Article

Endomorphism Type of $P(3m + 1, 3)$

Rui Gu and Hailong Hou *

School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China; gurui@haust.edu.cn
* Correspondence: hailonghou@haust.edu.cn

Abstract: There are six different classes of endomorphisms for a graph. The sets of these endomorphisms always form a chain under the inclusion of sets. In order to study these different endomorphisms more systematically, Böttcher and Knauer proposed the concept of the endomorphism type of a graph in 1992. In this paper, we explore the six different classes of endomorphisms of graph $P(3m + 1, 3)$. In particular, the endomorphism type of $P(3m + 1, 3)$ is given.

Keywords: endomorphism; half-strong endomorphism; isomorphism; endomorphism type

MSC: 05C25; 20M20

1. Introduction

The endomorphism monoids of graphs are generalizations of automorphism groups of graphs. They have been studied for a long time and many interesting results concerning graphs and their endomorphism monoids have been discovered (cf. [1–5]). The main goal of this research is to develop further relations between graph theory and algebraic theory of semigroups and to apply the theory of semigroups to graph theory. The endomorphism monoids of graphs have valuable applications (cf. [6]) and are related to automata theory (cf. [7,8]). In [9], Böttcher and Knauer gave the definition of endomorphism spectrum and endomorphism type of graphs. The endomorphism spectrum of a graph is a six-tuple related to the endomorphism of a graph. The endomorphism type of a graph refers to an integer from 0 to 31. The endomorphism types of bipartite graphs with diameter 3 and girth 6 were studied by Fan in [10]. Hou, Fan and Luo in [11] explored six classes of endomorphisms of generalized polygons and endomorphism types of these graphs were given. Hou, Luo and Cheng in [12] characterized the endomorphism monoid of P_n, and the endomorphism spectrum and the endomorphism type of them were given. In this paper, we try to explore the six different classes of endomorphisms of a class of graphs $P(3m + 1, 3)$. Particularly, the endomorphism types of $P(3m + 1, 3)$ was determined.

2. Preliminary Concepts

The graphs we considered here are undirected, finite and simple. Denote by K_n the complete graph with n vertices and by K^n_n the graph obtained by deleting an edge from K_n. A clique of a graph X is the maximal complete subgraph of X. The clique number of X, denoted by $\omega(X)$, is the maximal order among the cliques of X. Let $v \in V(X)$. Set $N(v) = \{x \in V(X) | \{x, v\} \in E(X)\}$. If n and d are both positive integers such that $n \geq 2d$, the circulant complete graph $K(n, d)$ is defined as a graph with vertex set $V = Z_n$, in which $\{i, j\} \in E(K(n, d))$ if and only if $d \leq |i - j| \leq n - d$. It is not difficult to see that $K(n, 2) = C_n$ and their endomorphism monoids were explored in [2]. Denote by $P(3m + 1, 3)$ a graph obtained by adding an edge $\{1, 3m + 1\}$ to the graph $K(3m + 1, 3)$ (see Figure 1).
Lemma 2. Let \(f \in \text{End}(P(3m + 1, 3)) \). Then

1. If \(f(x_1) = f(x_2) \) for some \(x_1, x_2 \in V(P(3m + 1, 3)) \), then \(|x_1 - x_2| \in \{1, 2\} \), or \(|x_1 - x_2| = 3m - 1 \).

2. There are no \(x_1, x_2, x_3, x_4 \in V(P(3m + 1, 3)) \) such that \(f(x_1) = f(x_2) = f(x_3) = f(x_4) \).
Proof. (1) By the definition of $P(3m + 1, 3)$, $\{x_1, x_2\} \in E(P(3m + 1, 3))$ if and only if $3 \leq |x_1 - x_2| \leq 3m - 2$ or $|x_1 - x_2| = 3m$. If $f(x_1) = f(x_2)$, then $\{x_1, x_2\} \notin E(P(3m + 1, 3))$. Hence, $|x_1 - x_2| \in \{1, 2\}$, or $|x_1 - x_2| = 3m - 1$.

(2) This follows directly from (1). \qed

Lemma 3. Let $S = \{1, 4, 7, \ldots , 3m - 2, 3m + 1\}$. Then, the subgraph of $P(3m + 1, 3)$ induced by S, namely $\langle S \rangle$, is the only clique whose order is $m + 1$.

Proof. It is easy to see that the subgraph of $P(3m + 1, 3)$ induced by S is a clique of order $m + 1$. Let K be a clique of order $3m + 1$. Then, it must contain 1 and $3m + 1$. Otherwise, K is a clique of $K(3m + 1, 3)$. This is impossible since $\omega(K(3m + 1, 3)) = m$ as shown in [3]. Now, 4, 7, \ldots , $3m - 2$ are the only $m - 1$ vertices in $V(P(3m + 1, 3))$ adjacent to both 1 and $3m + 1$. Hence $K = \langle S \rangle$ and $\langle S \rangle$ is the only clique whose order is $m + 1$. \qed

Lemma 4. $P(3m + 1, 3)$ does not contain a subgraph isomorphic to K_m^{+2}.

Proof. Suppose $P(3m + 1, 3)$ contains a subgraph isomorphic to K_m^{+2}. Then, it contains more than one clique whose order is $m + 1$. This is a contraction to Lemma 3.

Note that $\langle S \rangle$ is a complete graph with order $m + 1$. We may identify $\langle S \rangle$ with K_{m+1}.

Lemma 5. Let $f \in \text{End}(P(3m + 1, 3))$. Then, $f(K_{m+1}) = K_{m+1}$.

Proof. As any endomorphism f maps a clique to a clique of the same size and K_{m+1} is the only clique of size $m + 1$ in $P(3m + 1, 3)$, $f(K_{m+1}) = K_{m+1}$. \qed

Lemma 6. Let $f \in \text{End}(P(3m + 1, 3))$. If $f(x_1) = f(x_2) = f(x_3)$ for three distinct vertices $x_1, x_2, x_3 \in V(P(3m + 1, 3))$, then x_1, x_2 and x_3 are three consecutive integers in $V(P(3m + 1, 3))$. In this case, there exists an integer $i \in [1, 3m - 1]$ such that $f(i) = f(i + 1) = f(i + 2)$.

Proof. As $\{1, 3m + 1\} \in E(P(3m + 1, 3))$, $\{1, 3m + 1\} \notin \{x_1, x_2, x_3\}$. Assume $1 \in \{x_1, x_2, x_3\}$. In the following, we prove that $\{x_1, x_2, x_3\} = \{1, 2, 3\}$.

Firstly, $3m \notin \{x_1, x_2, x_3\}$. Otherwise, we have $3m \in \{x_1, x_2, x_3\}$ and $f(3m) = f(1)$. Let $x_3 = (x_1, x_2, x_3) \setminus \{1, 3m\}$. As $f(x_1) = f(1)$ and $f(x_2) = f(3m)$, $\{x_1, x_2\} \notin E(P(3m + 1, 3))$ and $\{x_1, x_2, 3m\} \notin E(P(3m + 1, 3))$. Denote $A = V(P(3m + 1, 3)) \setminus N(1)$ and $B = V(P(3m + 1, 3)) \setminus N(3m)$. Clearly, $x_1 \in A \cap B$. It is easy to see that $A = \{3m - 2, 3m - 3, 3m - 4, \ldots , 1\}$ and $B = \{3m - 2, 3m - 3, 3m - 4, \ldots , 1\}$. Since $m \geq 2$ is an integer, $A \setminus B = \emptyset$. This is a contradiction. Denote by $\{x_5, x_6\} = \{x_1, x_2, x_3\} \setminus \{1\}$. Then, $x_5 \in A$ and $x_6 \in A$. Note that $3m \notin \{x_1, x_2, x_3\}$. Then, $\{x_5, x_1\} = \{2, 3\}$. Therefore, $\{x_1, x_2, x_3\} = \{1, 2, 3\}$.

Similarly, if $3m + 1 \in \{x_1, x_2, x_3\}$, then we can show that $\{x_1, x_2, x_3\} = \{3m - 1, 3m, 3m + 1\}$.

If $1 \notin \{x_1, x_2, x_3\}$ and $3m + 1 \in \{x_1, x_2, x_3\}$, then $2 \leq x_i \leq 3m$ for any $x_i \in \{x_1, x_2, x_3\}$. Suppose that x_1, x_2, x_3 are not three consecutive integers. Then, there exists $x_s, x_t \in \{x_1, x_2, x_3\}$ such that $|x_s - x_t| \geq 3$ it contradicts to Lemma 2(1).

Therefore, x_1, x_2 and x_3 are three consecutive integers in $V(P(3m + 1, 3))$. Let $i = \min \{x_1, x_2, x_3\}$. Then, $f(i) = f(i + 1) = f(i + 2)$, where $1 \leq i \leq 3m - 1$. \qed

Lemma 7. $\text{End}(P(7, 3)) = h\text{End}(P(7, 3))$.

Proof. Let $f \in \text{End}(P(7, 3))$. By Lemma 1, we need to show that I_f is an induced subgraph of $P(7, 3)$.

Since $P(7, 3)$ is connected, I_f is connected. Note that $P(7, 3)$ has an only clique isomorphic to K_3. It is induced by $S = \{1, 4, 7\}$. Since any endomorphism f maps a clique to a clique of the same size, $S \subseteq I_f$. So $3 \leq |I_f| \leq 7$. There are 5 cases.

Case 1. Assume that $|I_f| = 3$. Clearly, I_f is an induced subgraph of $P(7, 3)$.
Case 2. Assume that $|I_f| = 4$. Then, $2, 6 \notin V(I_f)$ since I_f is connected. Thus $V(I_f) = V(K_3) \cup \{3\}$ or $V(I_f) = V(K_3) \cup \{5\}$. Note that 3 is only adjacent to 7 in $V(I_f)$ and 5 is only adjacent to 1 in $V(I_f)$. Since I_f is connected, I_f is an induced subgraph of $P(7, 3)$.

Case 3. Assume that $|I_f| = 5$. If $6 \in V(I_f)$, then $3 \in V(I_f)$ (Otherwise, I_f is not connected). Thus, $V(I_f) = \{3, 6\} \cup V(K_3)$. Similarly, if $2 \in V(I_f)$, then $5 \in V(I_f)$. Thus, $V(I_f) = \{2, 5\} \cup V(K_3)$. If $2, 6 \notin V(I_f)$, then $V(I_f) = \{3, 5\} \cup V(K_3)$. Since I_f is connected, I_f is an induced subgraph of $P(7, 3)$.

Case 4. Assume that $|I_f| = 6$. Then, $V(I_f)$ is one of $S \cup \{2, 3, 6\}$, $S \cup \{2, 3, 5\}$, $S \cup \{3, 5, 6\}$ and $S \cup \{2, 5, 6\}$. In above cases, I_f is an induced subgraph of $P(3m + 1, 3)$ since I_f is connected.

Case 5. Assume that $|I_f| = 7$, then $f \in Aut(P(3m + 1, 3))$. Hence, I_f is an induced subgraph of $P(7, 3)$.

Lemma 8. $End(P(3m + 1, 3)) \neq hEnd(P(3m + 1, 3))$ for any $m \geq 3$.

Proof. Let

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots & 3m-1 & 3m & 3m+1 \\ 1 & 1 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots & 3m+1 & 3m+1 \\ \end{pmatrix}$$

It is easy to check that $f \in End(P(3m + 1, 3))$. Note that $3, 6 \in V(I_f)$, $\{3, 6\} \in E(P(3m + 1, 3))$, $f^{-1}(3) = \{3\}$, $f^{-1}(6) = \{5\}$, but $\{3, 5\} \notin E(P(3m + 1, 3))$. Thus, $f \notin hEnd(P(3m + 1, 3))$. Hence $End(P(3m + 1, 3)) \neq hEnd(P(3m + 1, 3))$.

Lemma 9. $hEnd(P(3m + 1, 3)) \neq lEnd(P(3m + 1, 3))$ for any $m \geq 2$.

Proof. Let

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots & 3m-2 & 3m-1 & 3m & 3m+1 \\ 1 & 1 & 1 & 4 & 4 & 4 & 7 & 7 & 7 & \cdots & 3m-2 & 3m-2 & 3m-2 & 3m+1 \\ \end{pmatrix}$$

It is not difficult to check that $f \in hEnd(P(3m + 1, 3))$. Note that $\{3m + 1, 1\} \in E(I_f)$, $f^{-1}(3m + 1) = \{3m + 1\}$, $f^{-1}(1) = \{1, 2, 3\}$ and the vertex 2 is isolated. Thus, $f \notin lEnd(P(3m + 1, 3))$. Hence $hEnd(P(3m + 1, 3)) \neq lEnd(P(3m + 1, 3))$.

Lemma 10. $lEnd(P(3m + 1, 3)) \neq qEnd(P(3m + 1, 3))$ for any $m \geq 2$.

Proof. Let

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots & 3m-3 & 3m-2 & 3m-1 & 3m & 3m+1 \\ 1 & 1 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots & 3m-3 & 3m-2 & 3m-1 & 3m+1 \\ \end{pmatrix}$$

It is not difficult to check that $f \in lEnd(P(3m + 1, 3))$. Note that $\{3m + 1, 1\} \in E(I_f)$, $f^{-1}(3m + 1) = \{3m, 3m + 1\}$, $f^{-1}(1) = \{1, 2\}$. Thus, there is no vertex $x \in f^{-1}(1)$ such that x is adjacent to every vertex of $f^{-1}(3m + 1)$, and so $f \notin qEnd(P(3m + 1, 3))$. Hence, $lEnd(P(3m + 1, 3)) \neq qEnd(P(3m + 1, 3))$.

Lemma 11. $qEnd(P(3m + 1, 3)) = Aut(P(3m + 1, 3))$ for any $m \geq 2$.

Proof. Let $f \in qEnd(P(3m + 1, 3))$. Firstly, we show that $[1]_{\rho_f} = \{1\}$. Otherwise, there exists $i \in V(P(3m + 1, 3)) \setminus \{1\}$ such that $f(1) = f(i)$. Thus $\{1, i\} \notin E(P(3m + 1, 3))$. Hence, $i \in \{2, 3, 3m\}$.

If $i = 3m$, then $f(1) = f(3m)$. Since $\{3m + 1\} \in E(P(3m + 1, 3))$, $\{f(3m + 1), f(1)\} \in E(P(3m + 1, 3))$. Note that f is quasi-strong. There exists $y \in [3m + 1]_{\rho_f}$ such that $\{3m, y\} \in E(P(3m + 1, 3))$ and $\{1, y\} \in E(P(3m + 1, 3))$. Note that $[3m + 1]_{\rho_f} \subseteq$
\{3m - 1, 3m, 3m + 1, 2\}. This is a contradiction. Therefore, \(f(1) \neq f(3m)\). By symmetry of \(P(3m + 1, 3), f(2) \neq f(3m + 1)\).

If \(i = 3\), then \(f(1) = f(3)\). Since \(\{1, 4\} \in E(P(3m + 1, 3)), \{f(1), f(4)\} \in E(P(3m + 1, 3))\). Note that \(f\) is quasi-strong. There exists \(x \in [4]_\rho\) such that \(\{1, x\} \in E(P(3m + 1, 3))\) and \(\{3, x\} \in E(P(3m + 1, 3))\). Note that \([4]_\rho \subseteq \{2, 3, 4, 5, 6\}\). Then, \(x = 6\) and \(f(4) = f(6)\). Similarly, \(f(7) = f(9), \cdots, f(3m - 2) = f(3m)\). Since \(\{3m + 1, 3m - 2\} \in E(P(3m + 1, 3)), \{f(3m + 1), f(3m - 2)\} \in E(P(3m + 1, 3))\). Then, there exists \(y \in [3m + 1]_\rho\) such that \(\{3m - 2, y\} \in E(P(3m + 1, 3))\) and \(\{3m, y\} \in E(P(3m + 1, 3))\). Note that \([3m + 1]_\rho \subseteq \{3m - 1, 3m, 3m + 1, 2\}\). Thus, \(y = 2\). Hence \(f(2) = f(3m + 1)\). This is a contradiction. Therefore, \(f(1) \neq f(3)\). By symmetry of \(P(3m + 1, 3), f(3m - 1) \neq f(3m + 1)\).

If \(i = 2\), then \(f(1) = f(2)\). Since \(\{3m + 1, 1\} \in E(P(3m + 1, 3)), \{f(3m + 1), f(1)\} \in E(P(3m + 1, 3))\). Note that \(f\) is quasi-strong. There exists \(x \in [3m + 1]_\rho\) such that \(\{1, x\} \in E(P(3m + 1, 3))\) and \(\{2, x\} \in E(P(3m + 1, 3))\). Note that \([3m + 1]_\rho \subseteq \{3m - 1, 3m, 3m + 1, 2\}\). Then, \(x = 3m - 1\) and \(f(3m + 1) = f(3m - 1)\). This is a contradiction. Therefore, \(f(1) \neq f(2)\).

Now, we have \([1]_\rho = \{1\}\). By symmetry of \(P(3m + 1, 3), [3m + 1]_\rho = \{3m + 1\}\).

Secondly, we show that \([2]_\rho = \{2\}\). Otherwise, there exists \(j \in V(P(3m + 1, 3)) \setminus \{2\}\) such that \(f(2) = f(j)\). Thus, \(j \in \{1, 3, 4, 3m + 1\}\). Note that \([1]_\rho = \{1\}\) and \([3m + 1]_\rho = \{3m + 1\}\). Then, \(j \in \{3, 4\}\). Since \(\{3m + 1, j\} \in E(P(3m + 1, 3)), \{f(3m + 1), f(j)\} \in E(P(3m + 1, 3))\). Note that \(f\) is quasi-strong. There exists \(x \in [3m + 1]_\rho\) such that \(\{2, x\} \in E(P(3m + 1, 3))\) and \(\{j, x\} \in E(P(3m + 1, 3))\). Note that \([3m + 1]_\rho = \{3m + 1\}\) and \([3m + 1, 2] \notin E(P(3m + 1, 3))\). This is a contradiction.

Lastly, we show that \([3]_\rho = \{3\}\). Otherwise, there exists \(k \in V(P(3m + 1, 3)) \setminus \{3\}\) such that \(f(3) = f(k)\). Clearly, \(k \in \{1, 2, 4, 5\}\). Note that \([1]_\rho = \{1\}\) and \([2]_\rho = \{2\}\). Then, \(k \in \{4, 5\}\). Since \(\{1, k\} \in E(P(3m + 1, 3)), \{f(1), f(k)\} \in E(P(3m + 1, 3))\). Note that \(f\) is quasi-strong. There exists \(x \in [1]_\rho\) such that \(\{3, x\} \in E(P(3m + 1, 3))\) and \(\{k, x\} \in E(P(3m + 1, 3))\). Note that \([1]_\rho = \{1\}\) and \([3]_\rho \notin E(P(3m + 1, 3))\). This is a contradiction.

A similar argument will show that \([i]_\rho = \{i\}\) for any \(i = 5, 6, \cdots, 3m - 1, 3m\). Thus, \(f \in Aut(P(3m + 1, 3))\). Hence, \(\text{qEnd}(P(3m + 1, 3)) = Aut(P(3m + 1, 3))\).

Theorem 1. (1) If \(m = 2\), then \(\text{End}(P(3m + 1, 3)) = \text{hEnd}(P(3m + 1, 3)) \neq \text{lEnd}(P(3m + 1, 3)) \neq \text{qEnd}(P(3m + 1, 3)) \neq \text{sEnd}(P(3m + 1, 3)) = Aut(P(3m + 1, 3))\).

(2) If \(m \geq 3\), then \(\text{End}(P(3m + 1, 3)) \neq \text{hEnd}(P(3m + 1, 3)) \neq \text{lEnd}(P(3m + 1, 3)) \neq \text{qEnd}(P(3m + 1, 3)) \neq \text{sEnd}(P(3m + 1, 3)) = Aut(P(3m + 1, 3))\).

Proof. This follows directly from Lemmas 7–11.

Theorem 2. (1) If \(m = 2\), then \(\text{End}(P(3m + 1, 3)) = 6\).

(2) If \(m \geq 3\), then \(\text{End}(P(3m + 1, 3)) = 7\).

Proof. This follows directly from Theorem 1.

Author Contributions: Created and conceptualized the ideas, R.G. and H.H.; writing—original draft preparation, H.H.; writing—review and editing, R.G. and H.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Natural Science Foundation of China (No. 11301151).

Data Availability Statement: Not available.

Conflicts of Interest: The authors declare no conflict of interest.
References

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.