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Abstract: Dual-ball-screw feed drive systems (DBSFDSs) are designed for most high-end manufactur-
ing equipment. However, the mismatch between the dynamic characteristic parameters (e.g., stiffness
and inertia) and the P-PI cascade control method reduces the accuracy of the DBSFDSs owing to
the structural characteristic changes in the motion. Moreover, the parameters of the P-PI cascade
controller of the DBSFDSs are always the same even though the two axes have different dynamic
characteristics, and it is difficult to tune two-axis parameters simultaneously. A new application of
the combination of the grey wolf optimization (GWO) algorithm and the P-PI cascade controller is
presented to solve these problems and enhance the motion performance of DBSFDSs. The novelty is
that the flexible coupling model and dynamic stiffness obtained from the motor current can better
represent the two-axis coupling dynamic characteristics, and the GWO algorithm is used to adjust
the P-PI controller parameters to address variations in the positions of the moving parts and reflect
characteristic differences between the two axes. Comparison of simulation and experimental results
validated the superiority of the proposed controller over existing ones in practical applications,
showing a decrease in the tracking error of the tool center and non-synchronization error of over 34%
and 39%, respectively.

Keywords: grey wolf optimization algorithm; P-PI cascade controller; dual-ball-screw feed drive
system; dynamic characteristic parameter; characteristic variation; flexible coupling model

MSC: 93C95

1. Introduction
1.1. Background of the Research

Motion inaccuracy has been a limiting factor in high-precision machining in several
industries for decades. The mismatch between servo control and dynamic characteristic
parameters of feed drive systems (FDSs) is one of the reasons for this inaccuracy [1,2]. The
proportional-integral-derivative (PID) control method is most commonly used in industrial
control systems as a standard effective solution [3–5]. During operation, the structure of
the FDS is time varying, which will change the dynamic characteristic parameters such
as the transmission stiffness and rotational inertia, and cause serious vibrations [6]. Even
though the dynamic characteristic parameters of the FDS are variable, the conventional
PID control method has constant parameters that cannot maintain a better performance
during motion [7,8].

Dual-ball-screw feed drive systems (DBSFDSs), as an innovative structure, have been
widely implemented in high-end industrial applications, for example, precision CNC
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equipment, owing to their high transmission stiffness, quick responsiveness, and high
driving forces [9,10]. The two ball-screw FDSs in a DBSFDS were adopted to drive the
crossbeam or worktable based on the principle of Driving at the Center of Gravity (DCG),
as shown in position B of Figure 1c. Figure 1a shows the usage examples of a DBSFDS, and
Figure 1b shows the general structure of a DBSFDS. The crossbeam, which moves along
the X1-axis and X2-axis, is driven by a mechanical system containing two FDSs consisting
of dual servo motors, dual ball screws, dual linear guides, and bearings. The crossbeam
serves as the base of the Y-axis motor carrying the moving parts. The moving parts can
be moved with a tool or any other device. However, the movement of the moving parts
causes the loads on the X1-axis and X2-axis to be different. This variation makes it difficult
to directly employ the principle of DCG in the moving process, as shown in position A of
Figure 1d. Furthermore, the structural characteristic changes result in different dynamic
characteristics of the two axes [11].
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Figure 1. The general structure of a DBSFDS. (a) Machine tool using a DBSFDS. (b) Structure of the
DBSFDSs. (c) Obedience to the principle of DCG. (d) Disobedience to the principle of DCG.

The center of gravity is shifted due to the variable position of the moving parts along
the crossbeam and the difference in mechanical characteristics between the two axes induces
non-synchronous errors, resulting in the ‘push-and-drag’ phenomenon. Ultimately, the
accuracy of the tool center is destroyed [12]. As shown in Figure 2, the non-synchronous
error refers to the different motion accuracies of the X1-axis FDS and X2-axis FDS. Four types
of non-synchronous situations occur during the motion in Figure 2, and the accuracy of the
tool center is affected by the positions of the moving parts and the coupling characteristics
of the X1-axis and X2-axis FDSs.
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The relationship between the X1- and X2-axis position errors and the tool center
position error can be obtained using Equation (1), where y indicates the position of the
moving parts and its expression is y =

∫
vydt, where vy is the velocity of moving parts, l

is the length of the crossbeam, and x0, x1, and x2 refer to the motion instruction, X1-axis
actual position, and X2-axis actual position, respectively. ∆Xt, ∆Xx1, and ∆Xx2 are the
position errors of the tool center, X1-axis, and X2-axis, respectively. min(x1, x2) < x0
represents the nonsynchronous situations shown in Figure 2a,b. min(x1, x2) > x0 indicates
the nonsynchronous situations in Figure 2c,d. According to Equation (1), the position error
of the tool center is influenced by the positions of the moving parts and by reducing the
two-axis error, the tool center accuracy can be improved.{

∆Xt =
l−y

l |x0 − x1| − y
l |x0 − x2|, min(x1, x2) < x0

∆Xt =
l−y

l |x0 − x1|+ y
l |x0 − x2|, min(x1, x2) > x0

(1)

As two FDSs are coupled to each other by the crossbeam during motion, the dynamic
characteristics change with the variation in the position of the moving parts, as shown
in Figures 1 and 2, thus affecting the motion accuracy of the DBSFDSs. Excessive non-
synchronous errors cause the crossbeam to twist and compress the ball screw and guide
rail, which determines the machining accuracy of the machine tool. In traditional PID
control, once the parameters of the controller are determined, they are fixed even if the
motion state changes or external interference occurs; thus, the performance of the controller
cannot be guaranteed [13]. Therefore, improving the precision of PID control for DBSFDSs
is of great significance. In addition, how to reduce the effect of the two-axis error on the
tool center error in DBSFDSs in the process of parameter adjustment poses a challenge to
the PID-parameter adjustment of CNC equipment using DBSFDSs.

1.2. Related Work

There are two types of PID tuning methods for FDS: the empirical trial-and-error
method and the use of metaheuristic algorithms for tuning [14–16]. As the representative
of empirical trial-and-error method, the Ziegler–Nichols (ZN) method is commonly used
in industrial applications. The ZN method provides a simple way to reflect dynamic
characterization in terms of system responses and is used as a classical tuning criterion of
the empirical trial-and-error method [17,18]. However, there are some drawbacks to the ZN
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method, which include excessive aggressiveness for many industrial control systems and
poor robustness in the design of closed-loop systems [19,20]. Additionally, the ZN method
cannot always provide a truly optimal solution. This is because the tuning process depends
on the manual tuning. Using empirical trial-and-error methods to adjust the PID parameters
for DBSFDSs makes it difficult to obtain good accuracy in the movement of DBSFDSs. This
is because the PID parameters for both FDSs cannot be adjusted simultaneously.

The metaheuristic algorithms can be classified as nature-inspired algorithms and non-
nature-inspired algorithms [21]. The nature-inspired algorithms have been widely studied
and developed, which can be generally classified as evolutionary, swarm intelligence,
and physics-based algorithms. Evolutionary algorithms are represented by the Genetic
Algorithm (GA) [22], differential evolution algorithm [23], etc., while the swarm intelligence
algorithms are represented by the Particle Swarm Optimization (PSO) algorithm [24], Grey
Wolf Optimization (GWO) algorithm [25], etc. Water wave optimization [26] and heat
transfer search [27] are included in the physics-based algorithms. Table 1 shows the
classification, application areas, and properties of the nature-inspired algorithms.

Table 1. The classification of the nature-inspired algorithms.

Classification Examples Applications (Not Limited to
These Applications) Properties

Evolutionary algorithms GA [22], differential evolution
algorithm [23]

Parameter optimization of
mechanical arm [22], crane systems

controlling [23], etc.

Mimic evolutionary
phenomena

Swarm intelligence algorithms PSO algorithm [24], GWO
algorithm [25] PID parameters tuning [24,25], etc. Imitation of creatures’

collective behavior

Physics-based algorithms Water wave optimization [26],
heat transfer search [27]

High-speed train scheduling
problem [26], etc.

Obedience to
physical laws

Some metaheuristic algorithms used to adjust the PID parameters include Adaptive
Fuzzy Logic Controller (AFLC) [28], GA [22], Natural Annealing Particle Swarm Optimiza-
tion (NAPSO) [24], adaptive particle swarm optimization (APSO) [29], etc. When using an
algorithm to tune PID parameters, a physical model of the controlled object needs to be
created. A ball screw is used as the drive unit in the FDS, which has flexible characteris-
tics during motion. The axial stiffness of the FDS is usually characterized by theoretical
calculation methods or using Experimental Modal Analysis (EMA) in the course of model
establishment, but there are theoretical calculation errors owing to the uncertainty of pa-
rameter values, and the difference between the static stiffness and the dynamic stiffness
under motion will cause a degradation of the control performance [30,31]. Most studies
do not consider the dynamic influence of axial stiffness in the process of PID-parameter
tuning, which leads to a deviation from the real state and eventually reduces the motion
accuracy of the FDS [32].

Reference [33] summarizes that many setting parameters in the GA need to be adjusted,
resulting in time consumption with more overshoot and difficulties in programming. The
PSO algorithm usually fails to discover the global optimum solution, and it shows poor-
quality results with regard to complex and large data sets [34]. In view of the group hunting
mechanism and leadership hierarchy of grey wolves, the GWO algorithm is convenient,
flexible, and scalable when used and requires no derivation information during the initial
search [25]. The GWO algorithm has been generally used in engineering and medical fields
to address optimization problems [5]. Some researchers have demonstrated that in the
optimization of PID-controller parameters for the motor, the GWO algorithm performs
better than the ZN, PSO, and Artificial Bee Colony methods [35–37], because of GWO’s
accuracy calculation and the smaller population in searching procedures. Due to the
advantages of the GWO algorithm, a large number of scholars have studied the GWO
algorithm and improved it, such as the adaptive GWO (AGWO) algorithm [38], improved
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GWO (IGWO) algorithm [21], and gaze-cues-learning-based grey wolf optimizer (GGWO)
algorithm [39]. A feature comparison of the GWO algorithm with other algorithms is
shown in Table 2.

Table 2. Comparison of GWO algorithms’ characteristics.

Algorithm Name Features Applications (Not Limited to These Applications)

GWO [25]
Easy to program, few parameters to set, the

operability of the position
updating equation

Designing and tuning controllers, robotics, path
planning [25], etc.

AGWO [38] Using fitness-based convergence criteria
and introducing a threshold

Optimization problems in science and
industry [38], etc.

IGWO [21] Using dimension learning-based hunting
(DLH) search strategy

Engineering problems, e.g., the welded beam
design [21], etc.

GGWO [39]
Combining search strategies: neighbor

gaze cues learning (NGCL) and random
gaze cues learning (RGCL)

Constrained design problems, e.g.,
tension/compression spring design problem [39], etc.

To solve the mismatch between PID servo control and dynamic characteristic parame-
ters of FDS owing to the crossbeam position variation of DBSFDSs, the GWO algorithm
is used to tune the P-PI cascade controller for controlling DBSFDSs, which requires very
few parameters to be adjusted. This feature of the GWO algorithm is well suited to solving
practical problems of industrial parameter optimization. In order to reduce the influence of
the PID parameter regulation due to dynamic stiffness, the axial stiffness of DBSFDSs was
considered in the process of PID-parameter adjustment. This paper proposes adopting the
motor current to identify the axial stiffness of DBSFDSs, to better reflect the flexible charac-
teristics of DBSFDSs, and provide an accurate model for the proposed control method. The
novelties of this study are as follows.

(1) The establishment of a two-axis, flexible coupling model and the use of an inno-
vative approach to identify axial stiffness by motor currents under motion, which does
not require additional sensors and can obtain the stiffness of the X1-axis and X2-axis
simultaneously.

(2) The GWO algorithm is used to adjust the parameters of the P-PI cascade controller
under variations in the positions of the moving parts. This method avoids the problem
of not being able to adjust the PID parameters of two FDSs simultaneously considering
the different motion characteristics of the two axes, which reduces the impact of structural
characteristic changes on the tool center accuracy. Moreover, it can avoid manual trial and
error, and multiple parameters of the P-PI controller can be adjusted simultaneously.

(3) The GWO-based tuned P-PI cascade controller is a practical control strategy that is
easy to implement in industrial applications compared with cross-coupling control schemes,
which are structurally complex and difficult to compute [40]. Experimental verification
showed the first application example of the GWO algorithm to adjust the P-PI cascade
controller for DBSFDSs, resulting in good control performance.

The rest of the paper is organized as follows. In Section 2, a P-PI cascade controller
for DBSFDSs is presented. In Section 3, the flexible coupling model is established, and the
adoption of the motor current to identify the axial stiffness in DBSFDSs is presented. The
GWO-based tuned P-PI cascade controller is presented in Section 4, and the results and
discussion are summarized to validate the benefits of the proposed method in Section 5.
This is followed by the conclusion and directions for future work in Section 6.

2. P-PI Cascade Controller for DBSFDSs

Figure 3 shows the typical structure of DBSFDSs; specifically, two ball-screw FDSs
collectively drive the gantry-type crossbeam to move. DBSFDSs consist of a servo control
system and a mechanical transmission system. The servo control system contains a motion
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controller, driver, and permanent magnet synchronous motor (PMSM). The mechanical
transmission system uses a ball screw and nut, which can achieve high transmission
efficiency [41]. A guide rail, slider, and bearing are also used in the FDS.
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Figure 3. Structure diagram of the DBSFDSs.

Such DBSFDSs are controlled with the aid of P-PI cascade control loops from the
inner control loop to the outer control loop, which are operated by a proportional integral
(PI) controller, and the position loop is operated by a proportional (P) controller [42]. A
mathematical model of the PMSM must be deduced to illustrate the P-PI cascade controller
of the DBSFDSs. Figure 4a shows the PMSM structural model. A, B, and C are three stator
windings located on the stator, with a difference of 120◦ between AB, BC, and AC. The d-q
coordinate system was set to rotate together on the rotor, and the d-axis was the direction
of the excitation flux.
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The transformation equation for the ABC coordinate system to the d-q coordinate
system can be obtained by combining the Clark and Park coordinate transformations. The
voltage equation under the ABC coordinate system can be transformed into that under the
d-q coordinate system using Equation (2) to obtain a simpler mathematical model of the
PMSM, as shown in Figure 4b.

CABC
dq =

√
2
3

 cos γ cos(γ− 120◦) cos(γ + 120◦)
− sin γ − sin(γ− 120◦) − sin(γ + 120◦)

1
2

1
2

1
2

 (2)
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According to Equation (2) and the working principle of a three-phase AC-driven
PMSM, the voltage equation under the d-q coordinate system for the PMSM can be ex-
pressed as [43] {

ud = Rsid +
d
dt ψd −ωψq

uq = Rsiq +
d
dt ψq + ωψd

(3)

{
ψd = Ldid + ψ f
ψq = Lqiq

(4)

where ω is the angular velocity of the rotor; Rs is the stator resistance; ψd and ψq are the
magnetic linkages of the d and q axes, respectively; ψ f indicates the permanent magnet flux
vector of the rotor; Ld and Lq refer to the inductance of the d and q axes, respectively; ud
and uq are the voltages of the d and q axes, respectively; and id and iq are the currents in
the d and q axes, respectively.

The electromagnetic torque equation of the PMSM is as follows:{
Te =

3
2 Pniq

[
ψ f + id(Ld − Lq)

]
Te = Jm

d
dt ωr + Td

(5)

where Pn is the pole pair, Jm is rotational inertia, and ωr = ω/Pn. When Ld = Lq,
Equation (5) can be simplified as follows:

3
2

Pniqψ f = Jm
d
dt

ωr + Td (6)

By taking the Laplace transform of Equation (6), Equation (7) can be obtained as:

ωr(s)
KT Iq(s)− Td(s)

=
1

Jm · s
(7)

where 3
2 Pnψ f = KT .

If id ≡ 0, substituting Equation (4) into Equation (3), yields

uq − Pnωrψ f = Rsiq + Lq
d
dt

iq (8)

By taking the Laplace transform of Equation (8), Equation (9) can be obtained as:

Iq(s)
Uq(s)− Kuωr(s)

=
1

Rs + Lq · s
(9)

where Pnψ f = Ku.
According to the electromagnetic torque equation for the PMSM (Equations (2)–(9)),

the servo control strategy adopts a P-PI cascade controller to decrease disturbance attenua-
tion and improve the control performance of the PMSM.

Figure 5 shows the control block diagram of the P-PI cascade controller for the DBSFDS.
Kip, Kvp, and Kpp denote the feedback coefficients of current loop, velocity loop, and
position loop, respectively. The system includes two P-PI cascade controller structures
with two P-position controllers, GX1P and GX2P, and two PI-velocity controllers, GX1V and
GX2V . The expressions of GX1P, GX2P, GX1V , and GX2V are described in [44] and shown in
Equation (10). {

GX1P = Kp1, GX2P = Kp2

GX1V = Kpv1
(Tv1s+1)

Tv1s , GX2V = Kpv2
(Tv2s+1)

Tv2s
(10)
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3. Flexible Coupling Model for DBSFDSs
3.1. Coupling Mechanism of DBSFDSs

The dynamic characteristics of the DBSFDSs change owing to the flexibility of the
ball-screw FDS and the variation in the position of the moving parts during movement. In
addition, the flexible coupling of the two FDSs causes vibration and positioning errors in
the X1-axis and X2-axis. All these factors reduce the motion accuracy of the tool center.

Figure 6 shows the flexible coupling model for DBSFDSs. Owing to non-synchronization
errors, the DBSFDS exhibits linear motion along the X-direction and torsional motion
around the Z-axis. The flexible coupling model of the DBSFDS is expressed in Equation (11)
according to the Lagrange equation.{

mc
..
xc = Fd1 + Fd2 − c

.
xc

Jc
..
θc = Fd1l1 − Fd2l2 − kθθc

(11)

where mc is the mass of the combination part (containing crossbeam and moving parts),
and the expression is mc = m1 + m2, where m1 is the mass of the crossbeam, m2 is the mass
of the moving parts, and c is the damping of the combination part and is expressed as
c = ce1 + ce2. kθ is the anti-torsional stiffness, and its value is related to the contact stiffness
of the linear guide and the slider. Jc is the moment of inertia of the combination part around
the center of gravity for the combination part oc; xc is the equivalent displacement of the
combinatorial mass center; and Fd1 and Fd2 are the driving forces of the X1-axis and X2-axis,
respectively. l1 and l2 indicate the distance from the oc to the X1-axis and the distance from
the oc to the X2-axis, respectively, and their expressions are given in Equation (12).{

l1 = l
2 + m2

m1+m2
(y− l

2 )

l2 = l − l1
(12)
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During machining, y changes in real time. The relationship among x1, x2, and xc is
given by Equation (13) based on the geometric–physical relationship.[

x1
x2

]
=

[
1 −l1
1 l2

][
xc
θc

]
(13)

where x1 and x2 indicate equivalent displacement of the X1-axis and X2-axis.
The driving forces of the two FDSs can be obtained using Equation (14).{

Fd1 = Kex1(x0 − x1)
Fd2 = Kex2(x0 − x2)

(14)

where Kex1 and Kex2 denote the equivalent axial transmission stiffnesses of the X1-axis and
X2-axis, respectively. The axial transmission stiffnesses are influenced by kinematic joints
such as ball-screw and nut joints, ball bearings, and screw-shafts [45].

The relationship among Jc, Jg, and Js can be expressed as:
Jc = Jg + Js

Jg = m1l2

12 + m1(l1 − l
2 )

2

Js = m2(l1 − y)2
(15)

where Jc is the moment of inertia of the crossbeam around the center of gravity for cross-
beam oc; and Jg and Js are the moments of inertia of the crossbeam and moving parts
around oc, respectively.

Combining Equation (15) and the geometric parameter values, the relationship be-
tween the rotational inertia of the combination part and the position of the moving parts
can be obtained, as shown in Figure 7. It can be observed that Jc has a minimum value
when the moving parts are in the middle position (Position B). The range of change of Jc
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was 47.15% over the course of the entire travel of the moving parts. Therefore, during the
motion of the DBSFDS, the impact of the structural characteristic changes on the accuracy
of the movement must be considered.
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According to Equation (11), the multiple-input and multiple-output systems of the
DBSFDSs can be described as

∑ :

{ .
X(t) = Ã×X(t) + B̃×U(t)
Y(t) = C̃×X(t) + D̃×U(t)

(16)

where Ã is the system matrix, B̃ denotes the input matrix, C̃ represents the output matrix, D̃
is the transfer matrix, and U(t) is the control signal. Their expressions are

X(t) =
[

xc θc
.
xc

.
θc

]T

4×1
,U(t) =

[
Fd1 Fd2

]T
2×1, and Y(t) =

[
x1 x2

]T
2×1

Ã =


0 0 1 0
0 0 0 1
0 0 − c

mc
0

0 − kθ
Jc

0 0


4×4

, B̃ =


0 0
0 0
1

mc
1

mc
l1
Jc
− l2

Jc


4×2

, C̃ =

[
1 −l1 0 0
1 l2 0 0

]
2×4

, and

D̃ = [0]2×2.
According to Equation (16), the transfer function of the actual displacements of the

X1-axis and X2-axis to the two-axis driving force can be expressed as follows:

G = C̃(Is− Ã)
−1

B̃ =

[
G11 G21
G21 G22

]
=

[
X1
X2

]
2×1[

Fd1 Fd2
]

1×2

=

 1
mcs2+cs −

l2
1

Jcs2+kθ

1
mcs2+cs +

l1l2
Jcs2+kθ

1
mcs2+cs +

l1l2
Jcs2+kθ

1
mcs2+cs −

l2
2

Jcs2+kθ


(17)

where G11 and G22 represent the transfer functions from the two-axis driving force of
the X1-axis and X2-axis to the actual displacements of the X1-axis and X2-axis ball screw,
respectively. G12 and G21 are the transfer functions of the X1-axis and X2-axis, respectively.

Figure 8a,b show the bode plots of G11 and G22, respectively. As shown in Figure 8a,b,
the two-axis transfer function varies with the position of the moving part. G11 and G22 have
the highest frequencies when the moving part is in the middle position (y = 0.6m) and the
smallest magnitudes, which means that the system is more stable in this position. When
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the moving part is in the middle position, the DBSFDSs conform to the DCG principle;
thus, the system is the most stable.
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3.2. Flexible Model of DBSFDSs

To consider the influence of the elastic characteristics of the ball-screw FDS during
P-PI cascade controller design, this study proposes the use of a motor current to identify
the axial stiffness of DBSFDSs. Based on Equation (11), the flexible coupling model of the
DBSFDS can be expressed as:

M
..
x + C

.
x + Kx = F (18)

matrices of the DBSFDS, respectively.
.
x,

..
x, and

..
x represent the vectors of displacement,

velocity, and acceleration, respectively. F is a vector of the applied force applied to the
DBSFDS.

Using the Fourier transform formula, Equation (18) can be written as:

X(ω) = G(ω)F(ω) (19)

where G(ω) is the frequency response function (FRF) of the DBSFDS, which can be ex-
pressed as Equation (20) [46].

G(ω) =
n

∑
r=1

(
{Lr}{φr}T

jω− λr
+
{Lr
∗}{φr

∗}H

jω− λ∗r
) (20)

where the superscript T represents the transpose of a matrix; superscript * denotes the
complex conjugate; n is the modal order of the system; and {φr} and {Lr} are the r-th
modal shape and modal participation factor, respectively. The superscript H represents a
complex conjugate transpose operation, for example, Hermitian. λr is the r-th system pole.
The expression λr can be written as:

λr, λ∗r = −ξrωr ± j
√

1− ξ2
r ωr (21)

where ξr and ωr represent the damping ratio and natural frequencies, respectively.
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According to the properties of the power spectral density (PSD) function, if the input
signal meets the white noise condition, the self-power spectral density matrix of the
response signal can be obtained as Equation (22).
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To verify that the motor current can reflect axial vibration, an electromechanical sim-

ulation diagram of the DBSFDS can be derived based on the control block diagram of the 

PMSM (Figure 4). Table 3 lists the key parameters for the PMSM of the DBSFDS. 

(22)

where {Kr} denotes the conditional reference factor. G+
ss(ω) represents the half-spectrum

matrix of the PSD.
Equations (20) and (22) show that G+

ss(ω) and G(ω) have similar forms. Hence, if
the vibration excitation meets white noise conditions, the FRF can be replaced by the PSD.
According to the theory of the FRF, the expressions of the function and modal admittance
are described as  Hlp(ω) =

N
∑

r=1
ΦlpΦpr Hr(ω)

Hr(ω) = 1
K′r−ω2 Mr+jωCr

, r = 1, 2, . . . , N
(23)

where Hlp(ω) is the FRF of the system; Hr(ω) is the r-th order modal admittance; and K′r,
Mr, and Cr represent the modal stiffness, modal mass, and modal damping, respectively.

When the system is in resonance, ω ≈ ωr, and the following expression can be obtained.∣∣∣Hlp(ωr)
∣∣∣ ≈ 1

2ξrK′r
(24)

Thus, the system stiffness is

K′r =
1

2ξr

∣∣∣Hlp(ωr)
∣∣∣ (25)

where ξr =
Cr

2Mrωr
and ωr

2 = K′r
Mr

.
To verify that the motor current can reflect axial vibration, an electromechanical

simulation diagram of the DBSFDS can be derived based on the control block diagram of
the PMSM (Figure 4). Table 3 lists the key parameters for the PMSM of the DBSFDS.

Table 3. Key parameters of the PMSM.

Parameters Value/Units Parameter Value/Units Parameter Value/Units

Magnetic pole, Pn 10 Motor rotor inertia, Jm 48.2 kg·cm2 Rated torque, T 11 N·m

Torque constant, Kr 1.63 N·m/A Armature inductance, Lq 172 mH Stator resistance, Rs 68 Ω

The simulation results in Figure 9b indicate that the axial vibration of the FDS can
cause the motor output current to change. If a disturbance is introduced into the servo
system, the motor current has the same component disturbance (the disturbance is indicated
by the orange dotted line in Figure 9a). Furthermore, when sinusoidal periodic vibrations
with a frequency of 125.6 rad/s (20 Hz) and frequency of 62.8 rad/s (10 Hz) were applied
to the system in 3 s to 6 s, there were periodic fluctuations in the motor current, as shown
in Figure 9a. The current spectrum shows that the current fluctuates and has the same
frequency as the axial vibration. Therefore, the axial vibrations in the FDS are indicated by
the motor current [47].
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Figure 9. The simulation result of motor current remapping axial vibration. (a) The simulation result
of the output current and (b) the axial vibration result.

Using the motor current (or motor torque) information to identify the axial stiffness
of the DBSFDSs must ensure that the excitation satisfies the white noise characteristic. In
particular, the inertial excitation vibration produced by the acceleration of the crossbeam
must be random. The movement of the crossbeam can be programmed with suitable
time intervals for the applied force to be considered random, which can achieve a certain
bandwidth of white-noise excitation. Every inertial impact caused by the crossbeam
acceleration and deceleration can be considered a pulse signal. Additionally, the impact
time has white-noise characteristics. Therefore, the random acceleration and deceleration
sequence can be regarded as a series of random pulse signals in the time domain [30].

The motor torque data of the axial stiffness identification experiment for the X1-axis are
shown in Figure 10a,b. Figure 10a shows that the torque changes with motion. Moreover,
the torque oscillated with an obvious overshoot after each starting cycle. This is because
the axial vibration is fed back to the control system through the control of the PMSM, and
the motor torque is adjusted accordingly. The motor torque data show that the fluctuation
of the torque was affected by axial vibration. A vibration analysis program was used to
analyze the PSD of the torque data. The PSD result is shown in Figure 10b. To obtain an
exact identification result, the wavelet analysis method was used to reduce the influence
of noise on the torque signal. There is a peak in Figure 10b, and the frequency of 97.7 Hz
corresponds to the axial vibration of the DBSFDS. Combined with the equivalent mass
of the DBSFDS, the identification result of the X1-axis axial transmission stiffness of the
DBSFDSs was 101.84 N/µm. In addition, the axial transmission stiffness of the X2-axis was
100.52 N/µm.
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4. The Tuned P-PI Cascade Controller
4.1. GWO-Algorithm-Based Tuned P-PI Cascade Controller

From the above analysis, it can be seen that the position variation of the moving parts
will affect the dynamic characteristics of the DBSFDS, and thus affect the motion accuracy.
Therefore, the position variation of the moving parts should be considered when designing
the control system of DBSFDSs. In a traditional P-PI cascade control, the PID parameters
cannot change with the variation in the motion state, resulting in unsatisfactory motion
control accuracy of the DBSFDS. Furthermore, in practice, it is difficult to simultaneously
adjust the parameters of the X1-axis and X2-axis P-PI cascade controllers. Therefore, in
view of the advantage of GWO [48], the GWO algorithm was used to adjust the PID
parameters to adapt to the impact of the position variation of the moving parts on the
control performance.

As shown in Figure 11, the P-PI cascade controller combined with the GWO algo-
rithm is called the tuned P-PI cascade control of DBSFDSs. In industrial applications, the
parameters of the current loop have been adjusted accurately, and the bandwidth of the
current loop is much wider than those of the velocity and position loops; therefore, it
can be assumed to be ideal. However, the parameters of the position and velocity loops
must be adjusted. The GWO algorithm was used to adjust the parameters in the P-PI
position-velocity cascade control. Specifically, it is necessary to adjust the X1-axis and
X2-axis position loop gains KP1 and KP2, velocity loop gains KPv1 and KPv2, and integral
time constants Tv1 and Tv2. This is the first application example of GWO to adjust the P-PI
cascade controller used for DBSFDSs for more accurate modeling.
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The GWO algorithm is an intelligent algorithm based on the hunting mechanism
of grey wolves. The prey represents the optimal solution, and the position of each grey
wolf represents a potential solution. In the process of obtaining the optimal solution, grey
wolves are sorted based on their fitness function values. Grey wolves with the best fitness
function values are referred to as α wolves (leaders), followed by β wolves (second level),
and δ wolves (third level), indicating that they are closest to the position of the prey. The
remaining wolves are referred to as the ω wolves (lowest ranking). The grey wolf hierarchy
plays an important role in predation, with α wolves leading the pack to surround the prey,
β wolves and δ wolves attacking the prey, and ω wolves helping to attack the prey and
eventually capture it [49]. The mathematical model of the GWO algorithm consists of track
hunting, encircling prey, and attacking the prey.

→
Dw =

∣∣∣∣→Cw ×
→
XP(t)−

→
X(t)

∣∣∣∣ (26)

→
X(t + 1) =

→
XP(t)−

→
Aw ×

→
Dw (27)

Equations (26) and (27) represent the encircling behavior of grey wolves, where t

indicates the current iteration,
→
Aw and

→
Cw are coefficient vectors,

→
XP(t) is the position

vector of the prey, and
→
X(t) refers to the position vector of the grey wolf.

→
Aw and

→
Cw are

calculated as 
→
Aw = 2

→
a ×→r 1 −

→
a

→
Cw = 2×→r 2

(28)

where
→
a is the convergence factor, whose value decreases linearly from two to zero in the

process.
→
r 1 and

→
r 2 are random vectors in [0, 1]. Equation (29) represents the track hunting

of grey wolves.
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(29)

where
→
Dα,

→
Dβ, and

→
Dδ are the distances between α, β, δ, and the other individuals, respec-

tively.
→
C1,

→
C2, and

→
C3 are random vectors, and

→
X is the current grey wolf position. The

step length and direction of ω wolves toward α, β, and δ are shown by Equation (30), and
Equation (31) represents the final position of the ω wolves.

→
X1 =

→
Xα −

→
A1 × (

→
Dα)

→
X2 =

→
Xβ −

→
A2 × (

→
Dβ)

→
X3 =

→
Xδ −

→
A3 × (

→
Dδ)

(30)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(31)

In the process of parameter adjustment of the P-PI controller, the fitness function
affects the results of parameter tuning. Therefore, to ensure the overall performance
of the control system, obtain satisfactory dynamic characteristics of the DBSFDSs, and
consider the control accuracy and convergence speed, the integral time absolute error
(ITAE) criterion [50] is chosen as the fitness function of the tuned P-PI cascade controller
for DBSFDSs.



Mathematics 2023, 11, 2259 16 of 29

4.2. The Fitness Function Design Considering the Features of DBSFDSs

The design of the fitness function is a vital part of adjusting these parameters. Many
studies considered only the dynamic response of a system. In this study, the dynamic
response of the two axes and the dynamic characteristics of the two FDSs during the
operation were considered simultaneously. As shown in Figure 12a, the rise time, over-
shoot, and steady-state error of DBSFDSs have been considered. However, the DBSFDSs
will produce non-synchronous errors in the case of unequal tracking errors in the two
FDSs, as shown in Figure 12b; therefore, the influence of the two-axis tracking error and
the non-synchronization error should be considered in the fitness function. More im-
portantly, the output torque of the two axes also consists of a fitness function to avoid
excessive control energy. The empirical P-PI method cannot control the motor output torque
during tuning.
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(b) Tracking error and non-synchronous error of two FDSs.

Equation (32) is the expression of the fitness function of the DBSFDS; it contains the
tracking errors of the two axes, the non-synchronization error, the output torques of the
two axes, the overshoots of the two axes, and rising time.
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where 0 ( )x t , 1( )x t , and 2 ( )x t  denote the reference signal, X1-axis displacement output, 

and X2-axis displacement output, respectively. 1( )F t   and 2 ( )F t   represent the output 

torques of the two FDSs, respectively. 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , and 9  are the 

coefficients of the fitness function.  

The se�ing of the parameters needs to be analyzed based on the coupling character-

istics of the two axes of the DBSFDS. 1 , 2 , and 3  represent the coefficients of the X1-

axis tracking error, X2-axis tracking error, and non-synchronization error, respectively. As 

shown in Figure 2, the expression for the non-synchronization error is 

1 2 0 1 0 2sy x xX X X x x x x        . If the X1-axis and X2-axis tracking errors are 
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tion error is zero, the errors of the two axes are not necessarily 0. Therefore, the values of 

1  and 2  should be greater than that of 3 . If an overshoot occurs in the system during 

the adjustment, that is, ( 1) ( )x t x t  , as indicated by the pink line in Figure 12a, the over-

shoots of the two axes are used as part of the fitness function. 8  and 9  are set as larger 

weighting coefficients to achieve a fast reduction in system overshoot. The rising time of 
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thus improving the tool-center response speed in actual motion.  

On the other hand, many synchronization control methods for DBSFDSs mainly give 

priority to pure motion compensation and synchronization of the two axes. Even though 

the two axes have good motion accuracy, the dual actuator may still experience “pull-and-

drag” phenomena through physical coupling between the X1-axis and X2-axis [51]. There-

fore, if the difference between the output torques of the two FDSs is too large during op-

eration, it causes the two FDSs to pull and drag each other and even destroy the DBSFDS. 

Therefore, 4 , 5 , and 6  are innovatively used to control the output torque and the dif-

ference in the output torques between the two actuators to reduce the influence of the non-

synchronization error on the output torque of the two axes. 

The process of tuning the P-PI cascade control of the DBSFDS is illustrated in Figure 

13. The specific steps are as follows: 

(1) Establish the simulation model of the DBSFDS and combine it with the GWO algo-

rithm. 

(2) Initialize the parameters of the GWO algorithm. The population size is set to 30, the 

dimension to 6, specifically 1 1 1 2 2 2p pv v p pv vK K T K K T   , the maximum 

(32)

where x0(t), x1(t), and x2(t) denote the reference signal, X1-axis displacement output, and
X2-axis displacement output, respectively. F1(t) and F2(t) represent the output torques of
the two FDSs, respectively. γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, and γ9 are the coefficients of the
fitness function.

The setting of the parameters needs to be analyzed based on the coupling characteris-
tics of the two axes of the DBSFDS. γ1, γ2, and γ3 represent the coefficients of the X1-axis
tracking error, X2-axis tracking error, and non-synchronization error, respectively. As shown
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in Figure 2, the expression for the non-synchronization error is ∆Xsy = ∆Xx1 − ∆Xx2 =
|x0 − x1| − |x0 − x2|. If the X1-axis and X2-axis tracking errors are equal to zero, the non-
synchronization error drops to 0. However, if the non-synchronization error is zero, the
errors of the two axes are not necessarily 0. Therefore, the values of γ1 and γ2 should be
greater than that of γ3. If an overshoot occurs in the system during the adjustment, that is,
x(t− 1) > x(t), as indicated by the pink line in Figure 12a, the overshoots of the two axes
are used as part of the fitness function. γ8 and γ9 are set as larger weighting coefficients to
achieve a fast reduction in system overshoot. The rising time of the tool center is selected
as part of the fitness function. It has the advantage of directly adjusting the rise time of the
tool center by adjusting the PID parameters of the two axes, thus improving the tool-center
response speed in actual motion.

On the other hand, many synchronization control methods for DBSFDSs mainly give
priority to pure motion compensation and synchronization of the two axes. Even though
the two axes have good motion accuracy, the dual actuator may still experience “pull-
and-drag” phenomena through physical coupling between the X1-axis and X2-axis [51].
Therefore, if the difference between the output torques of the two FDSs is too large during
operation, it causes the two FDSs to pull and drag each other and even destroy the DBSFDS.
Therefore, γ4, γ5, and γ6 are innovatively used to control the output torque and the
difference in the output torques between the two actuators to reduce the influence of the
non-synchronization error on the output torque of the two axes.

The process of tuning the P-PI cascade control of the DBSFDS is illustrated in Figure 13.
The specific steps are as follows:
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(1) Establish the simulation model of the DBSFDS and combine it with the GWO algo-
rithm.

(2) Initialize the parameters of the GWO algorithm. The population size is set to 30,
the dimension to 6, specifically

[
Kp1 Kpv1 Tv1 Kp2 Kpv2 Tv2

]
, the maximum

number of iterations to 50, and the value range of each parameter is determined based
on the experience value.
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(3) Initialize the location information of the GWO algorithm. Calculate the corresponding
fitness function value, and determine the global optimal position in the initialization
phase.

(4) The algorithm is iterated until the termination condition is satisfied. The population
is iterated according to Equations (26)–(32). Finally, the optimal parameter results are
obtained.

According to the steps of the GWO algorithm, the parameter results of the tuned P-PI
cascade controller at different positions of the moving parts can be obtained. According
to the structural design of the DBSFDS, the travel of the moving parts is between 0 and
1.2 m. Tuning the P-PI parameters at the position y = 0, y = 0.3 m, y = 0.6 m, y = 0.9
m, and y = 1.2 m of the moving parts, the P-PI parameter adjustment results are taken
as the P-PI controller value of the moving part position y ∈ [0, 0.15), y ∈ [0.15, 0.45),
y ∈ [0.45, 0.75), y ∈ [0.75, 1.05), and y ∈ [1.05, 1.2], respectively, to improve the adjustment
efficiency. Figure 14a–c show the position-loop gain, velocity-loop gain, and integral time,
respectively. It can be seen that, if a better control performance is achieved, the P-PI
controller parameters will change as the position of the moving parts changes. In addition,
the values of the P-PI parameters of the two axes exhibited different trends and changing
ranges. During the entire stroke, the X1-axis and X2-axis position loop gains varied by
44.5% and 72.3%, respectively. The X1-axis and X2-axis velocity loop gains varied by 94.3%
and 27.7%, respectively. The integral times of the X1-axis and X2-axis velocity loops varied
by 139.9% and 63.4%, respectively. These results indicate that the position of the moving
parts affects the variation in the PID parameters along the two axes.
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5. Results and Discussion
5.1. Simulation

To verify the effectiveness of the tuned P-PI cascade control strategy proposed in this
paper, an empirical method that uses the Ziegler–Nichols method to adjust the P-PI cascade
control parameters (called the empirical P-PI control method) at different moving parts’
positions and the proposed method were compared and analyzed. The empirical P-PI
control method is a common and useful method for machine tool control; this has been
proven by many researchers [52].

According to Equations (2)–(9), the control simulation model of the PMSM can be
established. Based on Equations (11)–(17), a flexible coupling simulation model of DBSFDSs
can be established. In addition, Equations (18)–(25) were used to identify the axial trans-
mission stiffness of DBSFDSs. As described in the previous section, the transfer function
of the mechanical system changes when the moving parts move along the crossbeam.
A simulation was conducted to verify the effectiveness of the proposed control strategy.
Real parameters of DBSFDSs were used in the simulation. The specifications are listed in
Tables 3 and 4.

Table 4. Key parameters of the DBSFDSs.

Parameters Value/Units Parameters Value/Units Parameters Value/Units

Rated power, Pr 3.46 kW Rated speed, n 3000 r/min Rated voltage, U 380 V

Rated current, I 7.8 A The moving parts
mass, m1

317 Kg The crossbeam
mass, m2

749 Kg

X1-axis axial
stiffness, Kex1

10.184× 107 N/m
X2-axis axial
stiffness, Kex2

10.052× 107 N/m
Anti-torsional

stiffness, kθ
9.8× 109 N ·m/rad

To prove that the proposed control method can effectively improve the feeding accu-
racy of the DBSFDSs, there are two aspects to verify during the simulation: (1) the response
speed, overshoot, and control output torque of the proposed method and (2) the dynamic
response and synchronization accuracy of the system under different input signals. The
simulation results were compared with those obtained using the empirical P-PI control
method under the same conditions.

5.1.1. Verification of the Response Speed, Control Output Torque, Tracking Error, and
Non-Synchronization Error of the Proposed Method

To verify the effect of the tuned P-PI cascade control strategy, the moving parts are
placed in different positions (y = 0.1 m, y = 0.4 m, y = 0.7 m, and y = 1.0 m). Figure 15a–d
show the step response of the tool center, the output of the control torque, the tool center’s
tracking error, and the non-synchronization error of two control methods, respectively,
under the condition of the moving parts’ position y = 0.1 m. Simulations under other
positions of the moving parts led to a similar conclusion. In Figure 15, the blue and
red lines represent the results using the empirical P-PI control method and tuned P-PI
cascade control method, respectively. In Figure 15a, using the tuned P-PI cascade control
method, the rise time of the step response rise time was improved by 0.095 s, with no
overshoot. In Figure 15b, adopting the method proposed in this study, the gain of the
output force decreased by 10.60%, but the control effect improved, and the oscillation decay
was accelerated by 0.0214 s, with a percentage of 3.98%. In Figure 15c,d, using the tuned
P-PI cascade control method, the tracking error and non-synchronization error dropped
faster than in the empirical P-PI control method, the tracking and synchronization errors
reached 0, and the time was reduced by 0.1754 s and 0.1675 s, respectively. The percentages
were 24.85% and 24.03%, respectively. Figure 15e shows that the maximum difference
between the torques of the two axes can be reduced by 61.44% using the tuned P-PI cascade
control method.
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control output difference.

The average error and the error standard deviation were used as evaluation criteria to
assess the performance of the proposed control method in terms of the tracking accuracy of
the tool center and dual-axis synchronization accuracy [53]. Their expressions are given in
Equations (33) and (34), respectively.
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tr =
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where eave
tr and es

tr represent the average tracking error and standard deviation of the
tracking error, respectively. eave

sy and es
sy represents the average non-synchronization error

and standard deviation of the non-synchronization error, respectively.
As shown in Table 5, the reduction in the average tracking error, average non-

synchronization errors, standard deviation of the tracking error, and standard deviation
of the non-synchronization error can reach 34.95, 34.03, 16.22, and 16.35%, respectively.
Furthermore, in Table 6, the average output torque difference between the two axes and the
standard deviation of the output torque difference between the two axes were reduced by
86.32 and 84.93%, respectively. The simulation results show that the tuned P-PI cascade
method, response time, control output, tracking error, and non-synchronization error of
the DBSFDS were better than those of the empirical P-PI control method. Tuned P-PI
control can improve the tracking accuracy and synchronization accuracy of DBSFDSs.
This is because the tuned P-PI cascade control method specifically considers the dynamic
performance of the servo controller and the coupling characteristic between the X1-axis
FDS and X2-axis FDS owing to the structural characteristic changes. More importantly, the
tuned P-PI cascade control method focused on the output torque of the two actuators and
reduced the difference in the output torque of the two axes. This is an absolute advantage
over the other control methods. The GWO algorithm is used to adjust the P-PI parameters
of the X1-axis and X2-axis simultaneously under different moving part positions, resulting
in better performance.

Table 5. Simulation comparison of the two methods.

Comparison Items Moving Parts’ Position Tuned P-PI Control Empirical P-PI Control Improvement

Average tracking error of
the tool center

y = 0.1 m 0.034761 0.043659 20.38%
y = 0.4 m 0.036458 0.048521 24.86%
y = 0.7 m 0.036006 0.049055 26.60%
y = 1.0 m 0.032265 0.049601 34.95%

Standard deviation of the
tracking error

y = 0.1 m 0.146015 0.158980 8.16%
y = 0.4 m 0.144155 0.164493 12.36%
y = 0.7 m 0.144261 0.164279 12.19%
y = 1.0 m 0.137454 0.164068 16.22%

Average
non-synchronization error

y = 0.1 m 0.069525 0.088869 21.77%
y = 0.4 m 0.072885 0.097747 25.44%
y = 0.7 m 0.072016 0.097747 26.32%
y = 1.0 m 0.064487 0.097747 34.03%

Standard deviation of the
non-synchronization error

y = 0.1 m 0.292029 0.317396 7.99%
y = 0.4 m 0.288302 0.328702 12.29%
y = 0.7 m 0.288526 0.328700 12.22%
y = 1.0 m 0.274957 0.328703 16.35%

Table 6. Simulation comparison of output torque difference for the two methods.

Comparison Items Moving Parts’ Position Tuned P-PI Control Empirical P-PI Control Improvement

Average output torque
difference between

two axes

y = 0.1 m 0.007149 0.052259 86.32%
y = 0.4 m 0.011988 0.061331 80.45%
y = 0.7 m 0.011849 0.060929 80.55%
y = 1.0 m 0.013471 0.060715 77.81%

Standard deviation of the
output torque difference

between two axes

y = 0.1 m 0.029294 0.194414 84.93%
y = 0.4 m 0.048809 0.232756 79.03%
y = 0.7 m 0.048931 0.232859 78.99%
y = 1.0 m 0.049251 0.232915 78.85%
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5.1.2. Verification of the Control Output and the Synchronization Accuracy of the System
using Different Input Signals

The DBSFDSs continuously accelerate and decelerate during machining; therefore,
different acceleration inputs are used to simulate the time-varying characteristics of the
motion state. The dual-axis control output and positioning error were analyzed under
different acceleration input conditions to verify the stability of the proposed control method.

Figure 16a shows the X1-axis output torque for the two control strategies with different
velocity signal inputs when the moving part is at position y = 0.1 m. The tuned P-PI cascade
control method had a lower output torque, faster response, and shorter adjustment time
than the empirical P-PI control method. The dashed line box shows the input signals,
the brown lines indicate the different velocity signals, and the green lines indicate the
corresponding acceleration. The action time of the velocity is 4 s and can be expressed as
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Figure 16. Control output and non-synchronization error of the two control methods. (a) Control
output results. (b) Non-synchronization error results. (c) The results of control output difference.
(d) Tracking error results.
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Figure 16b shows the non-synchronization errors of the two control methods for
different velocity signal inputs. It can be seen that the maximum non-synchronization error
with the empirical P-PI control method was 0.033 mm, which is approximately twice as high
as that with the tuned P-PI cascade control method. The average non-synchronization errors
of the tuned P-PI cascade control method and empirical P-PI control method were 0.009786
and 0.019142, respectively. In addition, the standard deviations of the non-synchronization
error for the tuned P-PI cascade control method and the empirical P-PI control method were
0.005221 and 0.010481, respectively. The simulation results for the other positions of the
moving parts are listed in Table 7. Figure 16c shows the output difference between X1-axis
and X2-axis. This shows that, compared to the empirical P-PI method, the P-PI tuned
control method can result in a smaller difference in torque output between the two axes,
not only during uniform acceleration but also during sudden speed changes. In addition,
the variation in the difference between the output torques of the two axes during the entire
motion was 19.72% of that of the empirical P-PI method. Figure 16d shows the variation
in the tool-center tracking error when two control methods were used in the motion. The
maximum tool-center tracking error using the tuned P-PI control method was 50.98% of
that using the empirical method.

Table 7. Simulation comparison of different input signals.

Comparison Items Moving Parts’ Position Tuned P-PI Control Empirical P-PI Control Improvement

Average
non-synchronization

error

y = 0.1 m 0.009786 0.019142 48.88%
y = 0.4 m 0.024692 0.031621 21.91%
y = 0.7 m 0.023873 0.032215 25.89%
y = 1.0 m 0.021586 0.029848 27.68%

Standard deviation of the
non-synchronization

error

y = 0.1 m 0.005221 0.010481 50.19%
y = 0.4 m 0.012986 0.018432 29.55%
y = 0.7 m 0.012347 0.018774 34.23%
y = 1.0 m 0.011428 0.016797 31.96%

From the two previously mentioned aspects of the simulation analysis, it can be
observed that the tuned P-PI cascade control method has a good control effect on the
position change of the moving parts. This method considers the load difference between the
X1-axis and X2-axis caused by structural characteristic changes and adjusts the parameters
of the two P-PI cascade controllers simultaneously, which can reflect the unification of the
two FDSs during motion.

5.2. Experiments

The dual-drive gantry-type machine tool (DDGMT) used for the validation is shown
in Figure 17. The crossbeam is driven by two ball screws with a 40 mm pitch, which
are directly connected to two PMSMs by elastomer coupling. The DDGMT servo system
employs a controller from the BECKHOFF company, in which the I/O module adopts the
EtherCAT bus terminal module, which can make communication faster, simpler, and more
cost-effective, and the control program was built using TwinCAT3® software [54].

To verify the effect of the tuned P-PI cascade control strategy, the moving parts
were located at different positions (i.e., y = 0.1 m, y = 0.4 m) on the crossbeam when the
crossbeam was in reciprocation motion. The feed speed of the crossbeam was set to 3000
mm/min, and the tracking error of the tool center and non-synchronization error were
observed using optical scales. The sampling frequency and time were set to 500 Hz and
8 s, respectively. The maximum error, average error, and error standard deviation were
adopted to evaluate the validity of the two methods, and their expressions are shown in
Equations (33) and (34), respectively.
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Figure 17. Control system of the DDGMT and experimental setup.

Figure 18 shows a typical experimental result. It can be seen that when the DDGMT
starts and reverses, under the condition of moving parts’ position y = 0.1 m, the peak
values of the tracking errors and the non-synchronization errors of empirical P-PI control
were 147.51 µm and 85.74 µm, respectively. The ranges of the tracking errors and non-
synchronization errors were [−43 µm, 44 µm] and [−40 µm, 39 µm], respectively, when the
system was in constant-speed operation. When the tuned P-PI control was implemented,
the peak values of the tracking error and the non-synchronization error were 83.39 µm
and 69.60 µm, respectively, in the events of starting and reversing. The ranges of the track-
ing errors and non-synchronization errors were [−30 µm, 33 µm] and [−16 µm, 16 µm],
respectively, when the system was in constant-speed operation.
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Figure 18. Comparison of experimental results of tuned P-PI control and empirical P-PI control.
(a) Tracking error and (b) non-synchronization error comparison when y = 0.1 m; (c) tracking error
and (d) non-synchronization error comparison when y = 0.4 m.

The green dashed boxes in Figure 18a,c indicate the torque output of the X1-axis
in uniform motion for y = 0.1 m and 0.4 m, respectively. The green dashed boxes in
Figure 18b,d indicate the torque difference of the X1-axis and X2-axis for y = 0.1 m and
0.4 m, respectively. As shown in Figure 18, with the tuned P-PI control, the gain of the torque
output was smaller, and the fluctuation of the torque output was reduced. Furthermore,
the difference in torque output between the two axes was smaller. The difference in torque
between the two axes is due to the difference in friction between the two FDSs and motion
non-synchronization errors. Table 8 shows the error standard deviation of the output torque
difference between the X1-axis and X2-axis under different moving part positions. It can
be seen that the tuned P-PI cascade control can effectively control the output torque of the
two axes and reduce the difference between the torques of the two motors at each moving
part position.

Table 8. Comparison of the experimental results of output torque difference.

y = 0.1 m y = 0.4 m y = 0.7 m y = 1.0 m

Empirical P-PI control 52.35 35.76 34.21 38.65
Tuned P-PI control 33.69 27.88 25.79 29.73

Improvement 35.64% 22.04% 24.60% 23.08%
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In the same way, the experimental comparison of the empirical P-PI control and tuned
P-PI control when y = 0.4 m can be obtained (shown in Figure 18c,d). The experimental
results of different positions of the moving parts are summarized in Table 9. In Table 9,
‖etr‖∞ = max

t
{|etr|} and

∥∥esy
∥∥

∞ = max
t

{∣∣esy
∣∣} represent the maximum tracking error and

maximum non-synchronization error, respectively, as an index for the transient performance
of the DDGMT [55]. According to the simulation and experimental results, it can be seen
that using the GWO algorithm to adjust the parameters of the P-PI cascade controller
can reduce the impact of the structural characteristic changes on the tool-center error
and non-synchronization error of the two FDSs, thus improving the motion accuracy.
Furthermore, compared to PSO, GWO calculates faster and requires less memory owing to
one position vector. In addition, GWO maintains only the three best solutions, whereas PSO
maintains the best solution for each particle, which limits the application of PSO according
to reference [56].

Table 9. Comparison of experimental results for different positions of the moving parts.

Moving Parts’
Position Comparison ‖etr‖∞/µm eave

tr /µm es
tr/µm

∥∥esy
∥∥

∞/µm eave
sy /µm es

sy/µm

y = 0.1 m
Empirical P-PI control 147.51 22.22 26.93 85.74 10.05 14.56

Tuned P-PI control 83.96 14.47 16.42 69.60 6.05 7.99
Improvement 43.08% 34.86% 39.01% 18.83% 39.77% 45.11%

y = 0.4 m
Empirical P-PI control 134.47 22.95 26.49 72.03 8.99 12.41

Tuned P-PI control 78.38 12.10 14.03 53.45 4.67 7.05
Improvement 41.71% 47.28% 47.05% 25.79% 46.03% 43.19%

y = 0.7 m
Empirical P-PI control 131.27 22.88 14.41 77.14 11.23 10.14

Tuned P-PI control 81.92 11.03 9.48 57.58 5.71 5.30
Improvement 37.59% 51.79% 34.21% 25.36% 49.15% 47.73%

y = 1.0 m
Empirical P-PI control 142.57 26.16 16.52 83.58 12.55 11.43

Tuned P-PI control 82.81 12.51 10.83 61.95 6.24 6.77
Improvement 41.92% 52.18% 34.44% 25.88% 50.28% 40.77%

5.3. Discussion

According to simulation and experimental results, Tables 5–9 show the control effect
of the grey-wolf-optimization-algorithm-based, tuned P-PI cascade controller. In the simu-
lation experiments, the tool-center tracking error and the two-axis non-synchronization
error, as well as the output torque difference were effectively reduced when the moving
parts were in different positions with different input signals. In addition, the reduction in
the standard deviation of the tracking error and the non-synchronization error indicates
a reduction in the error fluctuations of the DBSFDS and furthermore an increase in the
stability during operation.

In the experimental validation, compared to the empirical P-PI control method, when
the moving parts were in different positions, the tuned P-PI control method could improve
the reduction of average tracking error and standard deviation error of the tool center by
52.18% and 47.05%, respectively. For the reductions of the two-axis non-synchronization
error of average error and standard deviation error were improved by 50.28% and 47.73%,
respectively. The reduction in maximum tracking error and non-synchronization error
indicate that the transient performance of the DDGMT was also improved during motion.

On the other hand, the experimental results verified the feasibility of the PID control
method combined with the grey wolf optimization algorithm for the control of machine
tools. The problem of mismatch between machine tool state changes and PID parameters
can be solved. However, due to the limitations of the GWO algorithm such as premature
convergence, future work is needed to improve the GWO algorithm such as the application
of gaze-cues-learning-based grey wolf optimizer [39].
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6. Conclusions and Future Work

The problems with using a P-PI cascade method to control DBSFDSs are (1) the
mismatch between the dynamic performance and parameters of the P-PI cascade control
method; (2) the parameters of two P-PI cascade controllers are always the same despite
the two FDSs with different dynamic performances; and (3) it is hard to adjust two-axis
PID parameters simultaneously. To handle these shortcomings, this paper presented a
tuned P-PI cascade control for improving the accuracy of DBSFDSs, which can effectively
decrease the feeding error of the tool center and non-synchronization errors. At the
same time, this method can reduce the uneven output torque in the X1-axis and X2-axis
owing to non-synchronization errors. Some useful scientific and technical conclusions are
summarized below.

We established a flexible coupling model of DBSFDSs for tuning the parameters of
the P-PI cascade controllers. The established flexible coupling model can describe the
characteristics of two-axis coupling and reveal the mechanism of coupling two FDSs
positioning errors with the tool-center error. Using motor current information to identify
the axial stiffness of the DBSFDSs without any extra sensors is an easy and highly accurate
method to acquire dynamic stiffness. This method solves the problem of not being able to
obtain the dynamic stiffness of two axes simultaneously.

Based on the flexible coupling model, we created a tuned P-PI cascade control to
improve the motion performance of DBSFDSs. The GWO algorithm was adopted to simul-
taneously adjust the parameters of the two P-PI cascade controllers to compensate for the
characteristic variation. Tuned P-PI cascade control explicitly considers the difference in
the parameters of the P-PI cascade controller owing to different loads on the two FDSs. The
proposed control method was also compared with general tuning-based methods. Experi-
mental and simulation results verified the effectiveness and superiority of the proposed
tuned P-PI cascade controller in practical applications. The experimental results indicate
that, in comparison with the conventional P-PI method, the proposed tuned P-PI cascade
control can improve the position accuracy of the tool center to 34%. The proposed method
provides a new approach for improving the feeding accuracy of DBSFDSs for practical
industrial applications.

In future work, further improvement of the motion accuracy of the DBSFDSs will
be made by improving the GWO algorithm and, in addition, using other high-quality
metaheuristic algorithms via comparison experiments.
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