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Abstract: An important development in geometric algebra in recent years is the new system known
as point geometry, which treats points as direct objects of operations and considerably simplifies
the process of geometric reasoning. In this paper, we provide a complete formal description of
the point geometry theory architecture and give a rigorous and reliable formal verification of the
point geometry theory based on the theorem prover Coq. Simultaneously, a series of tactics are also
designed to assist in the proof of geometric propositions. Based on the theoretical architecture and
proof tactics, a universal and scalable interactive point geometry machine proof system, PointGeo,
is built. In this system, any arbitrary point-geometry-solvable geometric statement may be proven,
along with readable information about the solution’s procedure. Additionally, users may augment
the rule base by adding trustworthy rules as needed for certain issues. The implementation of the
system expands the library of Coq resources on geometric algebra, which will become a significant
research foundation for the fields of geometric algebra, computer science, mathematics education,
and other related fields.

Keywords: point geometry; formal method; interact theorem proving; Coq; machine proof

MSC: 68T99

1. Introduction

The proof of geometric theorems is one of mathematics’ fundamental and most chal-
lenging tasks. In recent years, reasoning and proof have gradually moved away from the
traditional paper-and-pencil model. The higher thinking activities of the human brain can
be mechanized, and machines can perform tedious and complex verification. Machine
proofs of geometric theorems have also played an important role in mathematical research
and intelligence education, with a wide range of variations and applications. Early work
on machine proofs of geometric theorems was represented by Wu’s method [1] as an al-
gebraic proof method. Algebraic methods other than Wu’s method include the Gröbner
basis method [2] and the numerical parallelism method [3], etc. In order to support au-
tomation, these methods often have different degrees of limitations, and the polynomial
transformations that transform the reasoning of geometric problems into algebra [4] also
lose the geometric meaning of the proof process, which greatly reduces the readability.
Subsequently, database-based search methods have also made great progress and search
methods can produce traditional mathematical proofs and discover new theorems, and
these are considered to be the first choice for intelligent educational software develop-
ment [5]. However, the search method is not a complete method and still suffers from
difficulties in composition and a lack of auxiliary quantities in reasoning, which represent
major limitations.

For the proof of geometric theorems, the number of terms that need to be expressed
using coordinate-based algebraic methods is often large, so there are various problems,
such as high computational complexity and difficulty in understanding complex geometric
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propositions. The geometric algebraic method is a method that can directly calculate geo-
metric objects (such as points, lines, etc.) as terms, which has the characteristics of a simple
expression and strong geometric meaning, so the method of geometric theorem proof based
on geometric algebraic principles can overcome the above difficulties to a certain extent. In
particular, the advanced invariant methods of geometric algebraic methods significantly
reduce the number of terms that need to be used using coordinate-based algebraic methods,
but strong expertise is also required to read the proofs [6]. In addition, the combination
of physics and mathematics, prime geometry, has obvious geometric significance and
advances the development of geometric algebra. In 2018, Zhang proposed an intuitive new
geometric algebraic system called “point geometry”, which has a simple theoretical system,
easy-to-understand laws and properties, and geometric algebraic methods such as prime
geometry, the coordinate method, and the vector method [7,8]. For example, the proof of
the triangle median theorem can be completed with only one line of proof, as in Example 1.

Example 1 (The triangle median theorem). As shown in Figure 1, the three midlines AM, BN, CP
of triangle ABC intersect to a point. To prove this, we assume point A is the origin O, and we let
point G be the intersection of midline BN and midline CP. Firstly, given that B = 2P and C = 2N,
it follows that 2M = B + C = 2P + C = 2N + B = 3G. Then, we can conclude that point G is
on the line AM and that 3AG = 2AM.

A

N

C

G

P

B M

Figure 1. The geometric diagram of the triangle median theorem.

Theorem proving is a powerful technique in computer science and mathematics that
expresses and verifies systems in a machine-readable form, providing significant advan-
tages in terms of correctness and precision, particularly for complex problems. Theorem
proving can reduce errors and tedious reasoning processes and provides mathematicians
and computer scientists with a more intuitive and reliable means of verification, playing a
crucial role in computer science and mathematics [9–12]. However, for sufficiently complex
problems, complete automation is often challenging, and for complicated proof procedures,
relying solely on pen and paper is no longer reliable. Therefore, interactive theorem proving
has become a more reliable and efficient means of proof. There are many advanced interac-
tive theorem provers available, such as Coq [13,14], Isabelle [15], HOL [16], etc. Among
them, Coq, based on the calculus of inductive constructions, is a powerful theorem prover
with strong expressive power, covering multiple domains, including program verification
and mathematical theorem proving. It provides an efficient, reliable, and automated proof
environment. In the field of computer science, Coq has been widely used for program
verification, language design, formal semantics, security protocol analysis, program repair,
and many other applications, as documented in various research studies [17–21]. Coq is
also widely used in mathematics to formalize [22,23] and verify theorems and lemmas. A
comparative study by Narboux et al. [24] in 2022 explored traditional pencil-and-paper
proofs versus formal proof methods in high school geometry, revealing potential challenges
in formalization due to different formulas and proofs. Fortunately, however, recent research
has shown that Coq’s advantages in terms of verifiability and interactivity have made it
widely adopted for the verification of mathematical theorems. Notably, Boldo et al. [25]
fully formalized the Beppo Levi theorem and Fatou’s lemma using the Coq proof assistant
in 2021. Additionally, Fu et al. [26] proposed a Coq-based formalization of infinitesimal cal-
culus, utilizing it to formally verify important results such as the Newton–Leibniz formula
and Taylor’s theorem. Coq has also been employed to formalize various other mathemat-



Mathematics 2023, 11, 2757 3 of 16

ical theorems, including the topology space relation model [27], Tonelli’s theorem [28],
and so on. In the field of automated theorem proving for geometry, the geometry library
of Coq provides a rich set of geometric concepts and theorems, covering areas such as
Euclidean geometry, non-Euclidean geometry, and vector spaces, offering strong support
for the automated proving of geometric theorems, as well as new possibilities for teaching
and research in geometry. For instance, Julien Narboux et al. used Coq to implement the
process of the area method and proposed GeoCoq, a formalized geometry theory based
on the Tarski axiom system [29–32]. Furthermore, Pedro Quaresma et al. proposed a
new readability criterion for formal proofs produced by automated theorem provers for
geometry, inspired by their modernization of Lemoine’s Geometrography, to enhance the
readability of automated proofs in geometry [33]. These works have not only promoted the
development of geometry but also demonstrated the importance of interactive proofs in
automated theorem proving for geometry.

Our work presents a formal description and verification of a new algebraic system
for point geometry using the Coq theorem prover. The result is a reliable, versatile, and
extensible machine proof system for point geometry called PointGeo. The paper is divided
into three main parts. The first part provides the formalization and verification of the
knowledge base of point geometry, allowing geometric theorems, properties, and problems
to be expressed in the Coq language and verified by the Coq kernel to ensure the validity of
every step (Sections 2 and 3). The second part describes the design of the automatic proof
tactics in the system. The third part discusses the overall structure and proof methods of
PointGeo (Section 4).

2. The Formal Description of Definitions

The theory of point geometry provides a more straightforward notation and advanced
logic that permits direct operations on geometric points as objects. This makes it easier
to solve geometric issues and provides richer geometric meaning. However, due to the
complexity of geometry, it is challenging to develop a complete algorithm to solve all
geometry problems automatically. For this reason, it is crucial to develop an interactive
and scalable system to solve geometric problems. In this section, we will first introduce the
formal description of definitions in point geometry that the Coq kernel can understand.

2.1. Type and Proof

In Coq, every item has a type, and each type is also an item. There are many different
types—for example, atomic types such as the natural number type nat, the integer type Z,
and the real number type R, and arrow types such as A → B. An arrow type can also be
expressed as the type of a function. If the type of a function f is A → B, i.e., f: A → B, then
f maps any variable of type A to a value of type B. In addition, the type operator can also
construct a binary group (a, b) of type A × B, where a is of type A and b is of type B.

The description of a geometric problem includes the hypotheses and the conclu-
sion, and its initial proof state is formed as Ep, Γ ⊢? g. Ep denotes the point geometry
theoretical environment of PointGeo. Γ is the context, a sequence of statements such
as [x1 : T1; x2 : T2; · · · ; xn : Tn], which generally includes all hypotheses of the geometric
proposition. g denotes the conclusion. The proof of the geometric problem needs to be
advanced by applying the tactics interactively, and the process of proof may generate
multiple subgoals gi. The proof is completed if all the goals are proven, i.e., gi = [].

In fact, CIC is a higher-order typed lambda calculus with natural support for inductive
data types based on the Curry–Howard isomorphism, which ties lambda-term-type infer-
ence to natural deductive proofs in complete intuitionistic predicate logic. In other words,
judgment is type reasoning. Specifically, intuitionism holds that a logical judgment is valid
if and only if the constructing subject can verify it. This corresponds to what is represented
in Coq: if t exists such that E, Γ ⊢ t : g, then t is said to be a proof of g, where t is a lambda
term of type g . In other words, the proof of g is to build a lambda item of type g. This is
consistent with geometric algebra concepts such as Wu’s method and the identity-based
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method for point geometry. The main idea is that if the conclusion polynomial can be
constructed from the conditional polynomial, then the conclusion is proven. However,
the identity-based method is incomplete for more sophisticated constraints, such as those
of higher order or with quantifiers. Fortunately, PointGeo’s platform, Coq, supports de-
pendent types, which means that there is sufficient descriptive power here to describe
geometric problems or rules and implement proofs of these problems.

2.2. Basic Definition of Point Geometry and Its Formal Description

To precisely describe points in point geometry theory, they are uniquely specified here
by pairs of real number information regarding the point’s position,

Point ∈ Set , R × R R_R_to_Point : R → R → Point (r1, r2) : Point,

where Point is the type of point; Set is the type of Point. R_R_to_point is a function
that maps pairs of real numbers to points. “( _ , _) ” is the Coq notion of R_R_to_point,
i.e., if r1, r2 belong to R, then (r1, r2) is a point. Specifically, the origin O is described
as R_R_to_point(0, 0), i.e., O = (0, 0). In addition, functions Px and Py are designed to
extract the first and second components of the point, respectively, and they indicate that
if P = (r1, r2), then Px(P) = r1, Py(P) = r2; in other words, for any point P, we have
P = (Px(P), Py(P)).

The basic operations of point geometry depend on the choice of the origin. The
relationship between the coordinates of the points relative to the origin represents the
relationship between the points. The definition of addition and scalar multiplication in
point geometry is as follows.

Definition 1 (Addition of points). If A = (xA, yA), B = (xB, yB), and C = (xA + xB, xA +
yB), then the addition of A and B is C, which is denoted by A + B = C.

Definition 2 (Scalar multiplication). If A = (x, y), B = (λx, λy), then the scalar multiplication
of A is denoted by B = λA.

Corresponding to the addition and scalar multiplication of points in PointGeo are the
binary functions Pplus and Pmults:

Pplus((p1 : Point), (p2 : Point)) , ((Px(p1) + Px(p2)), (Py(p1) + Py(p2)))

Pmults(λ : R), (p : Point) , ((λ ∗ Px(p)), (λ ∗ Py(p)))

Pplus and Pmults are defined by applying the addition and multiplication operations,
respectively, to the position coordinates of the point, Px and Py, through the R_R_to_Point
function. In the scope of points, the function symbols for the addition and scalar multiplica-
tion of points are ‘+’ and ‘∗’, respectively, written ‘p1 + p2’ and ‘λ ∗ p’, where p, p1, and p2
are of type Point and λ is of type R. The addition and scalar multiplication of points inherit
the relevant laws of the real numbers, such as the law of union and distribution, and these
laws have been verified in Coq. The source code of basic rules is given in the file Basics.v
(the components of this work will be discussed in Section 5). In addition, the source code
for this work can be obtained from https://github.com/RanranL/Pointgeo (accessed on 6
May 2023).

Additionally, the monomial function Pneg, defined as ‘If P = (x, y), then
Pneg(P) = (−x,−y)’, represents the point’s negative form. Based on the Pneg, the subtrac-
tion of points is defined as follows:

Pminus(P1, P2) , Pplus((P1), Pneg(P2))

The function symbol for Pminus is ‘−’, written ‘p1 − p2’. For instance, for points p1
and p2, the expression ‘p1 − p2’ can be considered equivalent to ‘p1 + (−p2)’. In vector

https://github.com/RanranL/Pointgeo
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geometry,
−→
AB is equivalent to

−→
OB −−→

OA, where O is the origin,
−→
OB is equivalent to B in

point geometry, and
−→
OA is equal to point A in point geometry, so vector

−→
AB is equivalent

to ‘B − A’ in point geometry. It follows that vector geometry and point geometry are
interconvertible.

The outer product of the points is also defined by subtraction.

Definition 3 (Outer product). The outer product of the two points of the convention is AB = B − A.

The functions Vec and OutP represent vectors and two-point outer products, respec-
tively, of type ‘Point → Point → Point’:

Vec(P1, P2) , Pminus(P2, P1) OutP(P1, P2) , Pminus(P2, P1)

The outer product of points also satisfies the law of union and distribution, and its
function symbol is ‘×’, written ‘p1 × p2’. Furthermore, it is clear from the definition that
the outer product of two points and the subtraction of points, vectors, and points are
equivalent:

Pminus(P1, P2) ⇔ Vec(P2, P1) ⇔ Out(P2, P1)

Definition 4 (Outer product of three points). If A = (xA, yA), B = (xB, yB), C = (xC, yC),
then ABC = xAyB + xByC + xCyA − xAyC − xByA − xCyB.

The outer product of three points is also the area of the triangle formed by the three
points with the sign, and its intuitive geometric meaning is as follows: ‘In the right-handed
coordinate system, if the triangle vertices A, B, and C are in anti-clockwise order, then
ABC > 0; otherwise, ABC < 0. If A, B, and C are collinear , then ABC = 0’. The outer
product of three points is expressed using the ternary function ‘s’:

s(p1 : Point)(p2 : Point)(p3 : Point) ∈ R , Px(p1) ∗ Py(p2) + Px(p2) ∗ Py(p3)+

Px(p3) ∗ Py(p1)− Px(p1) ∗ Py(p3)− Px(p2) ∗ Py(p1)− Px(p3) ∗ Py(p2)

For addition in point geometry, not only the scalar multiplication and the outer product
but also the inner product is an operation that satisfies the distributive law, which is defined
as follows.

Definition 5 (Scalar product). If A = (x, y), B = (u, v) then A · B = ux + vy.

The binary function Scalarprod represents the scalar product of two points; the func-
tion symbol is ‘·’.

Scalarprod((p1 : Point), (p2 : Point )) ∈ R , Px(p1) ∗ Px(p2) + Py(p1) ∗ Py(p2)

For a given point P, the square of P is defined using the scalar product of the point with
itself, denoted as Scalarprod(P, P). We represent the square of point P as Pnorm_sqr(P),
which is later expressed as

√
P2 for simplicity of description; Pnorm(P) means, i.e., |P|;

distance(P1, P2) means the length of the line segment P1P2. The point square, the modulus,
and the length of the line segment at two points are defined formally as

Pnorm_sqr(P) , Scalarprod(P, P)

Pnorm(P) , Sqrt(Pnorm_sqr(P))

distance(P1, P2) , Sqrt(Pnorm_sqr(Pminus(P2, P1)))

One innovative approach to solving difficulties with angles is to multiply points with
complex numbers; the definition of the multiplication of complex and point is as follows.
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Definition 6 (Multiplication of complex and point). If A = (x, y) in the Cartesian coordinate
system and the complex α = u + vi, then define αA = uA + i(uA).

For a complex number, z = u + iv, where ‘+i’ is a binary function of type R → R → C.
Similar to Px and Py, there is Cre(z) = u and Cim(z) = v. CPmult denotes the complex
number multiplied by a point:

CPmult(z, p) , ((Cre(z) ∗ Px(p)− Cim(z) ∗ Px(y)), (Cre(z) ∗ Py(p) + Cim(z) ∗ Px(y)))

3. Formal Description and Proof of Geometric Propositions

This section will give a brief introduction to the proof model. We start by describing
the geometric construction, a set of geometric predicates used to describe a geometric
proposition.We then continue with a group of rules for proofs and finally show how to
complete a proof for a geometric proposition.

3.1. Geometric Predicates

Geometric objects come first, followed by the relationships between them. Geometric
predicates are intuitive predicates used to express static relations. Complex geometries
are often constructed from simple geometries, and in order to describe geometric propo-
sitions, this subsection describes the construction of the main geometric predicates in
point geometry.

Starting from the collinearity of three points, if there exists a real number λ such that−−→
P1P2 = λ

−−→
P1P3, then, in vector geometry, it can be concluded that the three points P1, P2,

and P3 are collinear, so the formal representation of vector collinearity is Vcollin.

Predicate 1 (Vcollin). ∃λ : R, Vec(P1, P2) = λ ∗ Vec(P1, P3).

Since Vec(P1, P2) is equivalent to Pminus(P2, P1), the collinear formalism of three
points in point geometry is described as collin.

Predicate 2 (Collin). ∃λ : R, P2 − P1 = λ ∗ (P3 − P1).

Note that if P1 is the origin O, then clearly O, P2, and P3 are collinear if and only if
there exists a λ with P2 = λ ∗ P3.

If two lines AB and CD intersect, as long as there is the equation u + v = r + s such
that uP1 + vP2 = rP3 + sP4, there is PF, PG satisfying (u + v)PF = uP1 + vP2 = rP3 + sP4 =
(r + s)PG. In fact, it is easy to see from the above linear combination of two points that as
long as u + v = r + s 6= 0, the points PF and PG are on the lines P1P2 and P3P4, which also
implies PF = PG. Therefore, PF(PG) is the intersection point of P1P2 and P3P4. In conclusion,
the information of the intersection point PF of two lines can be derived from the linear
combination of four points, such as ‘PF = (u/(u + v))P1 + (v/(u + v))P2’. Xcollin is a
geometric predicate describing the intersection point of two lines.

Predicate 3 (Xcollin). u + v = r + s → u ∗ P1 + v ∗ P2 = r ∗ P3 + s ∗ P4 → (r + s) ∗ PX =
r ∗ P3 + s ∗ P4.

Consider the geometric meaning of the point geometry equation P1 + P2 = λP3 when
λ = 1, 2, 3 as P1OP2P3 as a parallelogram, P3 as the midpoint of P1P2, and P3 as the center
of gravity of triangle OP1P2, respectively; then, the parallelogram (Parall), the midpoint
(Midpoint), and the center of gravity of triangle (Ptr_median) can be constructed.

Predicate 4 (Parall). P1 + P3 = P2 + P4.

Predicate 5 (Midpoint). P1 + P2 = 2 ∗ P3.
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Predicate 6 (Tra_median). 3 ∗ PG = P1 + P2 + P3.

Now, we can specify the geometric proposition that we wish to verify using geometric
predicates. Geometric figures and propositions contain a great deal of information, so it is
only necessary to add the relevant information to the context. The relevant hypothesis and
conclusion in Example 1 are shown as follows.

• Hypothesis: Point P is midpoint of segment AB.
• Hypothesis: Point N is the midpoint of segment AC.
• Hypothesis: Point M is the midpoint of segment BC.
• Hypothesis: BN and CP intersect at point G.
• Conclusion: Three points, A, B, and C, are collinear.

The conclusion in Example 1 is equivalent to proving that the points A, G, and M are
collinear , i.e., they satisfy the ‘collin (A, G, M)’ relation. The description of Example 1 is
as follows.

Example First_exam : ∀ A B C M N P G : Point,

A = O → Midpoint P A B → Midpoint N A C → Midpoint M B C → Xcollin N

B P C G → collin A G M.

3.2. Rules and Proof Mode

Thus far, we have seen how to describe geometric propositions in Coq based on the
definition of point geometry and geometric predicates. However, this is insufficient to
prove a geometric proposition. Additional reliable proof rules and proof tactics are required.
We will show how to prove a geometric proposition after giving some typical rules.

3.2.1. Rules

Let us first consider the rule Peq for determining the equality of two points.

Rule 1 (Peq). ∀P1 P2 : Point , P1 = P2 ↔ Px(P1) = Px(P2) ∧ Py(P1) = Py(P2).

The Peq rule, which expands the equality in point geometry to the equality of the
corresponding real coordinates, is used to verify the validity of fundamental rules. Take
the verification of the exchange law of the addition of points (Rule 2) as an example.

Rule 2 (Padd_comm). ∀P1P2 : Point , P1 + P2 = P2 + P1.

Proof of Rule 2. According to the rule Peq, proving that the equation P1 + P2 = P2 + P1 holds
is equivalent to proving that Px(P1 + P2) = Px(P2 + P1) ∧ Py(P1 + P2) = Py(P2 + P1).

Furthermore, the origin in point geometry is a rather particular point, and there are
several rules about the origin that are easily verified by Peq’s rule.

Pneg_0 : −O = O Pmult_0 : n ∗ O = O Pplus_0_l : O + P = P

Pplus_0_r : P + O = P Pminus_0_l : O − P = −P Pminus_0_r : P − O = P

With the basic rules of point geometry as a basis, some more complex geometric
propositions can be proven directly based on points, without expanding the coordinates
of the points. For example, the co-side theorem, expressed by the product of three points,
bridges point geometry and the area method by converting the ratio of triangle areas
into the ratio of sides. A variation of the co-side theorem is offered here to simplify the
demonstration of the pertinent geometric propositions.

Rule 3 (CommonEdg). If F is the intersection of lines AB and CD and F 6= B, then we have
|ACD|
|BCD| =

|AF|
|BF| .
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Proof of Rule 3. If F is the intersection of lines AB and CD, and F 6= B, then for all u, v,
r, s, as long as u + v = r + s, we have (u + v)F = uA + vB = rC + sD. We also have the
equation uACD + vBCD = 0 when we use CD as the outer product. Furthermore, since
(u + v)F = uA + vB, it follows that u(F − A) + v(F − B) = 0. Therefore, we can conclude
that |ACD|

|BCD| =
|AF|
|BF| based on the previous deductions.

Other laws, such as the laws of addition, scalar multiplication, outer products, the com-
plex multiplication of points, and the logical relationships between geometric predicates, are
already established in Coq. Moreover, the user may add rules as needed, and when the rules
are verified in point geometry theory, they can be used to prove more geometric propositions.

3.2.2. Proof Mode

This part aims to elaborate on a proof mode for a geometric proposition, which can be
accomplished by interacting with tactics. The reliability of this proof process is guaranteed
by Coq, an interactive proof assistant tool whose kernel ensures the correctness of tactics.
To assist with the development of proofs, Coq offers a robust decision process and a
library of automated proof tactics. Several proof tactics commonly used in interactive proof
development are listed below.

• intros: Adds assumptions to the current context.
• apply H: Applies the hypothesis or rule H.
• rewrite: A tactic for replacement.
• unfold de f : Used to expand the definition.
• destruct: For discussion by the situation.

Now, consider the proof of Example 1; the state before the start of the proof is shown below.

1 goal

---------------------------------------------------------------------------
∀ A B N C P G M : Point, A = O → Midpoint P A B → Midpoint N A C →

Midpoint M B C → Xcollin N B P C G → collin A G M.

The area above the dashed line represents the context Γ, where Γ = [] at this point, and
the area below the dashed line represents the geometric proposition to be proven. Firstly,
with the exception of the conclusion ‘collin A G M’, which remains to be proven, all other
statements will be introduced into the context through the tactic ‘intros’. The left-hand
side of the proof state presented below is the result of using the ‘intros’, and this state
is the initial proof state. Then, with the following tactics, the geometric predicate will be
expanded, and the origin will be eliminated according to the following rules.

unfold Midpoint, Xcollin, collin in * ;

rewrite H, Pplus_0_l in * ;

do 2 rewrite Pminus_0_r.

The proof state enters the geometric-algebraic state, as in the right-hand side of the
proof state presented below.

- A, B, N, C, P, G, M :
Point

- H : A = O
- H0: Midpoint P A B
- H1: Midpoint N A C
- H2: Midpoint M B C
- H3: Xcollin N B P C G
--------------------------
collin A G M

- A, B, N, C, P, G, M: Point
- H : A = O
- H0: B = 2 * P
- H1: C = 2 * N
- H2: B + C = 2 * M
- H3: ∀ u v r s: R, (u + v) = (r + s) → u * N

+ v * B = r * P + s * C → (r + s) * G = r
* P + s * C

-----------------------------------------------
∃ m, G = m * M

For example, the equation corresponding to hypothesis H0 is 2P = A + B. Using the
rewrite tactic, according to hypothesis H, replacing the origin A with O, there is 2P = O+ B.
Moreover, using the Pplus_0_l rule, the rewrite tactic can replace O + B with B, yielding H0.
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The current goal is to introduce a term of G as a proof according to the context. From
the geometric proposition, it is clear that point G is the intersection of the lines NB and
PC. However, there is no expression in the context that directly expresses the relationship
between G and M. It is necessary to establish the equidistant relationships among points N,
B, P, and C in order to deduce the expression for point G based on H3. From assumptions
H0, H1, and H2, we know that N, B, P, and C satisfy the equation HX : 2N + B = 2P + C.
The addition of this equation is performed by the tactic assert below.

assert HX: 2 * N +1 * B = 2 * P + 1 * C). { rewrite <- H1, H0. Psolver. }

The content in “{ }” is proof of HX, and the tactic ’Psolver’ is a decision procedure
that can solve linear arithmetic problems with points, which will be introduced in detail in
Section 4. From HX and H3, we know that 3G = 2P + C, and from H0 and H2, we know
that B + C = 2M, so it is easy to determine that m = 2/3; the conclusion can be proven,
and this part of the proof is realized by the following tactics.

apply H3 in HX; auto. exists (2/3); Psolver.

The preceding proof is similar to a step-by-step proof and is hence time-consuming.
In the next part, we will introduce numerous automatic tactics to make proofs easier.

4. Proof Tactics

The previous sections focused on the formal description and verification of point
geometry theory, including definitions, geometric predicates, rules, and proof models for
geometric propositions. We can also design automatic solving and programmable tactics to
prove specific types of complicated geometric problems. This section details the functions
and methods of several essential geometric proof tactics.

4.1. Oelim

4.1.1. Origin

In point geometry, any point can be chosen as the origin, and the geometric relations
between points can be constructed with reference to the origin, which is the cleverness
of point geometry. For example, Parall(P1P2P3P4) means parallelogram P1P2P3P4, which
means that wherever the origin is, as long as the four points P1, P2, P3, and P4 satisfy
P1 + P2 = P3 + P4, it means that the quadrilateral P1P2P3P4 is a parallelogram. In particular,
if P1 is taken as the origin, then P2 = P3 + P4. The flexibility in the choice of origin makes
the point geometry solution process more concise.

For a geometric proposition, once the origin is determined, all points set as the origin
in this proposition can be eliminated by the six rules about the origin in Section 3.2.1.

Example 2. Below is an example of origin elimination.

P1 = O, Parall P1 P2 P3 P4 ⊢ P2 = P3 + P4

1 P1 = O Premise
2 Parall P1 P2 P3 P4 Premise
3 P1 + P2 = P3 + P4 un f old Parall, 2
4 O + P2 = P3 + P4 rewrite 1, 3
5 P2 = P3 + P4 rewritePplus_0_l, 4

4.1.2. Method of Eliminating the Origin

OELIM is a tactic that automates a process similarly to the elimination of the origin
in Example 2. If the current proof state is st, OELIM unfolds the geometric predicate’s
definition, introduces the conditions and assumptions into the context, and then eliminates
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the origin. The proof state after the elimination of the origin by the OELIM tactic is denoted
as steO. The method is as in Algorithm 1.

Algorithm 1 OELIM

Input: Current proof state st.
Output: Algebraic proof state steO

1: Expand the geometric predicate and introduce the hypothesis into the context.
2: if Γ ⊢ (H :?P = O) then
3: for each i ∈ {1, . . . , m + 1} do ⊲ m is the number of hypotheses
4: if P ∈ V(Hpi) then ⊲ Conclusion g is Hpm+1
5: term(Hpi) := term(Hpi)(P/O);
6: Elim O with rules of O; return ;
7: end if
8: end for
9: else

10: Elim O with rules of O; return ;
11: end if

If the current proof state is denoted as st, with Γ as the current context and the
geometric proposition P : ∀(v1 : T1)(v2 : T2) · · · (vn : Tn), (Hp1 → Hp2 → · · · → Hpm+1)
as the current goal, then the current state is denoted as

st = Ep, Γ ⊢? ∀(v1 : T1)(v2 : T2) · · · (vn : Tn), (Hp1 → Hp2 → · · · → Hpm+1)

where Hpm+1 is the proof goal g of the geometric proposition. First, let H̃pi denote the
point geometric algebraic state of each Hpi after unfolding the geometric predicate, where
H̃pm+1 denotes the point geometric algebraic form g̃ of conclusion g; then, step 1 unfolds
the geometric predicate by applying the ‘unfold’ and introduces the hypothesis into the
context by using the ‘intros’, so that the proof state becomes

s̃t : Ep, Γ :: [(vi : Ti)]
n
i=1 :: [(Hj : H̃pj)]

m
j=1 ⊢? g̃

If a point is given as the origin in the hypothesis, i.e., there is an item “H :?P = 0” in the
context, then we use the rewrite tactic to replace all occurrences of point P in the context with
point O and apply origin elimination rules to remove the origin. If not, then we apply the
rule to eliminate the origin directly. At this point, if we use Hpi

eO to denote the hypothesis

and geO to denote the conclusion, then we have Γ
eO = [(vi : Ti)]

n
i=1 :: [(Hj : H̃p

eO

j )]mj=1, and
the proof state after applying the OELIM tactic is as follows:

steO = Ep, Γ :: Γ
eO ⊢? geO

It is easy to see that the origin of all terms in the algebraic state of steO has been elimi-
nated. OELIM uses tactics such as intros, un f old, and rewrite to introduce the hypothesis
into the context, expand the geometric predicate, and apply the origin-related rules to
replace the eliminated origin so that the proof of the topic enters the simplified algebraic
state, i.e., st =⇒ steO.

4.2. Linear Point Geometry Decision Procedures Based on Real Numbers

Positivstellensatz generalizes Hilbert’s zero theorems for a finite set S of polynomials,
and it searches for the refutation of Cone(S) to prove a nonlinear arithmetic problem [34].
PSOLVER is a tactic used to solve point geometry problems using a Positivstellensatz-based
decision procedure on linear algebra over the field of real and rational numbers, where the
transformation of real numbers to points is implemented by Peq (Rule 1).

The method of PSOLVER is implemented by Algorithm 2. Firstly, the method unfolds
all not (¬) in the current state, and its resultant state is represented by UFnot(st). Then,
PFACTOR initiates the recursive expansion of the formula structure. Firstly, if the goal to be
proven, g, has the pattern ‘(_ → _)’, the ‘intros’ tactic is used to introduce a new declaration



Mathematics 2023, 11, 2757 11 of 16

into the context, resulting in a new proof state denoted as ‘Intro(st)’ in this context. Let
APPLPeq(st) denote the application of the Peq rule to expand all point geometric equalities
in the proof state st. Therefore, the new proof state obtained by applying the Peq rule to
the current state is ‘APPLPeq(Intro(st))’. For the context Γ in the current proof state, for all
declarations with type pattern ‘(_ ∧ _)’, ‘(_ ∨ _)’ or ‘(_ ↔ _)’ that need to be discussed on
a case-by-case basis, the method uses the destruct tactic , such that id∼ denotes the new
sequence of declarations generated after applying the destruct tactic. The state obtained by
applying the Peq rule is represented as APPLPeq(Intro(st)). In the same way, the problem
is solved by deconstructing and transforming the goal to be proven with patterns ‘(_ ↔ _)’,
‘(_ ∧ _)’ and ‘(_ ∨ _)’, and the proof state obtained is a real algebraic state.

Algorithm 2 PSOLVER

Input: Current proof state st.
Output: If st = Ep, Γ ⊢? [], then the goal is proven; otherwise, do nothing
1: Procedure PFACTOR (st)
2: st = UFnot(st);
3: if g in pattern of (− → −) then
4: st = APPLPeq(Intro(st));
5: PFACTOR (st);
6: else
7: for each id that Γ ⊢ id : Point or id : (_ ∧ _)or id : (_ ∨ _)or (_ ↔ _) do
8: id∼ = Destr(id);
9: if g is in pattern of (_ ↔ _) or (_ ∧ _) then

10: gi = SP(g)i ;
11: st = APPLPeq(st(g/gi));
12: PFACTOR (st);
13: else if g is in pattern of (_ ∨ _) then;
14: st = st(g/ LAR(g));
15: PFACTOR (APPLPeq(st));
16: end if
17: end forreturn ;
18: end if
19: Procedure PSOLVER (st)
20: PSOLVER(PFACTOR(st));

4.3. A Proof Method for a Hilbert Intersection Problem

One of the proofs of Example 1 mentioned in Section 3 is tedious. In fact, PointGeo
can use only one tactic, HilbertX, to complete the proof and return the solution process.
Designing automatic proof tactics such as this can enhance the readability of machine
proofs and improve the efficiency in solving them.

4.3.1. Framework of HILBERTX

HILBERTX is an incomplete Hilbert intersection class proof method as in Algorithm 3.
For a Hilbert intersection class problem P, the HILBERTX tactic deduces the hidden intersec-
tion information and returns the solution process information to efficiently assist in solving
the geometric problem. The proof method of the HILBERTX tactic is shown in Figure 2.

HILBERTX solves the problem with intersections and returns the solution information,
which is output on lines 1 and 8, respectively. The tactic accepts four optional parameters, a,
b, c, and d. The four parameters are entered if and only if there are two intersections in the
problem. For a geometric proposition, OELIM is first invoked to eliminate the origin and
transform the proof state into a geometric algebraic state. Then, the hidden information
term is obtained by HILXCOL_K (Section 4.3.2) and automatically solved by the point
geometric linear arithmetic decision process. If the geometric proposition is not solved, the
steO proof state is retained.



Mathematics 2023, 11, 2757 12 of 16

Algorithm 3 Framework of HILBERTX
Input: Current proof state st and optional parameters a b c d.
Output: “Done” if the goal is proven, steO otherwise
1: steO := Oelim(st); ⊲ return information
2: if type of a = ltac_No_arg then
3: stP := Psolver

(
steO

)
;

4: if stP = Ep, Γ ⊢? [] then return “Done”;
5: else return ;
6: end if
7: else
8: stK := HILXCOL_K (steo , a, b, c, d);
9: stP′

:= PSOLVER
(
stK

)
;

10: if stP′
= Ep, Γ ⊢? [] then return “Done”; ⊲ return information

11: else return ;
12: end if
13: end if

HILXCOL_KOELIM

goal=[]DONE

steO

term(K)PSOLVER

a:ltac_No_arg
fail

goal=[]
fail

Figure 2. Flowchart of HilbertX proof method.

4.3.2. Generation of Intersection Information Items

If the line AB intersects the line CD, then their intersection K is unique and fixed, and
the Xcollin rule can be obtained from the algebraic relations of A, B, C, and D to their
algebraic relations with K, i.e., the information term termk of the intersection K of AB and
CD. The algebraic relation of the four points here means finding a set of values of u, v, r,
and s such that u + v = r + s → u ∗ A + v ∗ B = r ∗ C + s ∗ D holds and the information
term termk is the equation (r + s)K = r ∗ C + s ∗ D or (u + v)K = u ∗ A + v ∗ B obtained
by Xcollin.

4.3.3. Step-by-Step Proof and Proof by Tactic

Example 3. In parallelogram ABCD, M is the midpoint of AB and P is the intersection of AC

and BD. Then,
−→
AC = 3

−→
AP. The predicates corresponding to the conditions and conclusions are

represented as follows.

• parallelogram ABCD: Parallel A B C D.
• M is the midpoint of AB: Midpoint M A B.
• P is the intersection of AC and BD: Xcollin A C M D P.

•
−→
AC = 3

−→
AP: Vec A C = 3 ∗ Vec A P

Since Example 3 is a Hilbert intersection class problem, HilbertX can prove this propo-
sition. The proposition description, proof, and proof process information of Example 3 are
as follows.

Lemma Para_exam: ∀ A B C D M P : Point,

A=O → Parall A B C D → Midpoint M A B → Xcollin A C M D P → Vec A C =

3 * Vec A P.

Proof. HilbertX 2 1 2 1. Qed.

------------------------------------

After unfolding predictions and eliminating the 0, we obtain the following

hypotheses:
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H: A = O.

H0: C = B + D.

H1: B = 2 * M.

H2: ∀ u v r s : R,

u + v = r + s → u * O + v * C = r * M + s * D → (r + s ) * P = r * M + s

* D.

We begin to prove the goal: C = 3 * P.

Firstly, we construct the equation Hx: 2 * O + 1 * C = 2 * M + 1 * D.

By the rule of Xcollin, we obtain the equation of P: Hx: (2 + 1) * P = 2 *

M + 1 * D.

Finally, the proposition can be proven by the algebraic operations of

points. Done.

The proof of Example 1 mentioned in Section 3.2.2 is tedious and is equivalent to a
step-by-step proof. In fact, it is also a Hilbert intersection class problem, which can be
proven using only one tactic, HilbertX, which can also return information about the solution
process. Table 1 compares the code lengths of the step-by-step proof and the tactic proof
for Example 1 and Example 3, and it is clear that the number of proof lines required for
the step-by-step proof using the rule is 14, while the tactic requires only one line, which is
more convenient and faster.

Table 1. The number of proof lines required for a step-by-step proof using the rule is 14, and the
proof can be completed in only one line using the tactic, which also returns information about the
solution process.

Geometry Propositions Proof Mode Line Numbers Tactic Line Numbers

First_exam 7 1
Para_exam 14 1

Consider the comparison of the lengths of the step-by-step proofs and the tactic proofs
for the two proof topics, as shown in the following table.

5. Proof System

We propose a point geometric machine proof system, PointGeo, which is capable
of integrating multiple geometric-theorem-proving methods and allowing users to add
content as needed. Based on a verified point-based geometric theory framework, PointGeo
can prove any solvable geometric proposition in point geometry. The design of this system
aims to provide an efficient and accurate method of proof, and it provides a new tool and
perspective for research in the field of point geometry.

5.1. Structure of the System

PointGeo consists of five main parts, namely basic definitions, fundamental properties,
and common rules of point geometry; geometric predicates; proof tactics; and propositional
proofs, which are distributed as shown in Table 2.

Table 2. The content of PointGeo.

PointGeo Content Line Numbers Outline

PF.v Basic definition 95 32
Pbasics.v Properties 304 67
Plemma.v Rules 273 61

Pconstruct.v Predicates 76 26
PTactic.v Proof tactics 316 41

Proj.v Machine proof 1783 188
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5.2. Proof Method

PointGeo is a scalable proof system that accepts a variety of methods. It is possible
to prove geometric propositions based on the basic theory of point geometry, such as
Hilbert-intersection-like problems and geometric problems on angular rotations, similar to
Morley’s theorem.

Example 4 (Morley’s theorem). In ∆ABC, let P, Q, and R be the intersection points of the
trisection of two angles of the triangle. Then, triangle ∆PQR is an equilateral triangle.

In order to prove the conclusion of Morley’s Theorem, which states that e
iπ
3 (Q − P) =

R − P, we can introduce the notation e
iπ
3 = ω. The objective is then to demonstrate that

ωQ − R = ω
2P. The description of Morley’s theorem is presented as follows, and its proof

is also completed in PointGeo.

Theorem Morley :
∀ (A B C’ P Q R’ : Point) (a b r : R) (w u v : C),
A = O → triangle0 A B C’ (3 * a) (3 * b) → triangle0 A B R’ a b →

triangle0 A Q C’ a (PI - a - r) → triangle0 B C’ P b r → w = Cexp (0
+i (PI / 3) → u = Cexp (0 +i (- 2 * a) → v = Cexp (0 +i (- 2 * b) →
r = (PI / 3 - a - b) → (CPmult w Q) - R’ = CPmult (w ^ 2) P.

Proof.... Qed.

The definition of the outer product of three points in point geometry theory relates
the area to the points. This leads to the co-side theorem, an essential theorem in the area
method, in point geometry theory. Therefore, PointGeo supports the use of the area method
to prove geometric propositions. Solving geometric propositions using the area method
has higher readability and can avoid complex parameters. This feature is well illustrated in
the proof of Pappus’s theorem, as shown in Example 5.

Example 5 (Pappus’ theorem). Let points A, B, and C be collinear; D, E, and F be collinear; the
lines AE and BD intersect at P; AF and CD intersect at Q; and CE and BF intersect at R. Then, P,
Q, and R are collinear, as in Figure 3.

The CommEdg rule derived from the properties of the outer product provides a proof rule for the
area-based proof of Pappus’s theorem. For example, as shown in Figure 3b, if RC and EQ intersect
at point E, i.e., if the condition Xcollin(R C E Q) is satisfied, then applying the CommEdg rule

yields the equation
Rabs(sREQ)
Rabs(sCEQ)

= distanceER
distanceEC , i.e.,

|REQ|
|CEQ| =

|RE|
|CE| : Xcollin R C E Q E → sCEQ 6= 0 → Rabs (s REQ)

Rabs (sCEQ)
=

distance ER

distance EC
.

Similarly, the new problem-solving information for (c)~(n) in Figure 3 can be inferred through
CommEdg. The formal description and a more detailed formal proof of the Pappus theorem have been
completed in PointGeo.

E

Q

C

D
E F

R

CB

E F

R

CB

F

Q

A C

D
E

Q
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(b)

(a) (n)(m)(l)(k)(j)(i)

(c) (g)(f)(e) (h)(d)
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A C

DE
F

P Q

R

A CB

D

F

Q R

A

F

R

A B

E F

B

D
E

P

A B

D

A CB

D E
F

C

D

F
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Figure 3. Diagram of the Pappus theorem and the splitting diagram of the ratio of the area to the
sides of all the sides used in the proof. (a) A diagram illustrating Pappus’ theorem. (b–n) Subgraphs
derived from (a), representing the graphs associated with the common-edge theorem utilized in each
proof step.
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Propositional descriptions and proofs based on point geometry theory can also be
converted into vectors and proven using the vector method. However, the rules related to
vectors are not yet complete. Fortunately, it can be solved quickly by the PSOLVER using
the real-related decision process.

6. Conclusions

We formalized and verified the new algebraic geometry system, point geometry, and
constructed an interactive geometry-theorem-proving system based on point geometry
theory. The system guarantees the reliability of proofs and supports user-generated content
with scalability. Moreover, we designed automatic proof tactics to enhance the automation
level of interactive proof and enabled the automatic presentation of the proof process
by recording the proof status, providing readability. The system also supports multiple
geometric-theorem-proving methods. Our next step is to improve various automatic proof
methods in PointGeo, such as the point elimination algorithm based on the area method, to
make the system more versatile, efficient, and readable.
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