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Abstract: Electric vehicles are anticipated to be essential components of future energy systems,
as they possess the capability to assimilate surplus energy generated by renewable sources. With the
increasing popularity of plug-in hybrid electric vehicles (PHEVs), conventional internal combustion
engine (ICE)-based vehicles are expected to be gradually phased out, thereby decreasing greenhouse
gases and reliance on foreign oil. Intensive research and development efforts across the globe are
currently concentrated on developing effective PHEV charging solutions that can efficiently cater
to the charging needs of PHEVs, while simultaneously minimizing their detrimental effects on
the power infrastructure. Efficient PHEV charging strategies and technologies are necessary to
overcome the obstacles presented. Forecasting PHEV charging loads provides a solution by enabling
energy delivery to power systems based on anticipated future loads. We have developed a novel
approach, utilizing machine learning methods, for accurately forecasting PHEV charging loads
at charging stations across three phases of powering (smart, non-cooperative, and cooperative).
The proposed Q-learning method outperforms conventional AI techniques, such as recurrent neural
and artificial neural networks, in accurately forecasting PHEV loads for various charging scenarios.
The findings indicate that the Q-learning method effectively predicts PHEV loads in three scenarios:
smart, non-cooperative, and cooperative. Compared to the ANN and RNN models, the forecast
precision of the QL model is higher by 31.2% and 40.7%, respectively. The Keras open-source set was
utilized to simulate three different approaches and evaluate the efficacy and worth of the suggested
Q-learning technique.

Keywords: Q-learning; electric vehicles; artificial neural network; plug-in hybrid electric vehicles

MSC: 68T07

1. Introduction

Electric vehicles (EVs) have been mainly integrated into power grids because of
their significant benefit over traditional combustion engine vehicles, which includes bol-
stered energy self-sufficiency and diminished levels of carbon emissions [1]. There have
been numerous creative works on EV recharge infrastructure [2,3]. The surging demand
for EVs is introducing intricacy to the energy grid system, leading to difficulties in ef-
ficient management. One of the significant apprehensions for executives in this world
is accurately projecting the charging capacity of automobiles, to determine their energy
consumption requirements [4,5]. Recently, plug-in hybrid electric vehicle (PHEV) energy
control methods have used reinforcement learning (RL) [6]. The incorporation of fore-
casting methods was also used in [7] to explore the merging of PHEVs into microgrids.
Furthermore, Ref. [8] considered blockchain technology for trading energy. Additionally,
Ref. [9] proposed PHEV energy management with data-driven techniques to estimate
battery discharge depth.
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The forecasting of EV charging station load has drawn a lot of interest in the literature.
For instance, in [10], the load demand for Ev was predicted using online ride-hailing
services. To model the load demands of PHEVs and EVs, the authors examined the
stochastic load demand of EVs [11]. A statistical utilization strategy has been examined to
forecast the PHEVs load profile. The energy shift at midday and night has been predicted
using the inverse load flow and a localized charging time-shift procedure [12]. For example,
Refs. [13,14] used charging stations with battery storage systems to supplement energy
or capacity or to delay demand. Intelligent PHEV charging demand forecasting in [15]
aims to keep a constant daily network load profile while ensuring that each PHEVs load
requirement is fulfilled in [16]. Ensemble learning predicts load consumption of cooperative
PHEVs using innovative data mining to forecast charging sites [17].

1.1. Literature Survey

The battery charging of PHEVs is primarily done at night because everyday vehicle
travel considerably lowers the charging time. Due to the high number of these vehicles,
early night charging of vehicles damages power infrastructure traits like overloading and
fast ramping of energy sources. Increased EV adoption may also lead to more severe
grid features like feeder overcrowding, unfavourable peak demand, increased power loss,
decreased load factor, harmonic distortion, phase unbalance, etc. The charging of PHEVs
during high demand has these negative impacts [18]. Smart recharge for electric vehicles
is the remedy to the problems mentioned above [19]. EVSC can effectively handle EV
charging, particularly at night, to satisfy the network’s technical restrictions. According to
data, vehicles are typically only driven 4 to 5 percent of the time, with the remainder of the
day being spent in parking lots or basements [20]. The extra storage space provided by the
batteries of electric vehicles can be used to create a large-scale energy storage system [21].

PHEV owners have expressed high satisfaction with the cooperative charging of
EVs, and grid characteristics are considered when deciding the number of EVs to be
charged per time interval [22]. In addition to considering the use of renewable energy
production in a power network, the EVSC process should also consider PHEV owners and
technological limitations on renewable-based power [23]. PHEVs have the potential to
contribute significantly to helping keep or enhance the normal functioning of a power grid.
PHEV charging via EVSC can also provide extra services like frequency regulation [24].
The schematic diagram of EVSC is shown in Figure 1. Both centralized and decentralized
types of charging—in which electric vehicles are refuelled in intelligent houses, at home or
by fleet operators, as well as parking lots occupied by EVs parked overnight—can be used
to refill the batteries of electric cars. EVSCs flexible charging and auxiliary services can
reduce the energy cost of plug-in cars by as much as 60% when compared to conventional
vehicles [25].

A company that operates a fleet of electric vehicles must be able to forecast its load
in order to optimize the number of EVs, their charging rates and available charging sites.
Additionally, more energy-efficient use of existing resources can be enabled by predicting
the future capacity needs [26–28]. The load profile of EVs in particular geographic region
results from the habits people have while driving and contributes to the overall demand
for electricity [29,30]. A method has been developed to forecast electric vehicle travel
patterns and arrival/departure times. In addition, an ensemble learning-based forecasting
method can predict the number of charging stations required in any given area [31,32].
The proposed method was developed by combining three different types of learning
algorithms: Linear regression (to find the weighting for each primary learner), recurrent
neural networks, and long short-term memory. The ability of three neural network models
to predict the load profile in an EVS has been examined in other research [33]. The Radial
Basis Function technique has produced better results in load forecasting than the traditional
method, but it also had a higher error rate and processing cost. In [34], six distinct deep-
learning techniques have been examined from the EV usage prediction perspective. The
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methods included canonical LSTM, ANN, RNN, gated recurrent units, bi-directional LSTM
forecasting algorithms, and stacked auto-encoders.

Figure 1. A diagrammatic representation illustrating the charging process of plug-in hybrid electric
vehicles within power distribution networks.

1.2. Motivation and Problem Statement

Deep learning (DL) techniques are increasingly being used to improve the prediction
performance of highly nonlinear systems to reduce the computational burden on a design
and allow the real-time application of complex controllers [34]. The literature achieves the
aforementioned goals by utilizing a variety of machine learning (ML) methods [35]. Artifi-
cial neural networks (ANN) were mainly used in [36] for datasets with no time dependency
between the accessible datasets. Time-varying data sets are commonly processed using
recurrent neural networks (RNNs).RNNs and CNNs are two popular AI techniques used
to gather data for text and media applications, respectively [12]. SARSA and Q-learning
are two additional reinforcement learning techniques that facilitate real-time learning of
intricate problems. The action-reward system underlies these techniques [32–37]. Conse-
quently, the RL technique may impose a different reward for each activity that moves an
agent from one condition to another. This paper foresees PHEV loads using one of the RL
techniques, the Q-learning (QL) approach. Out of all possible actions and states, the QL
method can identify the best ones. As a result, by using the outputs of other ML techniques,
like ANN, LSTM, RNN, GRU, and CNN, as initial inputs, the efficacy of the QL technique
can be improved [38].

Despite the variety of methods used to predict PHEV load demand [11–13], more
research still needs to be focussed on an overarching tactic that encompasses all PHEV load
demand scenarios, including smart, cooperative, and non-cooperative situations. In this
study, the authors have explored the potential of an RL-based QL approach in forecasting
PHEV load under diverse scenarios. This research evaluated three commonly used artificial
intelligence techniques–RNN, ANN, and QL–to determine their efficacy in prediction. The
investigation indicates that implementation of the QL technique, which leverages the initial
outcomes of the ANN and RNN methodologies, yields enhanced predictive precision.
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1.3. Real Contribution

The leading contributions and innovations of this article are as follows:

• A comprehensive investigation of load forecasting challenges for PHEV charging
remains imperative through implementing RL, a potent tool for combining multiple
ML models [6]. To address this matter, a new approach based on QL for forecasting
load at EV charging stations has been introduced in this publication. QL has been
frequently employed in problems with distinct states and actions. Our proposed QL
model is suitable for the control task that demands ongoing response to the prevailing
circumstances. The system comprises neural networks and deduces the differential
for the state evolution of unknown epistemic uncertainty. This solution presents
an opportunity to enhance the operational efficiency of PHEV charging, while also
serving as a mechanism of reinforcement for energy dispatching within power grids.

• The recommended RL methodology for determining the optimal framework for PHEV
load forecasting encompasses smart, cooperative, and non-cooperative scenarios. The
developed QL approach exhibits superior efficiency, precision, and flexibility in PHEV
load estimation when compared to traditional ANN and RNN models. Furthermore,
incorporating modifications such as adjusting the epoch, hidden layer, and node
quantities can significantly augment the accuracy of PHEV charging load predictions,
as evidenced by empirical analyses.

1.4. Paper Organization

This article is organized as follows. Section 2 presents the technical background for
the three models utilized in this paper. Section 3 describes the charging behaviour of
the PHEVS. Section 4 presents the proposed framework for the PHEVs load forecasting.
Sections 5 and 6 show the evaluation criteria and QL-model forecasting performance with
different network depths. The implementation of ANN, RNN and the proposed model
and simulation results considering the test cases are described in Section 7. Sensitivity
analysis, validation of the proposed model, QL in terms of speed, flexibility and accuracy,
and discussion are presented in Sections 8, 9, 10 and 11, respectively. Finally, Section 12
concludes the article.

2. Technical Background

The three models—ANN, RNN, and QL—used in this paper are briefly introduced in
this part.

2.1. ANN

Figure 2a shows the schematic unit of ANN [23]. The Artificial Neural Network (ANN)
comprises three distinctive layers i.e., input layer (X), hidden layer (H), and output layer
(Y) that operate using multiple nodes. As shown in Figure 2a, a weight (ωij) is used in
every line of the ANN technique in between each pair of successive layers (ith previous
layer, and jth present layer). The Equation (1) can be used to determine each output node:

NOp
j = σ

p
j

(np−1

∑
i=0

(NOp−1
i ωij) + bp

j

)
(1)

In the context of neural networks, the jth output of the pth layer is represented by NOp
j ,

whereas NOp−1
j represents the jth output of the p− 1th layer. Similarly, bp

j and σ
p
j respec-

tively refer to the bias and activation function of the jth node in the pth layer. Furthermore,
np−1 denotes the number of nodes in the p− 1th layer.
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(a) (b)
Figure 2. ANN and RNN Blocks Techniques. (a) ANN Block. (b) RNN Block.

2.2. RNN

The RNN technique’s block layout is depicted in Figure 2b. The time-series data
set’s future is predicted using RNNs [24]. It can be applied to various chores, including
predicting weather patterns, green energy trends, stock market trends, and other activities.
The line the RNN method uses between each hidden layer’s node is the primary distinction
between it and the ANN technique. The output of the RNN unit is shown in Equation (2):

rt = b + Kst−1 + Wxt

st = f (rt)

qt = g(d + Ust)

. (2)

At time t, the state of the hidden layers is denoted by st, while at time t− 1, it is indicated
by st−1. Similarly, the input and output of the RNN unit at time t are represented by rt
and qt, correspondingly. K, W and U are the weight matrices of st−1, xt, and qt respectively.
Both f and g are the activation functions (softmax, tanh, etc.) of memory and output of the
RNN unit, while b and d are the biases.

2.3. QL

The QL method, which uses the Markov decision process to select the most appropriate
action from all possible options, is one of the model-free RL techniques [25,26]. QL falls
under the category of off-policy methods. When choosing the best future action, the QL
technique selects the initial state, reward, current state, and accessible activities in a very
similar way to the SARSA. The primary equation, which is used by the QL technique to
choose, presented in (3):{

Qnew(ct, mt)← Q(ct, mt) + β(Rt

+ d f maxm Q(ct+1, mt)−Q(ct, mt))
(3)

where ct and mt are the current states and current actions of the QL technique. Q(ct, mt)
is the Q-value updated Q-value of ct and mt can be denoted as Qnew(ct, mt). The QL
method has a learning rate β that satisfies the condition 0 ≤ β ≤ 1, while the discount
factor d f is between 0 and 1 (0 ≤ d f ≤ 1). The optimal future value estimation is given
by maxm(Q(ct1, mt)). The proposed QL reward for the future action and state is Rt. The
initial conditions for the Q-value in this proposed technique are zero. The optimal solution
for PHEV loads is found using the QL method. The proposed QL technique updates the
Q-value depending on ct and mt after each iteration. The best course of action for the
subsequent steps is determined using Equation (4):

mt = arg max
m

(Q(ct+1, mt)). (4)
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3. Charging Behavior of PHEVs

The charging strategy, charging time, amount of charged PHEVs, battery capac-
ity, battery state of charge (Bsoc), and start time are all unknown variables that affect
PHEV load behaviour. The three charging cases for PHEVs—smart, cooperative, and
non-cooperative—are explored in this article.

3.1. Non-Cooperative PHEV Charging

The simplest charging approach for PHEVs is the non-cooperative strategy, which
involves plugging them into charging stations. PHEVs are believed to commute daily from
their homes in the morning to their homes in the evening. In this instance, around 5:30 p.m.,
when most people get home, most PHEVs are hooked up and begin charging. As a result,
this strategy considers a limited range uniformly distributed probability density function
(PDF) with a charging start time of 5:30 p.m. Such a PDFs mathematical form is provided
in Equation (5) [25]:

y(τx) =
1

u− v
, v = 18, u = 19, u ≤ τx ≤ v (5)

where u and v are constant values, τx is the charging start time of PHEV.

3.2. Cooperative PHEV Charging

Stockholders in the cooperative charging plan typically link their cars to chargers
during off-peak hours to prevent confrontation with the sunset peak hours, when power
costs are higher. Consequently, to save money on their electricity prices, people defer
charging until after 9:30 p.m. The cooperative charging strategy presented in Equation (6)
is then modelled using the provided pdf:

y(τx) =
1

u− v
, v = 21, u = 24, u ≤ τx ≤ v (6)

3.3. Smart PHEV Charging

A smart charging plan schedules charging when energy is most reasonably priced,
demand is at its lowest point, or excess capacity exists. All smart charging techniques
adhere to the fundamental principle that a vehicle should only be charged when doing so
benefits both the owner and the utility. A typical pdf, as shown in Equation (7), illustrates
the difficulty of choosing the charging start time using various smart charging options [24]:

y(τx) =
1

β
√

2π
exp

(
− 1

2

(
τstart−α

β

)2
)

, α = 1, β = 3. (7)

where α is the mean of values and β is the covariance.
Once the PHEV is connected to the home charger, the battery begins to charge. The

battery’s leftover Bsoc is calculated using the vehicle’s daily mileage. The ratio of available
energy to maximal stored energy is known as a battery’s Bsoc. The daily mileage of a car is
said to follow a log-normal PDF presented in Equation (8):

y(z) =
1

zβ
√

2π
exp

−(ln(z)−α)2

2β2 , z > 0. (8)
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The Bsoc at the time of plug-in is then calculated using the vehicle’s driven mile and
all-electric range (AErange) as follows in Equation (9):

Bsoc =

{
0, z > AErange
AErange−z

AErange
× 100%, z ≤ AErange.

(9)

A multitude of PHEVs exist, including the PHEV-20, PHEV-30, PHEV-40, and PHEV-60,
each characterized by a unique AErange denoted by a numerical subscript. The PHEV-20 has
been selected as a primary example in the investigation of market potential over time [29],
but consideration may be extended to additional PHEV models given the unrestricted
nature of the methodology. Equation (10) is used to determine the charging time of a
PHEV [29].

τd =
Bcap × (1− Bsoc)× Ddepth

η × T
. (10)

where Bcap, Ddepth, η and T and the PHEV battery capacity (in kWh), depth of discharge of
PHEV battery, charging efficiency, and PHEV charger rate (kW), respectively. The charging
types for PHEVs are outlined in the Table 1, and are contingent on the charging levels
provided by the charger [20]. Ethics dictate that the first two charging stages are suitable
for PHEVs that are charged domestically. As the charging stations with the third stage are
specifically constructed for public transportation, this write-up excludes their inclusion.
As per Table 2, PHEVs are segregated into four groups, with each group possessing
characteristic market and share traits. In this study, the market share of PHEVs can be
represented with a discrete distribution. Each PHEV group is arbitrarily selected from the
market shares shown in Equations (11) and (12) using a normal distribution.

αBcap =
Min Bcap + Max Bcap

2
(11)

βBcap =
Min Bcap −Max Bcap

4
(12)

The proposed QL approach can compile training data to forecast PHEV charging demand
using three simulated charging methods: Smart, non-cooperative, and cooperative, based
on the (5) to (12). Min and Max represent the minimum and maximum values, respectively.

Table 1. Various Charger Types for PHEVs.

Charging Type I/P Voltage Pmax (KW)

Level-I (AC) 120 Vac 1.42

Level-II (AC) 208–240 Vac 11.5

Level-III (AC) 208–240 Vac 97

Level-III (DC) 208–600 Vdc 239

Table 2. Various Classes for PHEVs.

Class Market Share Bcap (Min–Max)

Mini Vehicle 0.2 8–12

Mid Size Vehicle 0.3 14–18

Economy Vehicle 0.3 10–14

Light Truck 0.3 19–23
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4. Proposed QL-Based PHEV Charging Load Forecasting Framework

In this article, using the results of RNN and ANN, we developed a novel RL-based
model that optimally forecasts the load demands of smart, cooperative, and non-cooperative
PHEVs.The proposed model has two major parts: (1) Data Preprocessing Phase,
(2) QL-based forecasting considering the optimal results of ANN and RNN as initial
inputs. Figure 3 shows the structure of the proposed reinforcement learning-based forecast-
ing model.

Test
Data

Training
Data

PHEVs Load Data Data Preprocessing and Pre-filtering  Data Normalization Ensembled ANN & RNN for PHEV load forecasting

Proposed QL based on ensembled results  for the
best PHEV load forecasting based  

Performance Evaluation metric  for the accuracy and
sensitivity analysis

Desired ResultsApplications of Electric Vehicles

Figure 3. Proposed QL based PHEVs load forecasting Model.

4.1. Data Source

Caltech has made the ACN-Data [39] available to academics for research purposes; this
dataset comprises EV charging events from various workplaces. More than 30,000 charging
events are organized in the dataset from two Californian workplace charging locations, the
Jet Propulsion Laboratory, and the Caltech campus. For this article, our test data consists
of charging information collected from the charging station on the Caltech campus. The
ACN (Adaptive Charging Network) is open to the public and equipped with a 50 kW DC
rapid charger, frequently used by non-drivers. The dataset covers details of all transactions
made within the architecture of ACN, with 54 EV supply equipment. The dataset’s related
data categories are described in Table 3. The exactitude of load forecasting depends on data
pre-processing because the initial data will contain anomalies and missing numbers.

Table 3. Data fields in ACN-Data.

Field Description

Time of connection The plugs in time of users.

Accomplished charging time The time of last non-zero charging rate.

Time of disconnection The unplugs time of users.

kWh supply Supplied energy measurement.

Session ID Unique identity for the session.

Station ID Unique identity of the EV Supply Equipment.

4.2. Preprocessing Module

The EV charging stack data were initially analyzed and refined for inquiry. To enable
real-time charging control based on energy usage during charging periods, it is imperative
to establish the average hourly charging capacity of the stations, taking into account the
variability of data encountered due to its random nature. To achieve this, the dataset was
pre-processed, whereby inaccurate data points were replaced with the average charging
load observed during a given time slot across different days. This step was essential to
ensure accurate forecasting without being impacted by erroneous data.
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For practical reasons, the data pertaining to the charging load operation were bifur-
cated into training and test sets using a proportion of 0.7/0.3. The model was suitably
trained with the training instances, while the final function evaluation utilized the test
collection. Multiple neural networks were employed to learn from the charging load data;
however, the efficiency of these networks was significantly influenced by the size of the
data. As a resolution, the input data of the forecast model were altered through min-max
normalisation, which constrained the information within a specific limit (0–1), as illustrated
in Equation (13):

Y′ =
Y− ymin

ymax − ymin
(13)

4.3. QL-Based Forecasting Module

The three primary learners, ANN, RNN, and QL, were trained using the training set
by the training technique. Following the last training session, predictions were made using
the training data and prepared elementary learners. Forecasts from the training data and
the proper labels were then set as the features. During the testing process, predictions were
generated using the trained base of learners on test data. The forecasts made by the primary
learners were then used to test the learned weighted averaging model. After reversing
normalization, the outcomes were obtained, and the test labels and marks used to calculate
the prediction accuracy.

• When using the ANN technique to forecast the load on PHEVs, the input and output
ANN units should be chosen appropriately. Due to the time series nature of PHEVS
load data, the ANN unit utilized prior PHEV load data. The baseline 24-h PHEVs load
data were helpful for more accurate one-hour-ahead load forecasting. The deployment
of ANN and RNN for predicting one hour ahead is shown in Figure 4.

• The proposed QL method for the PHEVs load forecasting used the previous days’
ANN and RNN forecasting results. In hopes of identifying the best day-ahead PHEV
load forecasting, the proposed QL approach chose the best course of action based on
the output of ANN and RNN. The proposed QL model’s reward function is shown in
Equation (14):

Rt(γj) =
1

exp
∣∣∣(JOptimalt − γj(JANN/RNNt))

∣∣∣ (14)

where γj is the random number of the jth action. The proposed approach chose
one of two possible courses of action for each time horizon (j = 0 for ANN and
j = 1 for RNN). The power forecast for the ANN or RNN method was (JANN/RNNt).
Additionally, JOptimalt

contains the PHEV data for the tth period. The ANN and RNN
predicted results were used in the devised method to predict the PHEV future load
and compare it with actual data. Thus, 24 optimal actions were chosen in the proposed
QL approach for the day ahead horizon. Therefore t can be any integer between 1 and
24 for the day ahead horizon. JOptimalt , JANNt , and JRNNt were the optimal, ANN, and
RNN PHEV load of the tth day, respectively. The γj values between 0 and 2 were used
to improve the ability of the QL technique to find the best search locations. When the
action was 1, the RNN technique chose the reward function. Alternatively, the reward
function was determined from the results of the ANN method.

QL is a learning system that is built on values. Value-based algorithms update the
value function based on a calculation (particularly Bellman equation). The other policy-
based version calculates the value function using the most recent policy improvement’s
greedy policy. QL is an ad hoc student. This implies that it learns the value of the best
strategy independent of the agent’s behaviours. On the other hand, an on-policy learner
learns the value of the policy being carried out by the agent, including the exploration
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stages, and it will find an optimum strategy that considers the exploration implicit in
the approach.

(a) (b)
Figure 4. Employing artificial neural network (ANN) and recurrent neural network (RNN) method-
ologies to forecast plug-in hybrid electric vehicle (PHEV) demand. (a) The PHEV load forecasting by
ANN method. (b) The PHEV load forecasting by RNN method.

5. Evaluation Criteria

The predicting performance of the analyzed techniques was evaluated using the mean
square error (MSE), a standard evaluation criterion. Considering Ptest and P̂test are the
actual and expected loads of the EV charging station at time step t, respectively. The MSE
measured the errors between the real and the forecasting values, which can be formulated
in Equation (15) as below:

MSE =

√
∑T

t=1
(

Ptest
t − P̂test

t
)2

T
(15)

6. QL-Model Forecasting Performance with Different Network Depths

We evaluated the predicting effectiveness in comparison to various network levels.
The results of the Mean Squared Error (MSE) and Mean Absolute Error (MAE) that were
found when the layers were changed from two to six when using the prepared dataset
are shown in Figure 5. The proposed QL model worked best with five layers. As the
network depth increased from two to five, the MSE and MAE values became smaller,
and the prediction performance improved. Properly boosting network depth and settings
significantly enhanced the predicting performance. Due to increased parameter redundancy
and reduced data variety, as a network’s depth grows, it may overfit and suffer from
performance loss. The training period needed for each layer of QL is listed in Table 4. As
layers increased, factors for training optimization increased, causing a longer required time.
More layers were needed to improve forecast accuracy, resulting in time consumption.

Table 4. Training time for different layers of QL.

Layer of QL CPU Time (s)

2 499.48

3 798.21

4 1401.98

5 2001.73

6 2312.19
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(b)
Figure 5. The metrics (a) MSE and (b) MAE for the QL model, adjusted for alterations in network
depth. (a) MSE versus different network layers. (b) MAE versus different network layers.

6.1. Convergence of the QL

In Figure 6, the state (c, m) = (0, 50) marks the convergence of the QL model. The
optimal value function V(0, 50) = 160.83 is approached as minm∈A Q(0, 50, m) converges.
The synchronized parallel Q-learning procedure involves offline learning of the QL model,
in which batch updates of all state-action pairs (Q-functions) occur at each training instance.
The step sizes utilized in this process are inversely proportional to the number of visits
(updates) to each combination of state and action.
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Figure 6. The convergence of the QL at state (c, m) = (0, 50). The red dotted line signifies the ideal
value, while the black dotted line denotes the point at which convergence occurs.

7. Test Cases Simulations and Results

This section compares three techniques (RNN, ANN, and QL) in various scenarios
to show the benefits and efficacy of the proposed ML techniques. The number of hidden
layers used for RNN and ANN is shown in Table 5. The number 24 is the input for the ML
methods. (For example, the charging load for the following hour is forecast using the most
current 24-h data). This analysis estimated the devised PHEV load forecasting approach
using the free and open-source Keras software [26]. Additionally, MATLAB was utilized to
build the original PHEV data for various charging techniques.

Table 5. Examining and projecting the charging demand of PHEVs utilizing ANN, RNN, and QL
approaches (MSE, MAPE and Epoch) across various penetrations (30%, 60% and 90%).

Techniques Charging Strategy Penetration (%) MSE (KW) Epoch MAPE(%)

ANN-1 (non-cop)
RNN-1 (non-cop)
QL-1 (non-cop)

Non-cooperative 30
4.2
9.3

0.79

3000
1000

10,000

4.3371
2.9189
2.4741

ANN-1 (Cop)
RNN-1 (Cop)
QL-1 (Cop)

Cooperative 30
7.06
9.12
6.21

3000
500

10,000

4.4901
3.0129
2.7210

ANN-1 (Smart)
RNN-1 (Smart)
QL-1 (Smart)

Smart 30
6.23
6.38
5.30

3000
500

10,000

4.3210
2.7112
2.4214

ANN-2 (non-cop)
RNN-2 (non-cop)
QL-2 (non-cop)

Non-cooperative 60
1.67
25.63
1.30

3000
500

10,000

5.2121
3.1489
2.9741
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Table 5. Cont.

Techniques Charging Strategy Penetration (%) MSE (KW) Epoch MAPE(%)

ANN-2 (Cop)
RNN-2 (Cop)
QL-2 (Cop)

Cooperative 60
9.54
9.67
9.37

3000
500

10,000

5.7371
4.2189
3.1451

ANN-2 (Smart)
RNN-2 (Smart)
QL-2 (Smart)

Smart 60
7.12
7.34
5.23

3000
500

10,000

5.9871
4.0189
2.9741

ANN-3 (non-cop)
RNN-3 (non-cop)
QL-3 (non-cop)

Non-cooperative 90
0.0031
0.0019
0.0019

1000
1000
1000

3.2171
2.7189
2.2741

ANN-3 (Cop)
RNN-3 (Cop)
QL-3 (Cop)

Cooperative 90
1.23
10.3
0.889

3000
500

10,000

3.3371
2.8189
2.1741

ANN-3 (Smart)
RNN-3 (Smart)
QL-3 (Smart)

Smart 90
7.11
7.45
4.45

3000
500

10,000

3.6371
2.7189
2.0741

7.1. Load Forecasting of Non-Cooperative PHEVs Charging

This article predicts non-cooperative PHEV load demands using ML approaches such
as RNN, ANN, and the proposed QL techniques. A predicted load with a 30% PHEV
adoption is shown in Figure 7a. The necessary information is given in Table 5, along with
the epoch numbers and means square errors (MSEs) used for the different ML techniques
in this work during the training phase. ANN and QL methods have lower MSEs but
higher accuracies than the RNN strategy. The more significant epoch number used during
training was the primary factor that makes the ANN technique perform better in terms
of accuracy than the RNN method. The non-cooperative PHEV hourly load forecasting
with 60% penetration is shown in Figure 7b. The charging of the PHEV load started at
5:30 p.m. and ended at 5:30 a.m. depicted in Figure 7. Additionally, the AI technique had
a 60% penetration of PHEV load and an insignificant MSE (significant accuracy). Table 5
shows that the RNN method had a more significant mean squared error (MSE) and smaller
epoch number than other techniques. The devised QL method predicted PHEV load using
ANN or RNN outcomes with lower MSEs than the other two methods, which makes this
approach more accurate. This illustration shows how the QL approach was more valuable
than ANN and RNN for predicting PHEV loads.
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Figure 7. Cont.
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Figure 7. Non-cooperative charging PHEV load forecasting with a 30% and 60% penetrations.
(a) Non-cooperative charging PHEV load forecasting with a 30% penetration. (b) Non-cooperative
charging PHEV load forecasting with a 60% penetration.

7.2. Load Forecasting of Cooperative PHEVs Charging

The predicted load consumption for cooperative PHEVs is given in this subsection.
When PHEV penetration is 30%, Figure 8a shows the cooperative PHEVs hourly load
forecasting with 30% penetration using ANN, RNN, and QL algorithms. Training iterations
(1000 (ANN), 3000 (RNN), and 10,000 (QL)) were used. The cooperative PHEV charging
strategy lasted from 7:00 p.m. to 11:00 a.m. as shown in Figure 8. As shown in Table 5, the
QL method predicted the cooperative PHEVs hourly charging load more precisely (with
a reduced MSE) than the ANN and RNN approaches. Additionally, the output of the QL
method in Figure 8 demonstrates less deviation from the actual data.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4
- 1 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

 

 

PH
EV

 Lo
ad

 (K
W)

T i m e  ( H o u r s )

 R e a l   A N N
 R N N   P r o p o s e d  Q L

3 0 %  P H E V  L o a d  P e n e t r a t i o n

(a)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4
- 1 00
1 02 0
3 04 0
5 06 0
7 08 09 0

1 0 01 1 0
1 2 01 3 0
1 4 01 5 0
1 6 01 7 0
1 8 01 9 0

 

 

PH
EV

 Lo
ad

 (K
W)

T i m e  ( H o u r s )

 R e a l   A N N
 R N N   P r o p o s e d  Q L

6 0 %  P H E V  L o a d  P e n e t r a t i o n

(b)
Figure 8. Cooperative charging PHEV load forecasting with a 30% and 60% penetrations. (a) Cooper-
ative charging PHEV load forecasting with a 30% penetration. (b) Cooperative charging PHEV load
forecasting with a 60% penetration.
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7.3. Load Forecasting of Smart PHEVs Charging

The 60% and 30% penetration levels of the smart PHEVs charging hourly load are fore-
casted in this subsection. The training iterations (1000 (ANN), 3000 (RNN), and 10,000 (QL))
are used. Figure 9 shows that all techniques were capable of forecasting PHEV loads
with accuracy. However, because the RNN method employed fewer iterations than the
ANN and QL techniques, its error in calculating the PHEV load was more important. The
proposed QL approach has a reduced MSE (a better precision) than the ANN and RNN
methods because it chose the optimal policy from the potential actions for each state (each
hour). The proposed strategy’s accuracy can be improved by applying the QL method to
more extensive and diverse data sets.
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Figure 9. Smart charging PHEV load forecasting with a 30% and 60% penetrations. (a) Smart charging
PHEV load forecasting with a 30% penetration. (b) Smart charging PHEV load forecasting with a
60% penetration.

8. Sensitivity Analysis of Three Charging Techniques

Figure 10 shows the sensitivity evaluations of three PHEV charging load strategies
implemented with different hidden layers, node numbers, and several neurons in the
proposed QL. Figure 10a shows how the proposed QL method’s forecasting accuracy
varied with different epoch spans when increased from three to four hidden layers, each
having 200–400 nodes. Table 5 shows that when more nodes and hidden layers were used
in the ML model, it accurately predicted PHEV loads for the cooperative charging method.
Table 5 shows that the quality of a forecast was improved by increasing the number of nodes
in each hidden layer. It can be seen from the Figure 10b that the QL technique for the non-
cooperative PHEV load forecasting was unable to model the PHEV load filling consistently.
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The more layers and nodes a QL has, the better it can handle large datasets. Figure 10c
shows the sensitivity analysis of the QL method for smart PHEV load forecasting with
various nodes and hidden layers when penetration was 30%. Therefore, it can accurately
predict PHEV load if the proposed QL method employed more nodes and hidden layers
than other techniques—such as ANNs or RNNs.
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Figure 10. QL sensitivity analysis for the three PHEV charging (Cooperative, Non-cooperative and
Smart) (kW). (a) QL sensitivity analysis for cooperative PHEV charging (kW). (b) QL sensitivity
analysis for non-cooperative PHEV charging (kW). (c) QL sensitivity analysis for smart PHEV
charging (kW).
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9. Validation of Proposed QL

To produce accurate forecasting results for comparison, the parameters and hyper-
parameters of the QL approach should be developed appropriately. The validation test
selected these values through trial and error. For instance, the MAPE evaluated QL effi-
ciency, as seen in Figure 11. The QL with five hidden layers among ten guaranteed the best
MAPE and the QL selected 41 hidden neurons among fifty to achieve the smallest MAPE.
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Figure 11. Demonstration of QLs validity with a various number of hidden neurons and layers.
(a) Demonstration of QLs validity with various numbers of hidden neurons. (b) Demonstration of
QLs validity with various numbers of hidden layers.

10. QL in Terms of Speed, Flexibility and Accuracy

The flexibility, speed, and accuracy of the three DL methods are discussed with their
ability to predict PHEV charging loads.

10.1. Faster Speed

In this paper, we integrate two ML methods—ANN and RNN—to enhance the QL
method’s real-time ability to forecast PHEV load. Our three ML methods focus on training
times but vary substantially across applications. When ANN and RNN have trained accu-
rately with PHEV data, their networks can efficiently predict the input data to implement
the QL technique in real-time. Therefore, utilizing ANN and RNN techniques to their
full potential can significantly improve the QL technique’s capability to carry out this
process quickly.

10.2. Improved Accuracy

It is essential to examine all DL techniques currently being used; after evaluating the
three ML techniques described in this article, the most efficient QL for forecasting PHEV
charging loads was chosen. From the results of the simulations, predictions from ML
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techniques may be inaccurate if there are substantial variations from the initial charging
points. Therefore, the QL approach, which gets its data from ANN and RNN, may precisely
forecast optimal PHEV charging. As Table 5 demonstrates, increasing the epoch number
can reduce forecasting errors.

10.3. Flexibility

The simulation results show that ML techniques can be used to model PHEVs by
training charge methodologies. Any complex load-charging scenario can be variably
predicted by increasing the training iterations for ML techniques. The estimate for PHEV
charging potential was correct as a consequence. Forecasting PHEV loads for cooperative,
non-cooperative, and smart charging can be elevated by combining nodes and hidden
layers of ANN and RNN techniques. Moreover, the QL technique’s capacity to choose the
best course of action out of numerous choices can be improved by having more precise
estimates of PHEV load charging.

11. Discussion

A significant study is being done to increase the accuracy of load forecasting for
PHEV charging sites, which can both guide the efficient dispatch of the power system
and advance the growth of EVs. This study proposes a QL method for forecasting the
demand at electric car charging sites. The data preprocessing unit handles the original
dataset, builds time series data, and adds characteristics to prediction data in our technique.
We use the QL forecasting technique and approximate the posterior distribution using
variational inference. Results show the success of this method in predicting PHEV charging
station demand. Comparing the devised method to some forecast methods further indicates
its better performance. The designed model is around 38.2%, 41.5% lower in MSE and
MAE, and 17.9% higher than the standard techniques, according to the findings of point
forecasting. The devised strategy can be used to forecast load for PHEV charging stations
in the real world, as evidenced by its outstanding performance on various datasets.

12. Conclusions

This manuscript presents a novel QL approach for PHEV load forecasting employing
ANN and RNN techniques. Various PHEV models, such as smart, cooperative, and non-
cooperative, are analyzed in this study. Our results indicate that the proposed QL method
achieved accurate predictions of PHEV load charging by leveraging data from the ANN
and RNN techniques. Importantly, our findings suggest that the QL method outperformed
the ANN and RNN techniques in predicting PHEV loads accurately, as substantiated by
the simulation outcomes. Table 5 shows that in the worst-case scenario for PHEV charging
(smart charging), the QL method exhibited superior performance compared to traditional
ANN and RNN techniques, surpassing them by over 60%. Furthermore, increasing the
number of iterations demonstrated that the ANN technique delivers more precise pre-
dictions of PHEV loads (MSE) than the RNN approach. The QL methodology under
consideration demonstrates superior tracking capabilities for PHEV loads when compared
to ANN and RNN techniques, exhibiting greater precision and adaptability in the process.
Further enhancements in the form of adjustments to the hidden layer, epoch, and node
numbers have been shown to significantly enhance the accuracy of PHEV charging load
forecasts, as corroborated by the case studies.The forecasting methodology developed here
demonstrates the potential for future implementation in expansive power networks that
contain complex PHEV loads. The performance of this probabilistic forecasting technique
can be improved through ongoing optimization efforts. Reliable load projections derived
from PHEV charging facilities will facilitate a structured approach to electric vehicle charg-
ing, and effectively reduce energy usage variations while optimizing distribution network
resource allocation. We are committed to further forecasting the load from various charging
stations, including those with AC, DC, and higher power capabilities. We plan to extend
our suggested model to more PHEV charging data sets. Additionally, we intend to utilize
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this methodology in additional applications, including dispersed grid capacity forecasting
and wind power forecasting, to expand its potential impact.
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