∈R

. (1)
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Definition 2. If X ~ new-G (x; α, Θ) with scale (α > 0) and vector space (Θ), the pdf ( f |x;Θ) of the
new-G is presented as follows:

f |x;α,Θ = g| x;Θ(1 + α)G|x;Θ log(1 + α)− 2g| x;Θ G|x;Θα[G|x;Θ ]2 logα
∣∣∣
α>0,x∈R

. (2)

Definition 3. If X ~ new-G (x; α, Θ) with scale (α > 0) and vector space (Θ), the survival function
(s f |x;Θ) of the new-G is presented as follows:

s f |x;α,Θ = 1− (1 + α)G|x;Θ + α[G|x;Θ ]2
∣∣∣
k>0,x∈R

. (3)

Definition 4. If X ~ new-G (x; α, Θ) with scale (α > 0) and vector space (Θ), the hazard rate
function (hr f |x;α,Θ) of the new-G is presented as follows:

hr f |x;α,Θ =
g| x;Θ

[
(1 + α)G|x;Θ log(1 + α)− 2 G|x;Θα[G|x;Θ ]2 logα

]
1− (1 + α)G|x;Θ + α[G|x;Θ ]2

∣∣∣∣∣∣
α>0,x∈R

. (4)

Definition 5. If X ~ new-G (x; α, θ) with scale (α > 0) and vector space (Θ), r-th moments about
origin (say µ′r|x;α,Θ =

∫ +∞
−∞ xr f |x;α,Θdx) is presented as follows:

µ′r
∣∣
x;α,Θ =

∞

∑
l=0

 {log(1+α)}l+1

l!

∫ +∞
−∞ xr g| x;Θ

{
G|x;Θ

}l
dx−

2 {logα}l+1

l!

∫ +∞
−∞ xr g| x;Θ

{
G|x;Θ

}l+1
dx


∣∣∣∣∣∣∣
α>0,x∈R

.

It would be more precise to say that µ′r|x;α,Θ is

µ′r
∣∣
x;α,Θ =

∞

∑
l=0

Φ| l+1 I|r,l − 2 Φ| l+1 I|r,l+1

∣∣∣∣∣∣∣∣
α>0,x∈R

First incomplete moments ( ψ′1
∣∣
x;α,Θ), which might be more helpful in the discussion of

Bonferroni and Lorenz curves, could be more conveniently derived with the assistance of
µ′r|x;α,Θ. Hence, ψ′1

∣∣
x;α,Θ can be presented as follows:

ψ′1
∣∣
x;α,Θ =

∞

∑
l=0

Φ| l+1 I|1,t,l − 2 Φ| l+1 I|1,t,l+1

∣∣∣∣∣∣∣∣
α>0,x∈R

where I|r,l =
∫ +∞
−∞ xr g| x;Θ {G|x;Θ }ldx, I|r,l+1 =

∫ +∞
−∞ xr g| x;Θ {G|x;Θ }l+1dx, I|1,t,l =∫ t

−∞ x g| x;Θ {G|x;Θ }ldx, I|1,t,l+1 =
∫ t
−∞ x g| x;Θ {G|x;Θ }l+1dx, and Φ| l+1 = {log(1+α)}l+1

l! .
It is important to keep in mind that the integrals may be computed numerically for

the baseline models.
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2.1. Asymptotics

The asymptotic for new-G (x; α, Θ) cdf, pdf, sf, and hrf at lim
x→0

and lim
x→∞

are, respectively,

presented as follows:

1-lim
x→0

F|0;α,Θ = 0, and lim
x→∞

F|∞;α,Θ = 1.

2-lim
x→0

f |0;α,Θ = g| x;Θlog(1 + α), and lim
x→∞

f |∞;α,Θ = g| x;Θ[(1 + α)log(1 + α)− 2αlogα].

3-lim
x→0

s f |0;α,Θ = 1, and lim
x→∞

s f |∞;α,Θ = 0.

4-lim
x→0

hr f |0;α,Θ = g| x;Θlog(1 + α), and lim
x→∞

hr f |∞;α,Θ = undefined.

2.2. Useful Representation

Mixture representation (MR) is very common and useful to discuss complex type
characteristics of pdf and cdf. The cdf of new-G in terms of MR

FMR|x;α,Θ =
∞

∑
i=0

[
{log(1 + α)}i

i!
{G|x;Θ }

i − {logα}i

i!
[G|x;Θ ]2i

]∣∣∣∣∣
α>0,x∈R

,

and pdf are, respectively, presented as follows:

fMR|x;α,Θ = g| x;Θ

∞

∑
l=0

[
{log(1 + α)}l+1

l!
{G|x;Θ }

l − 2
{logα}l+1

l!
{G|x;Θ }

l+1

]∣∣∣∣∣
α>0,x∈R

2.3. Order Statistics (OS)

Suppose X|1, X|2, X|3, . . . , X|n are (iid) independent and identically distributed, ran-
dom variables (RVs) from the new-G family of distributions. The pdf of the j-th OS X|j:n is
presented by

f j:n
∣∣
x;α,Θ =

f |x;α,Θ

B(j, n− j + 1)

n−j

∑
m=0

(−1)m
(

n− j
m

)
[ F|x;α,Θ ]m+j−1.

One can easily determine the pdf of the j-th OS by placing the pertaining information
into (1) and (2).

2.4. Entropy

This section gives a brief demonstration of the Rényi entropy measure (RE), the Tsallis
entropy measure (TE), as well as the Havrda and Charvat entropy measure (HCE), all of
which are formally derived in Sections 2.4.1–2.4.3, respectively.

2.4.1. Rényi Entropy

If X ~ new-G (x; α, Θ) with scale (α > 0) and vector space (Θ) the RE|x;α,Θ of the new-G
is defined as follows:

RE|x;α,Θ =
1

1−Ω
log
∫ +∞

−∞
[ f |x;α,Θ ]Ωdx. (5)

By solving (2) in terms of Ω as

[ f |x;α,Θ ]Ω =
[

g| x;Θ(1 + α)G|x;Θ log(1 + α)− 2g| x;Θ G|x;Θα[G|x;Θ ]2 logα
]Ω
∣∣∣∣
α,Ω>0,Ω 6=1,x∈R

.

(6)
As we know all that in (6)

g| x;Θ(1 + α)G|x;Θ log(1 + α) > 2g| x;Θ G|x;Θα[G|x;Θ ]2 logα.
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Hence, we consider the term g| x;Θ(1 + α)G|x;Θ log(1 + α) as common, and we get the
simplified form of [ f |x;α,Θ ]Ω as

[ f |x;α,Θ ]Ω =

 ∞
∑

l1=0

(
Ω
l1

)
(−1)l1

[
2g| x;Θ G|x;Θα[G|x;Θ ]2 logα

]l1
×

[log(1 + α)g| x;Θ(1 + α)G|x;Θ ]Ω−l1

. (7)

Now simplify,

αl1[G|x;Θ ]2 = el1[G|x;Θ ]2logα =
∞

∑
l2=0

[l1logα]l2

l2!
[G|x;Θ ]2l2 ,

and

(1 + α)(Ω−l1)G|x;Θ = e(Ω−l1)G|x;Θ log(1+α) =
∞

∑
l3=0

[log(1 + α)]l3

l3!
(Ω− l1)

l3 [G|x;Θ ]l3 , (8)

and substitute (8) into (7), we get

[ f |x;α,Θ ]Ω =
∞

∑
l1,l2,l3=0


(

Ω
l1

)
[l1]

l2 [log(1+α)]Ω−l1+l3

l2!l3!

[log(α)]l1+l2(−1)l12l1

(Ω− l1)
l3 [g| x;Θ ]Ω [G|x;Θ ]l1+2l2+l3


∣∣∣∣∣∣∣∣∣
α,Ω>0,Ω 6=1,x∈R

. (9)

Hence, we get the final form of the RE|x;Θ when (9) is placed into (5):

RE|x;α,Θ =
1

1−Ω
log

∞

∑
l1,l2,l3=0


(

Ω
l1

)
[l1]

l2 [log(1+α)]Ω−l1+l3

l2!l3!

[log(α)]l1+l2(−1)l12l1

(Ω− l1)
l3 [g| x;Θ ]Ω [G|x;Θ ]l1+2l2+l3


∣∣∣∣∣∣∣∣∣
α,Ω>0,Ω 6=1,x∈R

.

2.4.2. Tsallis Entropy

If X ~ new-G (x; α, Θ) with scale (α > 0) and vector space (Θ), the TE|x;α,Θ of the
new-G is defined as follows:

TE|x;α,Θ =
1

1−Ω

∫ +∞

−∞
[ f |x;Θ ]Ωdx− 1. (10)

Hence, we get the final form of the TE|x;Θ when (9) is placed into (10):

TE|x;α,Θ =
1

1−Ω

∞

∑
l1,l2,l3=0


(

Ω
l1

)
[l1]

l2 [log(1+α)]Ω−l1+l3

l2!l3!

[log(α)]l1+l2(−1)l12l1

(Ω− l1)
l3 [g| x;Θ ]Ω [G|x;Θ ]l1+2l2+l3

− 1

∣∣∣∣∣∣∣∣∣
α,Ω>0,Ω 6=1,x∈R

.

2.4.3. Havrda and Charvat Entropy

If X ~ new-G (x; α, Θ) with scale (α > 0) and vector space (Θ), the HCE|x;α,Θ of the
new-G is defined as follows:

HCE|x;α,Θ =
1

21−Ω − 1

∫ +∞

−∞
[ f |x;Θ ]Ωdx− 1. (11)
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Hence, we get the final form of the HCE|x;Θ when (9) is placed into (11):

HCE|x;α,Θ = A
∞

∑
l1,l2,l3=0


(

Ω
l1

)
[l1]

l2 [log(1+α)]Ω−l1+l3

l2!l3!

[log(α)]l1+l2(−1)l12l1

(Ω− l1)
l3 [g| x;Θ ]Ω [G|x;Θ ]l1+2l2+l3

− 1

∣∣∣∣∣∣∣∣∣
α,Ω>0,Ω 6=1,x∈R

,

where A = 1
21−Ω−1 .

2.5. Inference

Let Xj ~ new-G (xj; α, Θ) with scale (α > 0) and vector space (Θ)T , then the log-
likelihood l(Θ) from a random sample of size n is given by

lϑ |x;α,Θ =
n

∑
j=1

log [g| x;Θ ] +
n

∑
j=1

log
[
(1 + α)G|x;Θ log(1 + α)− 2 G|x;Θα[G|x;Θ ]2 logα

]∣∣∣
α>0,x∈R

. (12)

The ML estimator ϑ = (α, Θ)T can be derived by maximizing the lϑ |x;Θ or solving
the nonlinear likelihood equations simultaneously by differentiating (12). The partial
derivative of lϑ |x;Θ is provided in the following form for both α and Θ, respectively:

∂ lϑ |x;α,Θ

∂α
=

[
1

p|1 − p|2

][
(1 + α)G|x;Θ

(1 + α)
+ {log(1 + α)}2(1 + α)G|x;Θ

]
,

∂ lϑ |x;α,Θ

∂Θ
=

[
1

p|1 − p|2

] n

∑
j=1

[
{log(1 + α)}2(1 + α)G|x;Θ − 2logα

[
1 + 2{G|x;Θ }

2logα
]∂ G|x;Θ

∂Θ

]
,

where p|1 = (1 + α)G|x;Θ log(1 + α) and p|2 = 2 G|x;Θα[G|x;Θ ]2 logα.

3. Mathematical Characteristics of Sub-Model

The PFD, which has cdf [x/M]θ and pdf [θ/M][x/M]θ−1, θ > 0, M ≥ x, is a well-
known simple function with powerful characteristics, and is consider for detailed discussion
in this section. The cdf, pdf, sf, and hrf of the new-PFD can be illustrated, respectively, as
follows:

F|x = (1 + α)[
x
M ]θ − α[

x
M ]2θ

∣∣∣∣
k,θ>0,M≥x

, (13)

f |x =

[
θ

M

][ x
M

]θ−1
[
(1 + α)[

x
M ]θ log(1 + α)− 2

[ x
M

]θ
α[

x
M ]2θ

logα

]∣∣∣∣
α,θ>0,M≥x

, (14)

s f |x = 1− (1 + α)[
x
M ]θ + α[

x
M ]2θ

∣∣∣∣
α,θ>0,M≥x

, (15)

hr f |x =

[
θ
M

][ x
M
]θ−1

[
(1 + α)[

x
M ]θ log(1 + α)− 2

[ x
M
]θ

α[
x
M ]2θ

logα

]
1− (1 + α)[

x
M ]θ + α[

x
M ]2θ

∣∣∣∣∣∣∣∣
α,θ>0,M≥x

. (16)

3.1. Useful Representation

The MR, which is developed for pdf of the new-PFD, will be very useful for deriving
moments and other characteristics. The analytical expression of the MR is presented as follows:

fMR|x =
∞

∑
l=0

 {log(1+α)}l+1

l!

{
θ

Mθ+l(θ−1)

}
x(θ−1)(l+1)−

2 {logα}l+1

l!

{
θ

Mθ+(l+1)(θ−1)

}
x(θ−1)(l+2)

∣∣∣∣∣∣
α,θ>0,M≥x

. (17)
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3.2. Moments and Related Measures

Theorem 1. If X ~ new-PFD (x; α, θ) with α, θ > 0 and M ≥ x, r-th moments about origin
(say µ′r|x) is presented as follows:

µ′r
∣∣
x =

∞

∑
l=0

[
θMr

{
{log(1 + α)}l+1

l!{(r + θ) + l(θ − 1)} −
2{logα}l+1

l!{(r + 1) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

Proof. The µ′r|x is denoted by

µ′r
∣∣
x =

∫ M

0
xr f |xdx.

By substituting the analytical expression from (17), we get

µ′r
∣∣
x =

∫ M

0
xr

∞

∑
l=0

 {log(1+α)}l+1

l!

{
θ

Mθ+l(θ−1)

}
x(θ−1)(l+1)−

2 {logα}l+1

l!

{
θ

Mθ+(l+1)(θ−1)

}
x(θ−1)(l+2)

dx

∣∣∣∣∣∣
α,θ>0,M≥x

.

The last expression of µ′r|x can be expressed as follows:

µ′r|x = ∑∞
j=0

 {log(1+α)}l+1

l!

{
θ

Mθ+l(θ−1)

}∫ M
0 xr+(θ−1)(l+1)dx−

2 {logα}l+1

l!

{
θ

Mθ+(l+1)(θ−1)

}∫ M
0 x(θ−1)(l+2)dx

∣∣∣∣∣∣
α,θ>0,M≥x

.

Here, we explore all possible shapes that the new-PFD may have for different combi-
nations of parameters. Figure 1 shows all of the pdf curves that are possible and Figure 2
presents the flexible shapes that clearly depict the increasing and bathtub-shaped curves
of hrf.
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By applying simple mathematics to the last expression, we get the final analytical
expression of the r-th moments about the origin of the new-PFD and it is presented as
follows:

µ′r
∣∣
x =

∞

∑
l=0

[
θMr

{
{log(1 + α)}l+1

l!{(r + θ) + l(θ − 1)} −
2{logα}l+1

l!{(r + 1) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

. (18)

�
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Corollary 1. By placing r = 1,2,3,4,-v, and −1 in (18), we get the 1st four moments (say
µ′1
∣∣
x, µ′2|x, µ′3

∣∣
x, µ′4

∣∣
x), negative moments (say µ′−v|x), harmonic mean (say µ′−1

∣∣
x), and variance

(Var|x) of the new-PFD and the analytical expressions are, respectively, presented as follows:

µ′1
∣∣
x =

∞

∑
l=0

[
θM

{
{log(1 + α)}l+1

l!{(1 + θ) + l(θ − 1)} −
2{logα}l+1

l!{2 + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

,

µ′2
∣∣
x =

∞

∑
l=0

[
θM2

{
{log(1 + α)}l+1

l!{(2 + θ) + l(θ − 1)} −
2{logα}l+1

l!{3 + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

,

µ′3
∣∣
x =

∞

∑
l=0

[
θM3

{
{log(1 + α)}l+1

l!{(3 + θ) + l(θ − 1)} −
2{logα}l+1

l!{4 + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

,

µ′4
∣∣
x =

∞

∑
l=0

[
θM4

{
{log(1 + α)}l+1

l!{(4 + θ) + l(θ − 1)} −
2{logα}l+1

l!{4 + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

,

µ′−v
∣∣
x =

∞

∑
l=0

[
θ

Mv

{
{log(1 + α)}l+1

l!{(θ − v) + l(θ − 1)} −
2{logα}l+1

l!{(1− v) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

,

µ′−1
∣∣
x =

∞

∑
l=0

[
θ

M

{
{log(1 + α)}l+1

l!{(θ − 1) + l(θ − 1)} −
2{logα}l+1

l!{(θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

,

Var|x =

∞
∑

l=0

[
θM2

{
{log(1+α)}l+1

l!{(2+θ)+l(θ−1)} −
2{logα}l+1

l!{3+(θ−1)(l+2)}

}]
−[

∞
∑

l=0

[
θM
{
{log(1+α)}l+1

l!{(1+θ)+l(θ−1)} −
2{logα}l+1

l!{2+(θ−1)(l+2)}

}]]2

∣∣∣∣∣∣∣∣
α,θ>0,M≥x

.

It is worth noting that µ2|x = µ′2|x − µ′1
∣∣2
x; µ3|x = 2 µ′1

∣∣3
x − 3 µ′2|x µ′1

∣∣
x − µ′3

∣∣
x; and

µ4|x = µ′4
∣∣
x − 3 µ′1

∣∣4
x + 6 µ′1

∣∣2
x µ′2|x − 4 µ′3

∣∣
x µ′1

∣∣
x. Furthermore, the coefficient of skewness and

coefficient of kurtosis is easily determined by τ1|x =
µ′3|

2
x

µ′2|
3
x

and τ2|x =
µ4|x
µ′2|

2
x

, respectively.

Theorem 2. If X ~ new-PFD (x; α, θ) with α, θ > 0 and M ≥ x, the moment generating function
(say MGF|x) is presented as follows:



Mathematics 2023, 11, 1641 9 of 29

MGF|x =
∞

∑
r=0

tr

r!

∞

∑
l=0

[
θMr

{
{log(1 + α)}l+1

l!{(r + θ) + l(θ − 1)} −
2{logα}l+1

l!{(r + 1) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

Proof. The MGF|x is denoted by

MGF|x =
∫ M

0
etx f |xdx.

By following (17),

MGF|x =
∫ M

0
etx

∞

∑
l=0

 {log(1+α)}l+1

l!

{
θ

Mθ+l(θ−1)

}
x(θ−1)(l+1)−

2 {logα}l+1

l!

{
θ

Mθ+(l+1)(θ−1)

}
x(θ−1)(l+2)

dx

∣∣∣∣∣∣
α,θ>0,M≥x

.

We can write etxas
∞
∑

r=0
(tr/r!)xr. Hence, by following (17), MGF|x of the new-PFD is

derived after applying a few mathematical steps, and the analytical expression of MGF|x
can be presented as follows:

MGF|x =
∞

∑
r=0

tr

r!

∞

∑
l=0

[
θMr

{
{log(1 + α)}l+1

l!{(r + θ) + l(θ − 1)} −
2{logα}l+1

l!{(r + 1) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

�

Theorem 3. If X ~ new-PFD (x; α, θ) with α, θ > 0 and M ≥ x, the characteristic function (say
CF|x) is presented as follows:

CF|x =
∞

∑
r=0

(it)r

r!

∞

∑
l=0

[
θMr

{
{log(1 + α)}l+1

l!{(r + θ) + l(θ − 1)} −
2{logα}l+1

l!{(r + 1) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

Proof. The CF|x is denoted by

CF|x =
∫ M

0
eitx f |xdx.

By following (17),

CF|x =
∫ M

0
eitx

∞

∑
l=0

 {log(1+α)}l+1

l!

{
θ

Mθ+l(θ−1)

}
x(θ−1)(l+1)−

2 {logα}l+1

l!

{
θ

Mθ+(l+1)(θ−1)

}
x(θ−1)(l+2)

dx

∣∣∣∣∣∣
α,θ>0,M≥x

.

We can write eitxas
∞
∑

r=0

[
(it)r/r!

]
xr. Hence, by following (17), CF|x of the new-PFD is

derived after applying a few mathematical steps, and the analytical expression of CF|x can
be presented as follows:

CF|x =
∞

∑
r=0

(it)r

r!

∞

∑
l=0

[
θMr

{
{log(1 + α)}l+1

l!{(r + θ) + l(θ − 1)} −
2{logα}l+1

l!{(r + 1) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

�
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Theorem 4. If X ~ new-PFD (x; α, θ) with α, θ > 0 and M ≥ x, the Millan transformation (say
MT|x) is presented as follows:

MT|x =
∞

∑
l=0

[
θMy−1

{
{log(1 + α)}l+1

l!{(y− 1 + θ) + l(θ − 1)} −
2{logα}l+1

l!{y + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

Proof. The MT|x is denoted by

MT|x =
∫ M

0
xy−1 f |xdx.

By following (17),

MT|x =
∫ M

0
xy−1

∞

∑
l=0

 {log(1+α)}l+1

l!

{
θ

Mθ+l(θ−1)

}
x(θ−1)(l+1)−

2 {logα}l+1

l!

{
θ

Mθ+(l+1)(θ−1)

}
x(θ−1)(l+2)

dx

∣∣∣∣∣∣
α,θ>0,M≥x

.

We can describe MT|x of the new-PFD after applying a few mathematical steps, and
the analytical expression of MT|x can be presented as follows:

µ/
MT

∣∣∣
x
=

∞

∑
l=0

[
θMy−1

{
{log(1 + α)}l+1

l!{(y− 1 + θ) + l(θ − 1)} −
2{logα}l+1

l!{y + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

�

Theorem 5. If X ~ new-PFD (x; α, θ) with α, θ > 0 and M ≥ x, the harmonic mean (say HM|x)
is presented as follows:

HM|x =
∞

∑
l=0

[
θ

M

{
{log(1 + α)}l+1

l!{(r + θ) + l(θ − 1)} −
2{logα}l+1

l!{(r + 1) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

Proof. The HM|x is denoted by

HM|x =
∫ M

0
(1/x) f |xdx.

By following (17),

HM|x =
∫ M

0
(1/x)

∞

∑
l=0

 {log(1+α)}l+1

l!

{
θ

Mθ+l(θ−1)

}
x(θ−1)(l+1)−

2 {logα}l+1

l!

{
θ

Mθ+(l+1)(θ−1)

}
x(θ−1)(l+2)

dx

∣∣∣∣∣∣
α,θ>0,M≥x

.

We can describe HM|x of the new-PFD after applying a few mathematical steps, and
the analytical expression of HM|x can be presented as follows:

HM|x =
∞

∑
l=0

[
θ

M

{
{log(1 + α)}l+1

l!{(θ − 1) + l(θ − 1)} −
2{logα}l+1

l!{(θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

�
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Theorem 6. If X ~ new-PFD (x; α, θ) with α, θ > 0 and M ≥ x, the p-th incomplete moment (say
ICM|p) is presented as follows:

ICM|p =
∞

∑
l=0

[
θ

t

{
{log(1 + α)}l+1

l!{(p + θ) + l(θ − 1)} −
2{logα}l+1

l!{(p + 1) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

Proof. The ICM|p is denoted by

ICM|p =
∫ t

0
xp f |xdx.

By following (17),

ICM|p =
∫ t

0
xp

∞

∑
l=0

 {log(1+α)}l+1

l!

{
θ

Mθ+l(θ−1)

}
x(θ−1)(l+1)−

2 {logα}l+1

l!

{
θ

Mθ+(l+1)(θ−1)

}
x(θ−1)(l+2)

dx

∣∣∣∣∣∣
α,θ>0,M≥x

.

We can describe ICM|p of the new-PFD after applying a few mathematical steps, and
the analytical expression of ICM|p can be presented as follows:

ICM|p =

[
θtp

{
{log(1 + α)}l+1

l!{(r + θ) + l(θ − 1)} −
2{logα}l+1

l!{(r + 1) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

�

Corollary 2. By placing p = 1 in ICM|p (last expression), we get the 1st incomplete moment (say
ICM|1) of the new-PFD and the analytical expression is presented as follows:

ICM|1 =
∞

∑
l=0

[
θt

{
{log(1 + α)}l+1

l!{(r + θ) + l(θ − 1)} −
2{logα}l+1

l!{(r + 1) + (θ − 1)(l + 2)}

}]∣∣∣∣∣
α,θ>0,M≥x

.

It is worth noting that the Bonferroni and Lorenz curves have major implementation
in ICM|1 and they are well-defined as B|p = ICMt|1/ µ′1

∣∣
x and L|p = ICMp

∣∣
1/p µ′1

∣∣
x,

respectively. There are many applications for these curves in fields such as economics,
demography, insurance, engineering, and medicine. Mean residual life and mean waiting
time (see Section 3.3.1) are two further examples of contexts in which the first incomplete
instant is useful.

Theorem 7. If X ~ new-PFD (x; α, θ) with α, θ > 0 and M ≥ x, the vitality function (say VT|x)
is presented as follows:

VT|x =
1

s f |x

[
∞

∑
l=0

[{
{log(1 + α)}l+1

l!{(1 + θ) + l(θ − 1)} −
2{logα}l+1

l!{2 + (θ − 1)(l + 2)}

}
θ(M− x)

]]∣∣∣∣∣
α,θ>0,M≥x

.

Proof. The VT|x is denoted by

VT|x =
1

s f |x

∫ M

x
x f |xdx.
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By following (17),

VT|x =
1

s f |x

∫ M

x
x

∞

∑
l=0

 {log(1+α)}l+1

l!

{
θ

Mθ+l(θ−1)

}
x(θ−1)(l+1)−

2 {logα}l+1

l!

{
θ

Mθ+(l+1)(θ−1)

}
x(θ−1)(l+2)

dx

∣∣∣∣∣∣
α,θ>0,M≥x

.

We can describe VT|x of the new-PFD after applying a few mathematical steps, and
the analytical expression of VT|x can be presented as follows:

VT|x =
1

s f |x

[
∞

∑
l=0

[{
{log(1 + α)}l+1

l!{(1 + θ) + l(θ − 1)} −
2{logα}l+1

l!{2 + (θ − 1)(l + 2)}

}
θ(M− x)

]]∣∣∣∣∣
α,θ>0,M≥x

.

�

Theorem 8. If X ~ new-PFD (x; α, θ) with α, θ > 0 and M ≥ x, conditional moments (say
CMx|x>v) are presented as follows:

CMx|x>v =
1

s f |v

[
∞

∑
l=0

[{
{log(1 + α)}l+1

l!{(1 + θ) + l(θ − 1)} −
2{logα}l+1

l!{2 + (θ − 1)(l + 2)}

}
θ(M− x)

]]∣∣∣∣∣
α,θ>0,M≥x

.

Proof. The CMx|x>v is denoted by

CMx|x>v =
1

s f |v

∫ M

v
xr f |xdx.

By following (17),

CMx|x>v =
1

s f |v

∫ M

v
xr

∞

∑
l=0

 {log(1+α)}l+1

l!

{
θ

Mθ+l(θ−1)

}
x(θ−1)(l+1)−

2 {logα}l+1

l!

{
θ

Mθ+(l+1)(θ−1)

}
x(θ−1)(l+2)

dx

∣∣∣∣∣∣
α,θ>0,M≥x

.

We can describe CMx|x>v of the new-PFD after applying a few mathematical steps,
and the analytical expression of CMx|x>v can be presented as follows:

CMx|x>v =
1

s f |v

∞

∑
l=0

{ {log(1+α)}l+1

l!{(r+θ)+l(θ−1)} −
2{logα}l+1

l!{(r+1)+(θ−1)(l+2)}

}
×

θ(Mr − vr)

∣∣∣∣∣∣
α,θ>0,M≥x

.

�

3.3. Residuals and Related Measures

Residual function (say RL) and reverse RL of the new-PFD is described as Rw|x =

S(x + w)/S(w)|α,θ>0,M≥x and
−
Rw |x = S(x− w)/S(w)|α,θ>0,M≥x, respectively. The analyt-

ical expressions are, respectively, presented as follows:

Rw|x = 1− (1 + α)[
x+w

M ]
θ

+ α[
x+w

M ]
2θ
∣∣∣∣
α,θ>0,M≥x

,

−
Rw |x = 1− (1 + α)[

x−w
M ]

θ

+ α[
x−w

M ]
2θ
∣∣∣∣
α,θ>0,M≥x

.
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3.3.1. Mean Residual and Mean Inactivity Time

Mean RL and mean inactivity time (MIT) of the new-PFD are described as: MRLw|x =
1− ICM|1
S(w)−w

∣∣∣
α,θ>0,M≥x

and MITw|x = w− ICM|1
F(w)

∣∣∣
α,θ>0,M≥x

, respectively, and are presented

as follows:

MRLw|x =

1−∑∞
l=0

[
θ
t

{
{log(1+α)}l+1

l!{(1+θ)+l(θ−1)} −
2{logα}l+1

l!{2+(θ−1)(l+2)}

}]
S(w)− w

∣∣∣∣∣∣∣∣
α,θ>0,M≥x

,

MITw|x = w−
∑∞

l=0

[
θ
t

{
{log(1+α)}l+1

l!{(1+θ)+l(θ−1)} −
2{logα}l+1

l!{2+(θ−1)(l+2)}

}]
F(w)

∣∣∣∣∣∣∣∣
α,θ>0,M≥x

.

3.4. Entropy

This section gives a brief demonstration of the Rényi entropy measure (RE), the Tsallis
entropy measure (TE), as well as the Havrda and Charvat entropy measure (HCE), all of
which are formally derived in Sections 3.4.1–3.4.3, respectively.

3.4.1. Rényi Entropy

If X ~ new-G (x; Θ) with scale (α > 0) and vector space (Θ) the RE|x;Θ of the new-PFD
is defined as follows:

RE|x =
1

1−Ω
log
∫ M

0
[ f |x;Θ ]Ωdx. (19)

We get the simplified form of [ f |x;Θ ]Ω by solving (6) in terms of Ω,

[ f |x;Θ ]Ω =
∞

∑
l1,l2,l3=0


(

Ω
l1

)
[l1]

l2 [log(1+α)]Ω−l1+l3

l2!l3! [log(α)]l1+l2(−1)l12l1

(Ω− l1)
l3 θΩ

MΩθ+θ(l1+2l2+l3)
xΩ(θ−1)+θ(l1+2l2+l3)


∣∣∣∣∣∣∣
α,Ω>0,Ω 6=1,x∈R

. (20)

Hence, the final form of RE|x;Θ is obtained when (20) is placed into (19)

RE|x =
1

1−Ω
log

∞

∑
l1,l2,l3=0


(

Ω
l1

)
[l1]

l2 [log(1+α)]Ω−l1+l3

l2!l3!

[log(α)]l1+l2(−1)l12l1

(Ω− l1)
l3 θΩ M1−Ω

[Ω(θ−1)+θ(l1+2l2+l3)+1]


∣∣∣∣∣∣∣∣∣
α,Ω,θ>0,Ω 6=1,x∈R

.

3.4.2. Tsallis Entropy

If X ~ new-PFD (x; Θ) with scale (α > 0) and vector space (Θ), the TE|x;Θ of the
new-PFD is defined as follows:

TE|x =
1

1−Ω

∫ +∞

−∞
[ f |x;Θ ]Ωdx− 1. (21)

Hence, we get the final form of TE|x;Θ when (20) is placed into (21)

TE|x =
1

1−Ω

∞

∑
l1,l2,l3=0


(

Ω
l1

)
[l1]

l2 [log(1+α)]Ω−l1+l3

l2!l3!

[log(α)]l1+l2(−1)l12l1

(Ω− l1)
l3 θΩ M1−Ω

[Ω(θ−1)+θ(l1+2l2+l3)+1]

− 1

∣∣∣∣∣∣∣∣∣
α,Ω,θ>0,Ω 6=1,x∈R

.
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3.4.3. Havrda and Charvat Entropy

If X ~ new-G (x; Θ) with scale (α > 0) and vector space (Θ), the HCE|x;Θ of the new-G
is defined as follows:

HCE|x = A
∫ +∞

−∞
[ f |x;Θ ]Ωdx− 1. (22)

Hence, we get the final form of HCE|x;Θ when (20) is placed into (22)

HCE|x = A
∞

∑
l1,l2,l3=0


(

Ω
l1

)
[l1]

l2 [log(1+α)]Ω−l1+l3

l2!l3!

[log(α)]l1+l2(−1)l12l1

(Ω− l1)
l3 θΩ M1−Ω

[Ω(θ−1)+θ(l1+2l2+l3)+1]

− 1

∣∣∣∣∣∣∣∣∣
α,Ω,θ>0,Ω 6=1,x∈R

,

where A = 1
21−Ω−1 . It should be noted that any software, such as R or Mathematica, can

easily perform its numerical analysis.

3.5. Order Statistics (OS)

Suppose X|1, X|2, X|3, . . . , X|n be (iid) independent, identically distributed, random
variables (RVs) from the new-G family of distributions. The pdf and cdf of the j-th OS X|j:n
are, respectively, presented by

f j:n
∣∣
x =

1
B(a, b)

[ F|x]
j−1[ f |x][1− F|x]

n−j.

f j:n
∣∣
x =



1
B(a,b)

[
(1 + α)[

x
M ]θ − α[

x
M ]2θ

]j−1
×[

θ
M

][ x
M
]θ−1

[
(1 + α)[

x
M ]θ log(1 + α)−

2
[ x

M
]θ

α[
x
M ]2θ

logα

]
×[

1− (1 + α)[
x
M ]θ + α[

x
M ]2θ

]n−j


,

and

Fj:n
∣∣
x =

n

∑
r=i

(
n
r

)
[Fx]

r[1− F|x]
n−r,

Fj:n
∣∣
x =

n

∑
r=i

(
n
r

)[
(1 + α)[

x
M ]θ − α[

x
M ]2θ

]r[
1− (1 + α)[

x
M ]θ + α[

x
M ]2θ

]n−r
,

where B(a, b) = B(j, n− j + 1). It is worth noting that the minimum and maximum OS pdf
are obtained by substituting in n = 0 and n = 1, respectively.

4. Inference

This section briefly illustrates the performance of our estimation methods as presented
in (Sections 4.1–4.6). For this, cdf (5) is considered our baseline model.

4.1. Maximum Likelihood Estimation Method (MLE)

Let Xj ~ new-PFD (xj; α, θ) with scale (α > 0) and shape (θ) parameters, then the
log-likelihood l|x from a random sample x1, x2, x3, . . . , xn of size n from (6), is given by

l|x = nlogθ − nθlogM + (θ − 1)
n

∑
j=1

logxj +
n

∑
j=1

log[ p|1 − p|2]
∣∣∣∣∣
α,θ>0,M≥xj

.
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The partial derivative of l|Θ is provided in the following form for both α and θ,
respectively:

∂ l|x
∂α

=
n

∑
j=1

1
p|1 − p|2

(1 + α)[
xj
M ]

θ
−1
{[ xj

M

]θ
log(1 + α) + 1

}
−

2α[
xj
M ]

2θ
−1
[ xj

M

]θ
{[ xj

M

]2θ
logα + 1

}
,

∂ l|x
∂θ

= n
[

1
θ
− logM

]
+

n

∑
j=1

logxj +
n

∑
j=1

1
p|1 − p|2

log
[ xj

M

]
(1 + α)[

xj
M ]

θ

{log(1 + α)}2−

4α[
xj
M ]

2θ

{logα}2
[ xj

M

]θ
−

2α[
xj
M ]

2θ

logα
[ xj

M

]θ


,

where p|1 = (1 + α)[
xj
M ]

θ

log(1 + α) and p|2 = 2
[ xj

M

]θ
α[

xj
M ]

2θ

logα.

4.2. Anderson–Darling Estimation Method (ADE-M)

Let Xj ~ new-PFD (xj; α, θ) with scale (α > 0) and shape (θ) parameter, then the
estimators of our proposed family is obtained by the Anderson–Darling estimation by
minimizing the following expression:

ADE−M = −n− 1
n

n

∑
j=1

(2j− 1)
(

log Fx|j:n + log (1− Fx|j:n )
)

.

4.3. Cram’er–Von Mises Estimation Method (CVME-M)

Let Xj ~ new-PFD (xj; α, θ) with scale (α > 0) and shape (θ) parameter, then the
estimators of our proposed family is obtained by the Cram´er–von Mises estimation by
minimizing the following expression:

CVME−M =
1

12n
+

n

∑
j=1

(
Fx|j:n −

2j− 1
2n

)2
.

4.4. Least Squares Estimation Method (LSE-M)

Let Xj ~ new-PFD (xj; α, θ) with scale (α > 0) and shape (θ) parameter, then the
estimators of our proposed family is obtained by the least-squares estimation by minimizing
the following expression:

LSE−M =
n

∑
j=1

(
Fx|j:n −

j
n + 1

)2
.

4.5. Weighted Least-Squares Estimation Method (WLSE-M)

Let Xj ~ new-PFD (xj; α, θ) with scale (α > 0) and shape (θ) parameter, then the
estimators of our proposed family is obtained by the weighted least-squares estimation by
minimizing the following expression:

WLSE−M =
(n + 1)2(n + 2)

j(n− j + 1)

n

∑
j=1

(
Fx|j:n −

j
n + 1

)2
.
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4.6. Maximum Product of Spacings Estimation Method (MPSE-M)

Let Xj ~ new-PFD (xj; α, θ) with scale (α > 0) and shape (θ) parameter, then the
estimators of our proposed family is obtained by the maximum product of the spacings
estimation by maximizing the following expression:

MPSE−M =
1

(n + 1)

n+1

∑
j=1

(log Fx|j − Fx|j−1 )
2.

5. Simulation Study

The simulation work is one of the most vital components of any kind of paper. The
purpose of this part is to investigate the performance of the estimation techniques that have
been presented in order to estimate the parameters of the new-PFD utilizing the results
of thorough simulations. We used different sample sizes along with different values of
parameters, as we can see in Tables 2–5. We observed that the average absolute biases
(|BIAS|), mean square errors (MSEs), and mean relative errors (MREs) decreased as the
sample size increased for all parameter values. Now, we can conclude that all estimates
have the consistency property and all estimation methods performed well. This simulation
study is based on the following algorithm:

1. We set the beginning values for the parameters of our suggested model.
2. From our suggested model, we have produced random data sets using the inverse

of cdf.
3. Use several estimate techniques to find estimators for our proposed model.
4. Calculate the bias, MSE, and MRE for each estimator using each estimating technique.
5. Repeat steps 1 through 4, 500 times.

|BIAS| = 1
500

500

∑
k=1

∣∣Λ̂−Λ
∣∣,

MSEs =
1

500

500

∑
k=1

(
Λ̂−Λ

)2,

MREs =
1

500

500

∑
k=1

∣∣Λ̂−Λ
∣∣/Λ.

Table 2. The simulated BIAS, MSE, and MRE values for (α = 0.5, θ = 1.5).

n Est. Par. MLE-M ADE-M CVME-M MPSE-M LSE-M WLSE-M

20 BIAS α̂ 0.3769 0.3296 0.3288 0.3120 0.3697 0.3932

θ̂ 0.3723 0.3683 0.3915 0.3293 0.3241 0.4479

MSE α̂ 0.2035 0.1671 0.1498 0.1352 0.1689 0.1946

θ̂ 0.2903 0.2374 0.3020 0.1866 0.1949 0.4083

MRE α̂ 0.7538 0.6593 0.6576 0.6240 0.7394 0.7864

θ̂ 0.2482 0.2455 0.2610 0.2196 0.2161 0.2986

40 BIAS α̂ 0.3226 0.3177 0.2933 0.2955 0.3218 0.3115

θ̂ 0.2652 0.2654 0.2669 0.2128 0.2719 0.2403

MSE α̂ 0.1698 0.1469 0.1170 0.1294 0.1392 0.1394

θ̂ 0.1128 0.1173 0.1192 0.0843 0.1251 0.1109

MRE α̂ 0.6451 0.6354 0.5865 0.5910 0.6435 0.6229

θ̂ 0.1768 0.1770 0.1780 0.1419 0.1813 0.1602
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Table 2. Cont.

n Est. Par. MLE-M ADE-M CVME-M MPSE-M LSE-M WLSE-M

80 BIAS α̂ 0.2865 0.2372 0.2258 0.2450 0.2577 0.2499

θ̂ 0.1836 0.1790 0.1891 0.1689 0.1741 0.1767

MSE α̂ 0.1457 0.0925 0.0828 0.0998 0.1098 0.1059

θ̂ 0.0632 0.0521 0.0550 0.0538 0.0547 0.0535

MRE α̂ 0.5730 0.4744 0.4516 0.4901 0.5154 0.4999

θ̂ 0.1224 0.1193 0.1261 0.1126 0.1161 0.1178

100 BIAS α̂ 0.2538 0.2231 0.2604 0.2140 0.2631 0.2727

θ̂ 0.1768 0.1661 0.1741 0.1501 0.1812 0.1577

MSE α̂ 0.1142 0.0816 0.1062 0.0832 0.1109 0.1151

θ̂ 0.0556 0.0482 0.0519 0.0413 0.0528 0.0449

MRE α̂ 0.5076 0.4462 0.5207 0.4279 0.5262 0.5455

θ̂ 0.1178 0.1107 0.1161 0.1001 0.1208 0.1051

150 BIAS α̂ 0.2357 0.2039 0.2321 0.2295 0.2092 0.2634

θ̂ 0.1523 0.1357 0.1600 0.1158 0.1319 0.1414

MSE α̂ 0.1210 0.0779 0.0974 0.1005 0.0906 0.1184

θ̂ 0.0479 0.0300 0.0528 0.0248 0.0431 0.0302

MRE α̂ 0.4713 0.4078 0.4641 0.4590 0.4183 0.5269

θ̂ 0.1015 0.0905 0.1067 0.0772 0.0879 0.0942

200 BIAS α̂ 0.2177 0.1687 0.2269 0.1551 0.2126 0.2236

θ̂ 0.1270 0.1073 0.1115 0.0926 0.1097 0.1222

MSE α̂ 0.1030 0.0600 0.0978 0.0514 0.0872 0.0980

θ̂ 0.0273 0.0193 0.0217 0.0159 0.0200 0.0248

MRE α̂ 0.4353 0.3375 0.4538 0.3101 0.4251 0.4472

θ̂ 0.0847 0.0715 0.0743 0.0617 0.0731 0.0815

Table 3. The simulated BIAS, MSE, and MRE values for (α = 0.75, θ = 0.5).

n Est. Par. MLE-M ADE-M CVME-M MPSE-M LSE-M WLSE-M

20 BIAS α̂ 0.4524 0.3208 0.3965 0.2681 0.3433 0.3426

θ̂ 0.1327 0.1265 0.1600 0.1030 0.1352 0.1349

MSE α̂ 0.2718 0.1350 0.1910 0.1034 0.1455 0.1650

θ̂ 0.0383 0.0277 0.0426 0.0238 0.0330 0.0374

MRE α̂ 0.6032 0.4278 0.5287 0.3575 0.4577 0.4568

θ̂ 0.2655 0.2529 0.3199 0.2060 0.2705 0.2698

40 BIAS α̂ 0.3773 0.2905 0.3601 0.2529 0.3060 0.3293

θ̂ 0.0824 0.0786 0.1078 0.0616 0.0942 0.0795

MSE α̂ 0.2131 0.1143 0.1548 0.1018 0.1112 0.1374

θ̂ 0.0141 0.0115 0.0183 0.0083 0.0152 0.0106

MRE α̂ 0.5031 0.3873 0.4802 0.3372 0.4080 0.4390

θ̂ 0.1649 0.1572 0.2157 0.1231 0.1884 0.1590
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Table 3. Cont.

n Est. Par. MLE-M ADE-M CVME-M MPSE-M LSE-M WLSE-M

80 BIAS α̂ 0.2763 0.2139 0.3093 0.2312 0.2794 0.2613

θ̂ 0.0497 0.0542 0.0661 0.0419 0.0647 0.0602

MSE α̂ 0.1272 0.0754 0.1120 0.0938 0.0978 0.0858

θ̂ 0.0053 0.0061 0.0081 0.0035 0.0078 0.0062

MRE α̂ 0.3684 0.2852 0.4125 0.3083 0.3725 0.3484

θ̂ 0.0993 0.1084 0.1321 0.0838 0.1293 0.1203

100 BIAS α̂ 0.2598 0.1988 0.2691 0.1739 0.2452 0.2783

θ̂ 0.0428 0.0445 0.0514 0.0311 0.0547 0.0606

MSE α̂ 0.1216 0.0647 0.0946 0.0633 0.0823 0.0992

θ̂ 0.0045 0.0043 0.0045 0.0024 0.0047 0.0065

MRE α̂ 0.3464 0.2650 0.3589 0.2318 0.3270 0.3711

θ̂ 0.0856 0.0890 0.1028 0.0623 0.1094 0.1212

150 BIAS α̂ 0.2659 0.1839 0.2481 0.1731 0.2767 0.2420

θ̂ 0.0446 0.0318 0.0465 0.0334 0.0446 0.0439

MSE α̂ 0.1286 0.0632 0.0792 0.0642 0.0901 0.0779

θ̂ 0.0046 0.0022 0.0035 0.0027 0.0033 0.0031

MRE α̂ 0.3546 0.2453 0.3307 0.2308 0.3690 0.3227

θ̂ 0.0893 0.0636 0.0930 0.0668 0.0891 0.0879

200 BIAS α̂ 0.2047 0.1354 0.2469 0.1375 0.2556 0.2536

θ̂ 0.0317 0.0268 0.0484 0.0223 0.0428 0.0427

MSE α̂ 0.0950 0.0386 0.0761 0.0481 0.0814 0.0781

θ̂ 0.0030 0.0018 0.0037 0.0013 0.0029 0.0032

MRE α̂ 0.2730 0.1805 0.3292 0.1833 0.3408 0.3381

θ̂ 0.0633 0.0536 0.0967 0.0446 0.0856 0.0854

Table 4. The simulated BIAS, MSE, and MRE values for (α = 2.5, θ = 0.75).

n Est. Par. MLE-M ADE-M CVME-M MPSE-M LSE-M WLSE-M

20 BIAS α̂ 1.1442 0.2833 0.3719 0.3823 0.4131 0.3160

θ̂ 0.1602 0.1293 0.1434 0.1475 0.1504 0.1414

MSE α̂ 1.6432 0.1557 0.2312 0.2903 0.2905 0.1607

θ̂ 0.0408 0.0307 0.0316 0.0331 0.0361 0.0305

MRE α̂ 0.4577 0.1133 0.1488 0.1529 0.1653 0.1264

θ̂ 0.2136 0.1724 0.1912 0.1967 0.2005 0.1885

40 BIAS α̂ 0.8187 0.1869 0.3060 0.2338 0.3459 0.2289

θ̂ 0.1534 0.0950 0.1106 0.0853 0.1104 0.1052

MSE α̂ 1.1100 0.0648 0.1467 0.1348 0.2198 0.0965

θ̂ 0.0428 0.0135 0.0195 0.0115 0.0204 0.0181

MRE α̂ 0.3275 0.0747 0.1224 0.0935 0.1384 0.0916

θ̂ 0.2045 0.1267 0.1474 0.1138 0.1473 0.1402
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Table 4. Cont.

n Est. Par. MLE-M ADE-M CVME-M MPSE-M LSE-M WLSE-M

80 BIAS α̂ 0.5424 0.1206 0.1838 0.1014 0.1968 0.1544

θ̂ 0.1142 0.0673 0.0815 0.0586 0.0770 0.0759

MSE α̂ 0.6064 0.0286 0.0564 0.0168 0.0653 0.0417

θ̂ 0.0250 0.0072 0.0104 0.0057 0.0090 0.0082

MRE α̂ 0.2170 0.0483 0.0735 0.0406 0.0787 0.0618

θ̂ 0.1523 0.0897 0.1087 0.0781 0.1027 0.1012

100 BIAS α̂ 0.5402 0.0992 0.1572 0.0818 0.1865 0.1131

θ̂ 0.1370 0.0632 0.0556 0.0457 0.0674 0.0526

MSE α̂ 0.5514 0.0184 0.0420 0.0111 0.0506 0.0200

θ̂ 0.0362 0.0064 0.0051 0.0037 0.0075 0.0046

MRE α̂ 0.2161 0.0397 0.0629 0.0327 0.0746 0.0452

θ̂ 0.1826 0.0843 0.0741 0.0609 0.0898 0.0702

150 BIAS α̂ 0.3914 0.0701 0.1261 0.0587 0.1387 0.0879

θ̂ 0.0915 0.0393 0.0524 0.0397 0.0517 0.0486

MSE α̂ 0.3582 0.0099 0.0252 0.0066 0.0318 0.0118

θ̂ 0.0172 0.0025 0.0043 0.0026 0.0040 0.0038

MRE α̂ 0.1566 0.0281 0.0504 0.0235 0.0555 0.0352

θ̂ 0.1221 0.0523 0.0699 0.0530 0.0690 0.0648

200 BIAS α̂ 0.2187 0.0536 0.1108 0.0354 0.1192 0.0755

θ̂ 0.0579 0.0378 0.0487 0.0299 0.0453 0.0406

MSE α̂ 0.0880 0.0064 0.0195 0.0022 0.0225 0.0082

θ̂ 0.0068 0.0025 0.0035 0.0017 0.0031 0.0027

MRE α̂ 0.0875 0.0215 0.0443 0.0142 0.0477 0.0302

θ̂ 0.0772 0.0504 0.0649 0.0398 0.0604 0.0542

Table 5. The simulated BIAS, MSE, and MRE values for (α = 1.5, θ = 2.5).

n Est. Par. MLE-M ADE-M CVME-M MPSE-M LSE-M WLSE-M

20 BIAS α̂ 0.6551 0.5539 0.5667 0.5194 0.5117 0.5046

θ̂ 0.5853 0.5147 0.5672 0.5333 0.5370 0.5565

MSE α̂ 0.8185 0.4264 0.4388 0.3312 0.3496 0.3353

θ̂ 0.5296 0.4334 0.5226 0.3938 0.4555 0.4805

MRE α̂ 0.4367 0.3693 0.3778 0.3463 0.3411 0.3364

θ̂ 0.2341 0.2059 0.2269 0.2133 0.2148 0.2226

40 BIAS α̂ 0.4699 0.4312 0.4480 0.4797 0.4561 0.4303

θ̂ 0.4674 0.4015 0.4695 0.4247 0.3905 0.4035

MSE α̂ 0.2956 0.2428 0.2840 0.3135 0.2724 0.2252

θ̂ 0.3515 0.2245 0.3717 0.2447 0.2339 0.2738

MRE α̂ 0.3133 0.2875 0.2987 0.3198 0.3041 0.2869

θ̂ 0.1870 0.1606 0.1878 0.1699 0.1562 0.1614
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Table 5. Cont.

n Est. Par. MLE-M ADE-M CVME-M MPSE-M LSE-M WLSE-M

80 BIAS α̂ 0.3615 0.3707 0.3991 0.3688 0.3920 0.3369

θ̂ 0.3561 0.2647 0.3746 0.3453 0.3465 0.2991

MSE α̂ 0.1906 0.1830 0.2170 0.1995 0.2006 0.1527

θ̂ 0.1944 0.1216 0.2243 0.1818 0.1802 0.1374

MRE α̂ 0.2410 0.2471 0.2661 0.2459 0.2613 0.2246

θ̂ 0.1424 0.1059 0.1498 0.1381 0.1386 0.1197

100 BIAS α̂ 0.3808 0.3453 0.3706 0.4104 0.3278 0.3254

θ̂ 0.3515 0.2927 0.3085 0.3352 0.2728 0.2765

MSE α̂ 0.1986 0.1607 0.1639 0.2329 0.1525 0.1499

θ̂ 0.1995 0.1271 0.1579 0.1677 0.1200 0.1195

MRE α̂ 0.2539 0.2302 0.2470 0.2736 0.2185 0.2170

θ̂ 0.1406 0.1171 0.1234 0.1341 0.1091 0.1106

150 BIAS α̂ 0.2997 0.2534 0.3034 0.3213 0.3070 0.3110

θ̂ 0.2417 0.2349 0.2779 0.2508 0.2770 0.2720

MSE α̂ 0.1447 0.1010 0.1283 0.1701 0.1295 0.1376

θ̂ 0.0890 0.0881 0.1206 0.0988 0.1082 0.1020

MRE α̂ 0.1998 0.1689 0.2023 0.2142 0.2047 0.2073

θ̂ 0.0967 0.0940 0.1112 0.1003 0.1108 0.1088

200 BIAS α̂ 0.2640 0.2652 0.3074 0.3507 0.2594 0.2394

θ̂ 0.2121 0.2225 0.2266 0.2427 0.2349 0.2063

MSE α̂ 0.1234 0.1032 0.1193 0.1943 0.0987 0.0902

θ̂ 0.0762 0.0796 0.0746 0.0966 0.0821 0.0654

MRE α̂ 0.1760 0.1768 0.2050 0.2338 0.1729 0.1596

θ̂ 0.0848 0.0890 0.0906 0.0971 0.0940 0.0825

6. Analysis of COVID-19 Data

The new-PFD and well-known competitors were statistically analysed using the
COVID-19 data.

The first data set describes 76-day COVID-19 mortality rates in the United Kingdom
(15 April to 30 June 2020). The second data set describes the daily death toll in Europe as
specified in the COVID-19 data (1 March to 30 March). The third data set describes the
daily death toll in China as specified in the COVID-19 data (23 January to 28 January). The
fourth data set describes the mortality rates from COVID-19 data for the United Kingdom
for 24 days (15 October to 7 November 2020). The fifth data set describes the mortality
rates from COVID-19 data for Nepal (23 January 2020 to 24 December 2020). The sixth
data set describes the mortality rates from COVID-19 data for the Netherlands for 30 days
(31 March 2020 to 30 April 2020). The seventh data set describes the mortality rates from
COVID-19 data for Italy for a period of 59 days (27 February 2020 to 27 April 2020).

Tables 6–12 present estimates and fitted measures for all COVID-19 mortality datasets.
The definition of a better model fit is quite straightforward: when the model is used, the
model is considered to be a better fit if the minimum results (see Tables 6–12) of Akaike
information criterion (AIC), Cramer-von Mises (CVM), Anderson Darling (AD), sum of
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square (SS), and Kolmogorov–Smirnov (KS) (with a high p-value of KS) are met. The
acknowledged statistical measures are defined as follows:

AIC = 2k− 2log(LL),

CVM = 1
12n + ∑n

j=1

(
Fx|j:n −

2j−1
2n

)2
,

AD =−n− 1
n ∑n

j=1(2j− 1)
(

log Fx|j:n + log (1− Fx |j:n
))

,

KS = sup
x

∣∣∣ Fx|j:n − F|x
∣∣∣

SS = ∑n
j=1

(
Fx|j:n −

j−0.375
n+0.250

)2
,

where k is the number of parameters being used and LL is the log-likelihood of the models
being used.

Table 6. Estimates and Fitted Measures for United Kingdom Mortality Rate.

Model
Estimates Fitted Measures

α̂ θ̂ γ̂ AIC CVM AD KS p-Value SS

New-PFD 0.0314 0.4012 - 283.6512 0.1934 1.2679 0.0777 0.7488 0.1147

Tr-PF 0.7647 - 1.5949 291.6001 0.3140 1.9964 0.1329 0.1367 0.3548

Kum-PF 1.1071 0.4754 1.3700 302.9045 0.4286 2.6819 0.1582 0.0446 0.5521

OGE-PF 6.4256 0.0690 2.0309 309.0742 0.3635 2.3533 0.1959 0.0058 0.9499

PF-I 0.4375 - - 302.9309 0.4179 2.6213 0.1976 0.0053 0.9699

NG-PF 0.6775 0.0727 5.8366 305.8946 0.3440 2.1834 0.0777 0.0038 1.0395

Gen-PF 2.2790 - - 332.1345 0.3500 2.1641 0.3180 0.0000 3.0369

Table 7. Estimates and Fitted Measures for Europe Mortality Rate.

Model
Estimates Fitted Measures

α̂ θ̂ γ̂ AIC CVM AD KS p-Value SS

New-PFD 0.1921 0.3262 - 470.1407 0.1433 0.9490 0.1232 0.6889 0.0760

ZTP-PF 2.8368 0.7329 - 476.5421 - - 0.1728 0.2790 0.1924

Kum-PF 1.2485 0.2696 0.6369 467.5365 0.1976 1.2621 0.1797 0.2393 0.2962

OGE-PF 4.7180 0.0646 0.0047 475.6623 0.1195 0.8823 0.2213 0.0818 0.4595

Gen-PF 1.0351 - - 494.4784 0.1204 0.7690 0.3991 0.0001 1.8877

Table 8. Estimates and Fitted Measures for China Mortality Rate.

Model
Estimates Fitted Measures

α̂ θ̂ γ̂ AIC CVM AD KS p-Value SS

New-PFD 0.1044 0.4908 - 642.4877 0.1217 0.8393 0.0814 0.7740 0.0924

Tr-PF 0.5604 - 1.7920 643.7063 0.1588 1.0521 0.1032 0.4836 0.1446



Mathematics 2023, 11, 1641 22 of 29

Table 8. Cont.

Model
Estimates Fitted Measures

α̂ θ̂ γ̂ AIC CVM AD KS p-Value SS

NG-PF 1.1644 17.2847 0.0531 648.6244 0.1868 1.2314 0.0814 0.2892 0.1946

Kum-PF 0.3894 1.6505 1.0472 650.1455 0.2125 1.3840 0.1464 0.1182 0.2983

PF-I 0.6247 - - 646.2304 0.2118 1.3797 0.1521 0.0945 0.3314

Table 9. Estimates and Fitted Measures for United Kingdom Mortality Rate.

Model
Estimates Fitted Measures

α̂ θ̂ γ̂ AIC CVM AD KS p-Value SS

New-PFD 0.0287 1.3984 - −41.7665 0.0255 0.2089 0.0835 0.9910 0.0199

NG-PF 1.5971 18.5499 0.2342 −38.5436 0.0361 0.3030 0.0835 0.9651 0.0265

Kum-PF 0.9756 2.1057 1.7528 −36.7425 0.0532 0.4306 0.1276 0.7836 0.0555

Tr-PF 0.8341 - 1.0780 −39.9779 0.0382 0.3138 0.1277 0.7826 0.0522

PF-I 1.4845 - - −37.2526 0.0498 0.4067 0.2310 0.1311 0.2499

Table 10. Estimates and Fitted Measures for Nepal Mortality Rate.

Model
Estimates Fitted Measures

α̂ θ̂ γ̂ AIC CVM AD KS p-Value SS

New-PFD 0.0205 0.8481 - 993.5991 0.0471 0.4678 0.0519 0.8044 0.0531

W-PF 4.2216 8.4898 0.2024 996.1838 0.0597 0.5134 0.0548 0.7468 0.0594

ZTP-PF 4.3987 1.7816 - 998.4550 0.1012 0.8065 0.0679 0.4803 0.1028

MOE-PF 0.1416 1.9682 - 994.8340 0.0874 0.7155 0.0681 0.4774 0.0815

Gen-PF 1.7756 - - 979.7377 0.5117 3.7593 0.0716 0.4132 0.1176

Kum-PF 0.4168 3.0564 1.9823 1012.3107 0.1206 0.9920 0.0790 0.2948 0.1706

Tr-PF 0.9380 - 1.2519 1002.0116 0.0784 0.6836 0.0819 0.2563 0.1993

OGE-PF 7.6256 0.1239 2.8673 1035.8485 0.2114 1.5872 0.1621 0.0006 1.0577

PF-I 0.8615 - - 1039.2363 0.1050 0.8905 0.1992 0.0000 1.6514

Table 11. Estimates and Fitted Measures for Netherlands Mortality Rate.

Model
Estimates Fitted Measures

α̂ θ̂ γ̂ AIC CVM AD KS p-Value SS

New-PFD 0.0253 0.8957 - 156.8105 0.1062 0.6493 0.1070 0.8467 0.0522

PF-Poi −3.5098 1.7625 - 156.8312 0.1076 0.6575 0.1093 0.8283 0.0549

Tr-PF 0.8025 - 1.3066 160.1585 0.1701 1.0188 0.1617 0.3725 0.1589

NG-PF 1.3880 164.1245 0.1819 1.1150 0.1070 0.3563 0.1619

Kum-PF 0.4400 2.4843 1.2740 167.1066 0.2316 1.4057 0.2097 0.1232 0.2811

OGE-PF 9.8176 0.1003 2.8782 168.6015 0.1665 0.9571 0.2378 0.0562 0.3771
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Table 12. Estimates and Fitted Measures for Italy Mortality Rate.

Model
Estimates Fitted Measures

α̂ θ̂ γ̂ AIC CVM AD KS p-Value SS

New-PFD 0.0442 0.8961 - 335.7237 0.0979 0.7027 0.1128 0.4103 0.1011

Tr-PF 0.8247 - 1.4090 338.2626 0.1176 0.8627 0.1162 0.3742 0.1269

Kum-PF 0.5666 2.2183 1.4513 345.9732 0.1472 1.1037 0.1172 0.3639 0.1927

NG-PF 1.4465 27.0812 0.0996 341.4392 0.1092 0.8408 0.1128 0.3496 0.1173

OGE-PF 8.7252 0.1239 2.8958 349.0370 0.1462 1.0418 0.1414 0.1718 0.3554

ZTP-PF 3.8076 1.9272 - 339.4020 0.1315 0.7659 0.1450 0.1514 0.1789

PF-I 1.0090 - - 346.1583 0.1420 1.0706 0.1694 0.0598 0.4853

When compared to well-known models such as Tr-PF by Haq et al. [5], Kum-PF by
Moniem [26], OGE-PF by Tahir et al. [27], PF-I and NG-PF by Hassan and Nassr [28],
ZTP-PF by Okorie et al. [29], and MOE-PF by Okorie et al. [30], the proposed new-PFD
better fits the COVID-19 mortality rates in the United Kingdom, Europe, China, the United
Kingdom, Nepal, the Netherlands, and Italy. All these data sets are publicly accessible on
the official website [https://covid19.who.int/] (15 December 2022) and are provided in
Appendix A. The required calculations were carried out via the R programme.

The following are some of the outcomes. Based on the findings shown in Tables 6–12,
we are able to draw the conclusion that the new-PFD is superior to all of its rivals. It is clear
that the new-PFD is preferable since it had the lowest K-S values and the greatest p-values.
In addition, Figures 3–9 exhibit fitted versions of the pdf, cdf, PP, sf, TTT, and box plots
for the new-PFD for each of the seven COVID-19 mortality data sets, respectively. These
figures pertain to the new-PFD.

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 28 
 

 

OGE-PF 9.8176 0.1003 2.8782 168.6015 0.1665 0.9571 0.2378 0.0562 0.3771 

Table 12. Estimates and Fitted Measures for Italy Mortality Rate. 

Model 
Estimates Fitted Measures 𝜶ෝ 𝜽   𝜸ෝ AIC CVM AD KS p-Value SS 

New-PFD 0.0442 0.8961 - 335.7237 0.0979 0.7027 0.1128 0.4103 0.1011 
Tr-PF 0.8247 - 1.4090 338.2626 0.1176 0.8627 0.1162 0.3742 0.1269 
Kum-PF 0.5666 2.2183 1.4513 345.9732 0.1472 1.1037 0.1172 0.3639 0.1927 
NG-PF 1.4465 27.0812 0.0996 341.4392 0.1092 0.8408 0.1128 0.3496 0.1173 
OGE-PF 8.7252 0.1239 2.8958 349.0370 0.1462 1.0418 0.1414 0.1718 0.3554 
ZTP-PF 3.8076 1.9272 - 339.4020 0.1315 0.7659 0.1450 0.1514 0.1789 
PF-I 1.0090 - - 346.1583 0.1420 1.0706 0.1694 0.0598 0.4853 

The following are some of the outcomes. Based on the findings shown in Tables 6–
12, we are able to draw the conclusion that the new-PFD is superior to all of its rivals. It is 
clear that the new-PFD is preferable since it had the lowest K-S values and the greatest p-
values. In addition, Figures 3–9 exhibit fitted versions of the pdf, cdf, PP, sf, TTT, and box 
plots for the new-PFD for each of the seven COVID-19 mortality data sets, respectively. 
These figures pertain to the new-PFD. 

   

   

Figure 3. Fitted Curves For United Kingdom Mortality Rate (15 April to 30 June 2020). 

  

Figure 3. Fitted Curves For United Kingdom Mortality Rate (15 April to 30 June 2020).

https://covid19.who.int/


Mathematics 2023, 11, 1641 24 of 29

Mathematics 2023, 11, x FOR PEER REVIEW 23 of 28 
 

 

   

   

Figure 4. Fitted Curves For Europe Mortality Rate (1 March to 30 March). 

   

   

Figure 5. Fitted Curves For China Mortality Rate (23 January to 28 January). 

Figure 4. Fitted Curves For Europe Mortality Rate (1 March to 30 March).

Mathematics 2023, 11, x FOR PEER REVIEW 23 of 28 
 

 

   

   

Figure 4. Fitted Curves For Europe Mortality Rate (1 March to 30 March). 

   

   

Figure 5. Fitted Curves For China Mortality Rate (23 January to 28 January). Figure 5. Fitted Curves For China Mortality Rate (23 January to 28 January).



Mathematics 2023, 11, 1641 25 of 29

Mathematics 2023, 11, x FOR PEER REVIEW 24 of 28 
 

 

   

   

Figure 6. Fitted Curves For United Kingdom Mortality Rate (15 October to 7 November 2020). 

   

   

Figure 7. Fitted Curves for Nepal Mortality Rate (23 January 2020 to 24 December 2020). 

Figure 6. Fitted Curves For United Kingdom Mortality Rate (15 October to 7 November 2020).

Mathematics 2023, 11, x FOR PEER REVIEW 24 of 28 
 

 

   

   

Figure 6. Fitted Curves For United Kingdom Mortality Rate (15 October to 7 November 2020). 

   

   

Figure 7. Fitted Curves for Nepal Mortality Rate (23 January 2020 to 24 December 2020). Figure 7. Fitted Curves for Nepal Mortality Rate (23 January 2020 to 24 December 2020).



Mathematics 2023, 11, 1641 26 of 29

Mathematics 2023, 11, x FOR PEER REVIEW 25 of 28 
 

 

   

   

Figure 8. Fitted Curves for Netherland Mortality Rate (31 March 2020 to 30 April 2020). 

   

   

Figure 9. Fitted Curves for Italy Mortality Rate (27 February 2020 to 27 April 2020). 

7. Summary and Conclusions 
We came up with the idea for a completely new, continuously generated (G) family 

that is better and more versatile, and we called it the new-G family of distributions. Its 
mathematical properties, such as cdf, pdf, sf, hrf, asymptotic, OS, and related measures of 
entropy, have been thoroughly discussed. We investigate every conceivable form that the 
new-PFD pdf and hrf may have for a variety of parameter combinations, which allows for 
a greater degree of flexibility in the way it models COVID-19 mortality data. The increas-
ing, decreasing, and bathtub-shaped behaviour of the pdf and hrf of the new-PFD are all 

Figure 8. Fitted Curves for Netherland Mortality Rate (31 March 2020 to 30 April 2020).

Mathematics 2023, 11, x FOR PEER REVIEW 25 of 28 
 

 

   

   

Figure 8. Fitted Curves for Netherland Mortality Rate (31 March 2020 to 30 April 2020). 

   

   

Figure 9. Fitted Curves for Italy Mortality Rate (27 February 2020 to 27 April 2020). 

7. Summary and Conclusions 
We came up with the idea for a completely new, continuously generated (G) family 

that is better and more versatile, and we called it the new-G family of distributions. Its 
mathematical properties, such as cdf, pdf, sf, hrf, asymptotic, OS, and related measures of 
entropy, have been thoroughly discussed. We investigate every conceivable form that the 
new-PFD pdf and hrf may have for a variety of parameter combinations, which allows for 
a greater degree of flexibility in the way it models COVID-19 mortality data. The increas-
ing, decreasing, and bathtub-shaped behaviour of the pdf and hrf of the new-PFD are all 

Figure 9. Fitted Curves for Italy Mortality Rate (27 February 2020 to 27 April 2020).

7. Summary and Conclusions

We came up with the idea for a completely new, continuously generated (G) family
that is better and more versatile, and we called it the new-G family of distributions. Its
mathematical properties, such as cdf, pdf, sf, hrf, asymptotic, OS, and related measures
of entropy, have been thoroughly discussed. We investigate every conceivable form that
the new-PFD pdf and hrf may have for a variety of parameter combinations, which allows
for a greater degree of flexibility in the way it models COVID-19 mortality data. The
increasing, decreasing, and bathtub-shaped behaviour of the pdf and hrf of the new-PFD
are all represented by flexible forms in a simple and concise manner. In addition, using
a full sample as a foundation, we generated random samples to use in our simulation
study. From Tables 2–5, we were able to draw the conclusion that all estimates have the
consistency property and all estimation methods performed well. We also performed an
analysis on the COVID-19 mortality data related to United Kingdom, Europe, China, Nepal,
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Netherlands, and Italy, in order to determine the advantages that the proposed new-PFD
model has over some of its rivals. Our findings indicate that the new-PFD is a better fit
for the data than the distributions that were used in the competing models. In addition
to this, we drew the fitted pdf, cdf, PP, and sf plots for the new-PFD for each of the seven
COVID-19 mortality data sets, in corresponding order.

We consider that better results can be achieved in COVID-19 mortality data set analysis
through the use of the new family because it is more flexible and better able to model
the complex patterns of spread and variation in the data. The new family has several
characteristics that make them well-suited for modelling COVID-19 mortality data, such as
the ability to model heavy tails, skewness, and multimodality, which are often observed in
COVID-19 mortality data sets. Additionally, the new family is able to capture the dynamic
nature of the spread of the virus, which is critical for understanding the effectiveness of
containment measures. These are the reasons why the new family is considered a better
model for COVID-19 mortality data set analysis.

8. Future Recommendations

We would be glad to let the researchers have a chance to find out more about what we
are doing. Thus, to avoid a lengthy wait for mortality, we suggest instead addressing the
proposed study on the censored sample of COVID-19 infections. Furthermore, we want to
include it into other regression models to forecast future rates of infection and death across
many nations, and to expand upon the proposed work to develop a time series model
for the most common diseases. Furthermore, the new family can be used to estimate the
probability of large outbreaks and predict the future spread of the virus.
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Appendix A

The following data is discussed in the numerical study.

Application I: United Kingdom COVID-19 Mortality Rate

0.0587, 0.0863, 0.1165, 0.1247, 0.1277, 0.1303, 0.1652, 0.2079, 0.2395, 0.2751, 0.2845,
0.2992, 0.3188, 0.3317, 0.3446, 0.3553, 0.3622, 0.3926, 0.3926, 0.4110, 0.4633, 0.4690, 0.4954,
0.5139, 0.5696, 0.5837, 0.6197, 0.6365, 0.7096, 0.7193, 0.7444, 0.8590, 1.0438, 1.0602, 1.1305,
1.1468, 1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709, 1.6017, 1.6083, 1.6324, 1.6998, 1.8164,
1.8392, 1.8721, 1.9844, 2.1360, 2.3987, 2.4153, 2.5225, 2.7087, 2.7946, 3.3609, 3.3715, 3.7840,
3.9042, 4.1969, 4.3451, 4.4627, 4.6477, 5.3664, 5.4500, 5.7522, 6.4241, 7.0657, 7.4456, 8.2307,
9.6315, 10.1870, 11.1429, 11.2019, 11.4584.

Application II: Europe COVID-19 Mortality Rate

6, 18, 29, 28, 47, 55, 40, 150, 129, 184, 236, 237, 336, 219, 612, 434, 648, 706, 838, 1129,
1421, 118, 116, 1393, 1540, 1941, 2175, 2278, 2824, 2803, 2667.

Application III: China COVID-19 Mortality Rate

8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146, 121, 143, 142,
105, 98, 136, 114, 118, 109, 97, 150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 22, 17, 22, 11,
7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3, 5.

Application IV: United Kingdom COVID-19 Mortality Rate

0.2240, 0.2189, 0.2105, 0.2266, 0.0987, 0.1147, 0.3353, 0.2563, 0.2466, 0.2847, 0.2150, 0.1821,
0.1200, 0.4206, 0.3456, 0.3045, 0.2903, 0.3377, 0.1639, 0.1350, 0.3866, 0.4678, 0.3515, 0.3232.
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Application V: Nepal COVID-19 Mortality Rate

2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 4, 2, 5, 5, 3, 2, 4, 4, 8, 4, 4, 3, 2, 3, 7, 6, 6, 11, 9, 3, 8, 7, 11, 8, 12, 12,
14, 7, 11, 12, 6, 14, 9, 9, 11, 6, 6, 5, 5, 14, 9, 15, 11, 8, 4, 7, 11, 10, 16, 2, 7, 17, 6, 8, 10, 4, 10, 7, 11,
11, 8, 7, 19, 9, 15, 12, 10, 14, 22, 9, 18, 12, 19, 21, 12, 12, 18, 8, 26, 21, 17, 13, 5, 15, 14, 11, 17, 16,
17, 23, 24, 20, 30, 18, 18, 17, 21, 18, 22, 26, 15, 13, 13, 6, 9, 17, 12, 17, 22, 7, 16, 16, 24, 28, 23,
23,19, 25, 29, 21, 9, 13, 16, 10, 17, 20, 23, 14, 12, 11, 15, 9, 18, 14, 13, 6, 16, 12, 11, 7, 3, 5, 5.

Application VI: Netherland COVID-19 Mortality Rate

14.918, 10.656, 12.274, 10.289, 10.832, 7.099, 5.928, 13.211, 7.968, 7.584, 5.555, 6.027,
4.097, 3.611, 4.960, 7.498, 6.940, 5.307, 5.048, 2.857, 2.254, 5.431, 4.462, 3.883, 3.461, 3.647,
1.974, 1.273, 1.416, 4.235.

Application VII: Italy COVID-19 Mortality Rate

4.571, 7.201, 3.606, 8.479, 11.410, 8.961, 10.919, 10.908, 6.503, 18.474, 11.010, 17.337,
16.561, 13.226, 15.137, 8.697, 15.787, 13.333, 11.822, 14.242, 11.273, 14.330, 16.046, 11.950,
10.282, 11.775, 10.138, 9.037, 12.396, 10.644, 8.646, 8.905, 8.906, 7.407, 7.445, 7.214, 6.194,
4.640, 5.452, 5.073, 4.416, 4.859, 4.408, 4.639, 3.148, 4.040, 4.253, 4.011, 3.564, 3.827, 3.134,
2.780, 2.881, 3.341, 2.686, 2.814, 2.508, 2.450, 1.518.
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