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Abstract: In this paper, an approach to solving direct and inverse scattering problems on the half-line
for a one-dimensional Schrödinger equation with a complex-valued potential that is exponentially
decreasing at infinity is developed. It is based on a power series representation of the Jost solution in
a unit disk of a complex variable related to the spectral parameter by a Möbius transformation. This
representation leads to an efficient method of solving the corresponding direct scattering problem for
a given potential, while the solution to the inverse problem is reduced to the computation of the first
coefficient of the power series from a system of linear algebraic equations. The approach to solving these
direct and inverse scattering problems is illustrated by several explicit examples and numerical testing.
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1. Introduction

Consider the one-dimensional Schrödinger equation

l[y] := −y′′ + q(x)y = λy, x ∈ (0, ∞), (1)

with λ ∈ C and a complex-valued potential q(x) satisfying the condition∫ ∞

0
eεx|q(x)|dx < ∞ (2)

for some ε > 0. By ρ, we denote the square root of λ such that ρ ∈ C+ := {w ∈ C : Im(w) ≥ 0}.
In the present work, an approach to solving direct and inverse scattering problems for (1)
under Condition (2) is developed.

Complex-valued potentials arise when studying parity time (PT)-symmetric poten-
tials [1] (Chapter 1), [2], quasi-exactly solvable (QES) potentials [3,4], hydrodynamics, and
magnetohydrodynamics [5]; see also [6–8].

Studying a Zakharov–Shabat system, even with a real-valued potential, naturally leads
to a couple of equations of the form (1) with complex-valued potentials; see [9]. Indeed,
consider the Zakharov–Shabat system

−→υ x(x) =
(

v1(x)
v2(x)

)
x
=

(
−iρ u(x)
−u(x) iρ

)
−→υ (x), 0 < x < ∞ (3)

where ρ is a complex spectral parameter and u(x) is a real-valued potential.
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The further transformation of −→υ (x) is as follows:

y1(x) = v2(x)− iv1(x),

y2(x) = v2(x) + iv1(x)

This leads to a pair of Schrödinger equations with complex-valued potentials

−y′′1 (x) + (−iu′ (x)− u2(x))y1(x) = ρ2y1(x), (4)

−y′′2 (x) + (iu′ (x)− u2(x))y2(x) = ρ2y2(x). (5)

Thus, the results of the present work are applicable to direct and inverse scattering
problems for a Zakharov–Shabat system.

A direct scattering problem for (1) with a complex-valued potential was studied in a
number of publications ([10–13]). Equation (1) under Condition (2) was considered in [12]
(p. 292), [14–20] (p. 353), and [21,22].

It is well-known (see, e.g., [12] (p. 443), [18]) that (1) admits a unique solution, which
we denote by e(ρ, x), satisfying the asymptotic equality

e(ρ, x) = eiρx(1 + o(1)), x → ∞.

This solution is called the Jost solution of (1). It admits the Levin integral representa-
tion [12] (see also [18,23,24])

e(ρ, x) = eiρx +
∫ ∞

x
A(x, t)eiρtdt, Im ρ > − ε

2
, x ≥ 0 (6)

where for every fixed x, the kernel A(x, t) belongs to L2(x, ∞). In [25] (see also [26]) a
Fourier–Laguerre series representation for A(x, t) was proposed in the form

A(x, t) =
∞

∑
n=0

an(x)Ln(t− x)e
x−t

2 , (7)

where Ln(τ) stands for the Laguerre polynomial of order n. A recurrent integration
procedure was developed in [27] to calculate the coefficients an(x). The substitution of (7)
into (6) was found to lead to a series representation for the Jost solution [25,26]

e(ρ, x) = eiρx

(
1 + (z + 1)

∞

∑
n=0

(−1)nznan(x)

)
, x ≥ 0, ρ ∈ C+ (8)

where

z = z(ρ) =

(
1
2 + iρ

)
(

1
2 − iρ

) · (9)

In the present work, we consider the direct and inverse scattering problems for (1)
subject to the homogeneous Dirichlet condition

y(0) = 0, (10)

however, the approach developed here is also applicable in the case of other boundary
conditions, such as

y′ (0)− hy(0) = 0

with h ∈ C.
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The problem (1) and (10) under Condition (2) possesses a continuous spectrum coin-
ciding with the positive semi-axis λ > 0, and may have a point spectrum that coincides
with the squares of the non-real roots of the Jost function

e(ρ) := e(ρ, 0),

if such roots exist. Let us denote them as ρ1, . . . , ρα. Their multiplicity may be greater
than one. In this case, instead of norming constants associated to the eigenvalues, the
corresponding normalization polynomials Xk(x) naturally arise (see Section 3.3 below).

As a component of the scattering data for (1), the scattering function

s(ρ) :=
e(−ρ)

e(ρ)

is considered in the strip |Im(ρ)| < ε0 where ε0 is sufficiently small (see Section 3.2 below).
The direct scattering problem for (1) and (10) consists of obtaining the set of the

scattering data {
{ρk, mk, Xk(x)}α

k=1, s(ρ)
}

. (11)

The overall approach developed in the present work to solve this problem is based
on the representation (8). Indeed, the calculation of {ρk}α

k=1 is easily realizable with the
aid of the argument principle theorem applied to find zeros of (8) in the unit disc. To the
best of our knowledge, there has been no practical way of calculating the normalization
polynomials. We propose a simple procedure for computing their coefficients by solving a
finite system of linear algebraic equations. For this, an auxiliary result for the derivatives
∂m

∂zm e(ρ(z), x) is obtained.
The calculation of the scattering function s(p) requires an analytic extension of the

Jost function e(ρ) obtained from (8), onto the strip −ε0 < Im(ρ) < 0. We explore different
possibilities for such an extension, including the Padé approximants (see [28,29]) and the
power series analytic continuation [30] (p. 150), [31]. This results in an efficient numerical
method for solving the direct scattering problem.

The inverse scattering problem consists of recovering the potential q(x) from the set
of the scattering data. A general theory of this inverse problem can be found in [12,13,20]
(p. 353), [24,32–35]. Here, we use the representation (7) for the numerical solution of the
problem, thus extending the approach developed in [25,26,36–38] to the non-selfadjoint
situation. The inverse Sturm–Liouville problem is reduced to an infinite system of linear
algebraic equations. The potential q(x) is recovered from the first component of the solution
vector, which coincides with a0(x) in (7).

The reduction to the infinite system of linear algebraic equations is based on the
substitution of the series representation (7) for the kernel A(x, t) into the Gelfand–Levitan
equation (see [39]),

A(x, t) =
∫ ∞

x
A(x, u) f (u + t)du + f (x + t), 0 ≤ x ≤ t < ∞, (12)

where the function f can be computed from the set of scattering data (11):

f (x) :=
1

2π

∫ ∞+iη

−∞+iη
(s(ρ)− 1)eixρdρ−

α

∑
k=1

Xk(x)eiρkx, 0 < η < ε0.

To approximate the complex-valued function a0(x), we consider the truncated system
of linear algebraic equations, for which the existence, uniqueness and stability of the
solution is proved.

Finally, we illustrate the proposed approach by numerical calculations performed in
Matlab2021a.
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We discuss the details of the numerical implementation of the method: its convergence,
stability and accuracy. In a couple of examples, we show the “in-out” performance of
the approach, i.e., we solve the direct problem numerically and use the results of our
computation as the input data to solve the inverse problem.

The approach based on the representations (7) and (8) leads to efficient numerical
methods for solving both direct and inverse scattering problems.

In Section 2, we recall the series representations for the kernel A(x, t) and for the
Jost solution, then prove additional results related to these representations. In Section 3,
we recall the set of scattering data and put forward an algorithm for solving the direct
scattering problem. Additionally, we present analytical examples. In Section 4, the approach
for solving the inverse scattering problem is developed. Analytical examples from Section 2
are considered in order to illustrate the approach. In Section 5, we discuss the numerical
implementation of the algorithms proposed for solving the direct and inverse scattering
problems. Section 6 contains some concluding remarks.

2. Series Representations for the Transmutation Operator Kernel and Jost Solution

Consider the one-dimensional Schrödinger equation on the half-line (1) where
λ = ρ2 ∈ C is the spectral parameter. The potential q(x) is a complex-valued function
satisfying Condition (2) for some ε > 0.

Equation (1) is considered on the class of functions D(l) =
{

y ∈ W2,2(0, ∞) : l[y] ∈ L2(0, ∞)
}
.

Series Representation for Solutions of the One-Dimensional Schrödinger Equation

Equation (1) possesses the unique so-called Jost solution e(ρ, x) (see, e.g., [12] (p. 443), [18]),
which for all x ≥ 0 is a holomorphic function of ρ in the half-plane Im ρ ≥ 0 and satisfies
the asymptotic relation

e(ρ, x) = eiρx(1 + o(1)) when x → ∞ and Im ρ ≥ 0. (13)

The function e(ρ) := e(ρ, 0) is called the Jost function.

Remark 1. Under the assumption q(x) ∈ L(0, ∞) instead of (2), for every x ≥ 0 the solution
e(ρ, x) is continuous with respect to ρ for ρ ∈ C+ \ {0} and holomorphic with respect to ρ for
ρ ∈ C+. If in addition (1 + x)q(x) ∈ L(0, ∞), the functions e(ν)(ρ, x), ν = 0, 1 are continuous
for ρ ∈ C+, x ≥ 0 (see [24] (p. 105)).

Remark 2. Under Condition (2), the Jost solution satisfies the asymptotic relations

∂j

∂xj e(ρ, x) = (ix)(j)eiρx + o
(

e−
ε
2 x
)

, j = 0, 1, . . . when x → ∞,

provided the existence of these derivatives; see [21].

The solution e(ρ, x) admits the Levin integral representation [12]

e(ρ, x) = eixρ +
∫ ∞

x
A(x, t)eiρtdt, Im ρ ≥ 0, x ≥ 0, (14)

where A(x, t) is a complex-valued continuous function for 0 ≤ x ≤ t < ∞. Denote
Q(x) := ‖q‖L(x,∞). The kernel A(x, t) admits the bound [24] (p. 108)

|A(x, t)| ≤ 1
2

Q
(

x + t
2

)
exp

(
‖Q‖L(x,∞) − ‖Q‖L( x+t

2 ,∞)

)
. (15)

Under Condition (2), the Jost solution is extensible onto the half-plane Im ρ > − ε
2

through the Levin representation (14). The extension satisfies (13) for Im ρ > − ε
2 .



Mathematics 2023, 11, 3544 5 of 51

Proposition 1. Under Condition (2), the kernel A(x, t) admits the bound

|A(x, t)| ≤ 1
2

e−ε( x+t
2 )
(∫ ∞

x+t
2

eετ |q(τ)|dτ

)
exp

(
Cε

ε

(
e−εx − e−ε x+t

2

))
, 0 ≤ x ≤ t < ∞, (16)

where Cε =
∫ ∞

0 eεt|q(t)|dt.

Proof. Under Condition (2), the potential q(x) satisfies the inequality

Q(x) ≤ e−εx
∫ ∞

x
eεt|q(t)|dt = Cεe−εx. (17)

Moreover, for any fixed x ∈ [0, ∞) we have [12] (p. 317)

‖Q‖L(x,∞) ≤
Cε

ε
e−εx. (18)

Thus, substitution of (17) and (18) into (15) gives us (16).

Additionally, the kernel A(x, t) has first continuous derivatives that satisfy the in-
equalities [12] (p. 305)

|Ax(x, t)|, |At(x, t)| ≤ 1
4

∣∣∣∣q( x + t
2

)∣∣∣∣+ Cε exp
(
−ε

(
3
2

x + t
))

, (19)

and the equality [12] (p. 328)

A(x, x) =
1
2

∫ ∞

x
q(t)dt. (20)

As was pointed out in [25], since A(x, ·) ∈ L2(x, ∞), the function

a(x, t) := e
t
2 A(x, t + x) (21)

belongs to L2([0, ∞); e−t) and hence admits the series representation

a(x, t) =
∞

∑
n=0

an(x)Ln(t), (22)

where Ln(t) stands for the Laguerre polynomial of order n and an(x) are complex-valued
functions such that {an(x)}∞

n=0 ∈ l2 for any x ≥ 0. For all x ≥ 0, the series (22) converges
in the norm of L2([0, ∞); e−t). Thus,

A(x, t) =
∞

∑
n=0

an(x)Ln(t− x)e
x−t

2 (23)

and
∞

∑
n=0

an(x) = A(x, x) =
1
2

∫ ∞

x
q(t)dt. (24)

This series representation was obtained in [25] for real-valued q(x). However, (23)
remains true in the non-selfadjoint case as well.

Proposition 2. For any fixed x ≥ 0, the series

a(x, t) =
∞

∑
n=0

an(x)Ln(t), t ∈ [0, ∞) (25)

converges pointwise.
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Proof. We use [40] (Theorem 6.5), and thus need to verify that the following assertions
are true.

1. a(x, ·) is of class L
(
[0, ∞); e−t).

2. a(x, ·) is γ-Hölder continuous, i.e., there exists 0 < γ ≤ 1, such that

|a(x, t0)− a(x, t)| ≤ M|t0 − t|γ,

for some constant M > 0 and arbitrary t, t0 ∈ [0, ∞).
3. The integrals ∫ 1

0
t−3/4|a(x, t)|dt,

∫ ∞

1

e−t/2|a(x, t)|dt (26)

exist.
To prove the first assertion, it is enough to consider estimate (15). Indeed,∫ ∞

0
e−t|a(x, t)|dt ≤

∫ ∞

0
|A(x, x + t)|dt

≤ 1
2

∫ ∞

0
Q
(

2x + t
2

)
exp

(
‖Q‖L(x,∞) − ‖Q‖L( 2x+t

2 ,∞)

)
dt

≤
exp

(
‖Q‖L(x,∞)

)
2

∫ ∞

0
Q
(

2x + t
2

)
exp

(
−‖Q‖L( 2x+t

2 ,∞)

)
dt

= exp
(
‖Q‖L(x,∞)

) ∫ ∞

x
Q(τ) exp

(
−‖Q‖L(τ,∞)

)
dτ.

Note that d
dτ ‖Q‖L(τ,∞) = Q(τ) and therefore

∫ ∞

x
Q(τ) exp

(
−‖Q‖L(τ,∞)

)
dτ = 1− exp

(
−‖Q‖L(x,∞)

)
. (27)

Thus, ∫ ∞

0
e−t|a(x, t)|dt ≤ exp

(
‖Q‖L(x,∞)

)
− 1 < ∞.

The second assertion follows from the inclusion A(x, ·) ∈ C1(x, ∞).
The existence of the first integral in (26) follows from the continuity of a(x, ·). Finally,

for the second integral we have∫ ∞

1

e−t/2|a(x, t)|dt =
∫ ∞

1

|A(x, x + t)|dt ≤
∫ ∞

0
|A(x, x + t)|dt,

and thus, from the proof of the first assertion, we obtain
∫ ∞

1
e−t/2|a(x, t)|dt < ∞.

Now, the application of Theorem 6.5 from [40] completes the proof.

Following [25] (see also [26] (p. 63)), the substitution of (23) into (14) and termwise
integration lead to the series representation (8) for the Jost solution.

The series (8) is convergent in the open unit disk of the complex z-plane, D := {z ∈ C : |z| < 1},
and for every x, the function e(ρ, x)e−iρx belongs to the Hardy space H2(D) as a function
of z [26].

Proposition 3. Let q(x)(1 + x) ∈ L(0, ∞). Then, the kernel A(x, t) admits the representa-
tion (23), where for any x fixed the series converges in the norm of L2(x, ∞), and the complex-valued
coefficients an(x) satisfy the system of equations

−l[a0]− a′0 = q, (28)

−l[an]− a′n = −l[an−1] + a′n−1, n = 1, 2, . . . , (29)
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as well as the inequality

|an(x)| ≤ exp
(
‖Q‖L(x,∞)

)
− 1, n = 0, 1, 2, . . . . (30)

Proof. The proof of (28) and (29) from [26] (Theorem 10.1, p. 66) given for the case of a
real-valued q remains valid in this more general situation as well.

Note that

an(x) =
∫ ∞

0
a(x, t)Ln(t)e−tdt.

From estimate (15) and inequality ([41] (p. 164)) |Ln(t)| ≤ et/2, t ≥ 0, we have

|an(x)|≤
∫ ∞

0 |A(x, x + t)Ln(t)|e−t/2dt ≤ 1
2

∫ ∞
0 Q

( 2x+t
2
)

exp
(
‖Q‖L(x,∞) − ‖Q‖L( 2x+t

2 ,∞)

)
dt

= exp
(
‖Q‖L(x,∞)

)
− 1 (31)

(see (27)).

Corollary 1. Under Condition (2), the coefficients an satisfy the inequality

|an(x)| ≤ exp
(

Cε

ε
e−εx

)
− 1. (32)

Proof. Substitution of (17) and (18) into (31) yields (32).

Remark 3. Under the assumption that functions a(ν)(x, t) are absolutely continuous with respect
to t in [0, ∞) for ν = 0, 1, 2, the convergence of the power series in (8) for z ∈ D can be proved with
the aid of a result from [42], which states that

|an(x)| ≤ V√
n(n− 1)(n− 2)

,

provided that
lim

t→+∞
e−t/2t1+ja(j)(x, ·) = 0 j = 0, 1, 2 (33)

and

V =

√∫ ∞

0
t3e−t

[
a(3)(x, ·)

]2dt < ∞. (34)

Moreover,∥∥∥∥∥a(x, t)−
N

∑
n=0

an(x)Ln(t)

∥∥∥∥∥
L2(0,∞;e−t)

≤ V
√

N√
(N − 1)(N − 2)(N − 3)

.

To ensure Condition (33) for j = 0, notice that from (16) we have

|a(x, t)| = e
t
2 |A(x, t + x)| ≤ Ce

t
2 e−ε( x+t

2 ). (35)

For j = 1, Condition (33) holds due to (19). However, the fulfillment of (33) for j = 2 as well
as that of (34) requires the additional regularity of q(x), ensuring the possibility of the differentiation
of the integral equation for the kernel

A(x, t) =
1
2

∫ ∞

(x+t)/2
q(ξ)dξ +

1
2

∫ (x+t)/2

x
q(ξ)

(∫ t+ξ−x

t+x−ξ
A(ξ, η)dη

)
dξ

+
1
2

∫ ∞

(t+x)/2
q(ξ)

(∫ t+ξ−x

ξ
A(ξ, η)dη

)
dξ, 0 ≤ x ≤ t < ∞
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at least three times [12] (p. 296).

Remark 4. Denote

eN(ρ, x) = eiρx

(
1 + (z + 1)

N

∑
n=0

(−1)nznan(x)

)
, ρ ∈ C+. (36)

In [27], the following statements were proved in the case of a real-valued potential.
1. If Im ρ > 0, then

|e(ρ, x)− eN(ρ, x)| ≤ εN(x)
e− Im ρ x√

2 Im ρ

where

εN(x) :=

(
∞

∑
n=N+1

∣∣∣an(x)2
∣∣∣)1/2

=

(∫ ∞

0
e−t|a(x, t)− aN(x, t)|2dt

)1/2
. (37)

2. If ρ ∈ R, then

‖e(·, x)− eN(·, x)‖L2(−∞,∞) =
√

2πεN(x).

These results remain valid in the case of a complex-valued potential. Moreover, under the
assumptions of Remark 3, we obtain the inequality

εN(x) ≤ V
√

N√
(N − 1)(N − 2)(N − 3)

.

Remark 5. The substitution of ρ = i
2 into (8) leads to the equality a0(x) = e

(
i
2 , x
)

ex/2 − 1.
Moreover, note that we have

q(x) =
a′′0 (x)− a′0(x)

a0(x) + 1
. (38)

By ω(ρ, x), we denote the solution of (1), satisfying the initial conditions

ω(ρ, 0) = 0,
d

dx
ω(ρ, 0) = 1. (39)

We also need the solution

Ω(ρ, x) =
2iρω(ρ, x)

e(ρ)
. (40)

3. Direct Problem
3.1. Spectrum of (1) and (10)

Consider the problem (1) and (10) under Condition (2). Let us recall some definitions
and facts from [12] (p. 452) (see also [18]). The continuous spectrum fills the entire semi-axis
λ > 0.

Definition 1. We call the roots of e(ρ) that lie in C+ \ {0} the singular numbers of the problem
(1) and (10).

If they exist, their number is finite. Let us denote the non-real singular numbers by ρ1, . . . , ρα.
The numbers λk = ρ2

k constitute the point spectrum of the problem, and the multiplicities of the
zeros ρk (k = 1, . . . , α) are called the multiplicities of the singular numbers and denoted by mk,
respectively.
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Thus, we are interested in the zeros zk of the Jost function

e(ρ) = 1 + (z + 1)
∞

∑
n=0

(−1)nznan(0) (41)

to obtain the eigenvalues from λk = −
(

zk−1
2(zk+1)

)2
.

For an estimate of the number of the eigenvalues, we refer to [43].

3.2. Scattering Function s(ρ)

Let us introduce ε1 as the distance from the real axis to the non-real roots of the
function e(ρ). Let ε0 = min

(
ε1, ε

2
)

when ε1 6= 0 (ε1 = 0 means that there are no non-real
roots), or ε0 = ε

2 otherwise.
The scattering function s(ρ) is defined by

s(ρ) :=
e(−ρ)

e(ρ)
, |Im(ρ)| < ε0. (42)

Let us recall some properties of the Jost function e(ρ) and scattering function s(ρ)
(see, e.g., [39]).

1. e(ρ) is holomorphic for Im ρ > −ε0, and for every 0 < η < ε0 it satisfies the asymptotic
relation

e(ρ) = 1 + O
(

1
ρ

)
, as |ρ| → ∞ (43)

uniformly in the strip |Im ρ| ≤ η.
2. s(ρ) is meromorphic in the strip |Im ρ| < ε0, and for every 0 < η < ε0:

s(ρ) = 1 + O
(

1
ρ

)
, as |ρ| → ∞ (44)

uniformly in the strip |Im ρ| ≤ η.
3. s(ρ) has no non-real poles in the strip |Im ρ| < ε0.
4. s(ρ)s(−ρ) = 1.
5. s(0) = ±1.

A function satisfying properties 2–5 is said to be of S-type in the strip |Im ρ| < ε0. The
following examples illustrate some of the above definitions.

Example 1 ([44,45]). Consider the potential

q1(x) := 10ie−x, x ≥ 0

with 0 < ε < 1 in (2). With the aid of Wolfram Mathematica v.12 the Jost solution can be obtained
in a closed form,

e1(ρ, x) =
(√
−10i

)2iρ
J−2iρ((2− 2i)

√
5e−x/2)Γ(1− 2iρ), x ≥ 0, Im(ρ) > −1/2, (45)

where Jν(z) stands for the Bessel function of the first kind of order ν.
Hence,

e1(ρ) =
(√
−10i

)2iρ
J−2iρ((2− 2i)

√
5)Γ(1− 2iρ),

and the eigenvalues are the squares of the values ρ ∈ C+ such that

J−2iρ((2− 2i)
√

5) = 0.
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From here, we obtain the only singular number

ρ0 ≈ 1.784065847527427576134879232 + 0.6087886812067186310240220034i. (46)

The scattering function has the form

s1(ρ) =
(1− i)−4iρ5−2iρ J2iρ((2− 2i)

√
5)Γ(1 + 2iρ)

J−2iρ((2− 2i)
√

5)Γ(1− 2iρ)
. (47)

It is well-defined in the domain

D(s1) =

{
ρ ∈ C : J−2iρ

(
(2− 2i)

√
5
)
6= 0∧

(
Im(ρ) > −1

2
∨−2iρ /∈ Z

)
∧
(

Im(ρ) <
1
2
∨ 2iρ /∈ Z

)}
and is an S-type function in the strip |Im(ρ)| < 1

2 .

Example 2. Consider the potential

q2(x) := −4i sech(2x) tanh(2x)− 4 sech2(2x), x ≥ 0,

which satisfies Condition (2) for 0 < ε < 2. The Schödinger equation with this potential comes
from a Zakharov–Shabat system (3) with the potential u(x) = 2 sech(2x) and its reduction to
Equation (5).

The corresponding Jost solution e2(ρ, x) is obtained from the Jost solution of a Zakharov–Shabat
system (see [46]) with the potential u(x),

e2(ρ, x) =
ρ− tanh(2x) sech(2x)

ρ + i
eiρx, x ≥ 0, Im(ρ) > −1

2
.

Thus, the Jost function is

e2(ρ) =
ρ + 1
ρ + i

, Im(ρ) > −1
2

.

It has one root, ρ∗ = −1, which corresponds to the spectral singularity λ∗ = ρ2
∗ = 1.

The scattering function is given by

s2(ρ) =

(
1− ρ

i− ρ

)(
ρ + i
ρ + 1

)
, (48)

which is an S-type function in the strip |Im(ρ)| < 1
2 .

Example 3 ([21]). Consider the potentials of the form

q(x) = −2a2 sech 2(ax + b), x ≥ 0, b ∈ C, a > 0 (49)

satisfying Condition (2) for 0 < ε < 2a. The Jost solution has the form

e(ρ, x) =
ρ + ia tanh(b + ax)

ρ + ia
eiρx, x ≥ 0, Im(ρ) > −a,

from which the Jost function is obtained

e(ρ) =
ρ + ia tanh(b)

ρ + ia
, Im(ρ) > −a

with the single root ρ = −ia tanh(b).
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The square of this ρ represents the discrete spectrum of the problem. The potential (49) is
complex-valued when b is not purely imaginary. The scattering function has the form

s(ρ) =
(ρ− ia tanh(b))(ρ + ia)
(ρ + ia tanh(b))(ρ− ia)

,

which is an S-type function in |Im(ρ)| < min{a, Im(−ia tanh(b))} in the case of a complex-
valued potential. In the case of a real-valued potential, s(ρ) is an S-type function in |Im(ρ)| < a.

To present an explicit example, we fix a = 1 and b = −1− i in (49). Then,

q3(x) = −2 sech 2(x− 1− i), x ≥ 0

with 0 < ε < 2 in Condition (2) and the Jost solution is

e3(ρ, x) =
ρ + i tanh(x− 1− i)

ρ + i
eiρx, x ≥ 0, Im(ρ) > −1.

Thus, the Jost function has the form

e3(ρ) =
ρ− i tanh(1 + i)

ρ + i
, Im(ρ) > −1,

and one eigenvalue exists: λ = − tanh2(1 + i).
The scattering function

s3(ρ) =
(ρ + i tanh(1 + i))(ρ + i)
(ρ− i tanh(1 + i))(ρ− i)

(50)

is an S-type function in the strip |Im(ρ)| < 1.

3.3. Normalization Polynomials

The normalization polynomial Xk(x) of degree mk − 1, associated with the eigenvalue
ρ2

k (mk is the algebraic multiplicity of ρk as zero of e(ρ)), defined by the equation [18]

i Res(Ω(ρ, x); ρk) = eiρkxXk(x) +
∫ ∞

x
A(x, t)Xk(t)eiρktdt, (51)

where Ω(ρ, x) is defined by (40). Using the series representation (23) of the kernel A(x, t),
we can obtain a method to compute the coefficients of Xk(x).

Remark 6. Note that the series (8) can be written as

e(ρ, x) = eiρx

(
1 + (z + 1)

∞

∑
n=0

(−1)nan(x)P(−n,0)
n (1 + 2z)

)
, ρ ∈ C+(z ∈ D) (52)

in terms of the Jacobi polynomials P(α,β)
n (τ).

Let us write Equation (51) in terms of the Jost solution and Jacobi polynomials,
as follows.

Proposition 4. Let λk = ρ2
k , k = 1, . . . , α be an eigenvalue of problem (1) and (10) and mk be its

multiplicity. For the normalization polynomial Xk(x), the equality holds

i Res(Ω(ρ, x); ρk) = Xk(x)e(ρk, x) + eiρkx
∞

∑
n=0

(−1)nan(x)
mk−1

∑
j=1

djXk(x)
dxj (zk + 1)j+1P(j−n,0)

n (1 + 2zk), x ≥ 0. (53)
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Proof. The substitution of (23) into (51) yields

i Res(Ω(ρ, x); ρk) = eiρkx

(
Xk(x) +

∫ ∞

0

∞

∑
n=0

an(x)Ln(s)e−(
1
2−iρk)sXk(x + s)ds

)
.

Here, we change the order of summation and integration due to Parseval’s identity [47]
(p. 16) and additionally use the equality

Xk(x + s) =
mk−1

∑
j=0

sj

j!
djXk(x)

dxj .

Thus,

i Res(Ω(ρ, x); ρk) = eiρkx

(
Xk(x) +

∞

∑
n=0

an(x)
mk−1

∑
j=0

1
j!

djXk(x)
dxj

∫ ∞

0
Ln(s)e−(

1
2−iρk)ssjds

)
.

The last integral can be explicitly evaluated [48] (Formula 7.414 (7))

∫ ∞

0

(
Ln(s)e−(

1
2−iρk)s

)
sjds = j!(zk + 1)j+1F(−n, j + 1, 1; zk + 1) = j!(zk + 1)j+1(−1)nP(j−n,0)

n (1 + 2zk),

where F(a, b, c; z) stands for the hypergeometric function [49] (p. 56). Thus, we have
the equation

i Res(Ω(ρ, x); ρk) = eiρkx

[
Xk(x) +

∞

∑
n=0

(−1)nan(x)
mk−1

∑
j=0

(zk + 1)j+1 djXk(x)
dxj P(j−n,0)

n (1 + 2zk)

]
,

and due to Remark 6, we obtain (53).

Hereinafter Cn
k =

(
n
k

)
denotes the binomial coefficient.

Lemma 1. The m-th derivative of the Jost solution e(ρ, x) with respect to the variable z admits
the representation

∂m

∂zm (e(ρ, x)) = e(ρ, x)
m−1

∑
j=0

(−1)jCm−1
j

m!
(m− j)!

xm−j(z + 1)j−2m

+ eiρx
∞

∑
n=0

(−1)nan(x)
m+1

∑
j=2

P(j−n−1,0)
n (1 + 2z)

m

∑
s=j−1

(−1)s+j+1Cm−1
s−j+1

m!
(m− s)!

xm−s(z + 1)s+1−2m, (54)

where ρ ∈ C+(z ∈ D) and x ≥ 0.

Proof. We use the identity [50] (p. 3)

Fz(−n, j, 1, z + 1)(z + 1) = jF(−n, j + 1, 1, z + 1)− jF(−n, j, 1, z + 1), (55)

where Fz means the derivative with respect to z, and j, n are integers.
Let us prove the lemma by induction. For m = 1, from (52), we have

∂

∂z
(e(ρ, x)) =

(
eiρxx

(z + 1)2

)(
1 + (z + 1)

∞

∑
n=0

(−1)nan(x)P(−n,0)
n (1 + 2z)

)

+ eiρx

(
∞

∑
n=0

an(x)F(−n, 1, 1, z + 1) + (z + 1)
∞

∑
n=0

an(x)Fz(−n, 1, 1, z + 1)

)
.
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The application of (55) gives

∂

∂z
(e(ρ, x)) =

xe(ρ, x)
(z + 1)2 + eiρx

∞

∑
n=0

(−1)nan(x)P(1−n,0)
n (1 + 2zk). (56)

Consider Formula (54) as the induction hypothesis for m = k. The idea is to prove
the equation

∂

∂z

(
e(ρ, x)

k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

)

− eiρx
∞

∑
n=0

an(x)F(−n, 2, 1, z + 1)

(
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

)

=e(ρ, x)
k

∑
j=0

(−1)jCk
j

(k + 1)!
(k + 1− j)!

xk+1−j(z + 1)j−2k−2 (57)

and the equality

∂

∂z

(
eiρx

∞

∑
n=0

an(x)
k+1

∑
j=2

F(−n, j, 1, z + 1)(
k

∑
m=j−1

(−1)j−m+1Ck−1
m−j+1

k!
(k−m)!

xk−m(z + 1)m−2k+1

))

+eiρx
∞

∑
n=0

an(x)F(−n, 2, 1, z + 1)

(
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

)

=eiρx
∞

∑
n=0

an(x)

(
k+2

∑
j=2

F(−n, j, 1, z + 1)(
k+1

∑
m=j−1

(−1)m+j+1Ck
m−j+1

(k + 1)!
(k−m + 1)!

xk−m+1(z + 1)m−2k−1

))
. (58)

Then, noting that the second terms on the left-hand side of (57) and (58) coincide up to
the sign, the desired result is obtained by summing up both equations.

The proof of Equations (57) and (58) is presented in Appendix A, which completes the
proof of the Lemma.

As long as there is no possible misunderstanding, we consider a fixed ρ = ρk with
a multiplicity m = mk and the corresponding normalization polynomial X(x) = Xk(x).
Thus, the index k is omitted along the following two statements.

Lemma 2. The coefficients bj of a normalization polynomial X(x) of degree m− 1

X(x) =
m−1

∑
j=0

bjxj (59)

satisfy the equation

i Res(Ω(ρ, x); ρk) = b0e(ρk, x) +
m−1

∑
n=1

n−1

∑
r=0

bn
n!

(r + 1)!
Cn−1

r

(
∂r+1

∂zr+1 (e(ρ, x))
)∣∣∣∣

z=zk

(zk + 1)n+r+1. (60)
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Proof. Comparing (53) with (60) we see that, in fact, we need to prove the equality

X(x)e(ρ, x) + eiρx
∞

∑
n=0

(−1)nan(x)
m−1

∑
j=1

djX(x)
dxj (z + 1)j+1P(j−n,0)

n (1 + 2z)

=b0e(ρ, x) +
m−1

∑
n=1

n−1

∑
r=0

bn
n!

(r + 1)!
Cn−1

r
∂r+1

∂zr+1 (e(ρ, x))(z + 1)n+r+1. (61)

Note that

X(x)e(ρ, x) + eiρx
∞

∑
n=0

(−1)nan(x)
m−1

∑
j=1

djX(x)
dxj (z + 1)j+1P(j−n,0)

n (1 + 2z)

=
m−1

∑
s=0

bsxse(ρ, x) + eiρx
∞

∑
n=0

(−1)nan(x)
m−1

∑
j=1

dj

dxj

(
m−1

∑
s=0

bsxs

)
(z + 1)j+1P(j−n,0)

n (1 + 2z)

=
m−1

∑
s=0

bsxse(ρ, x) + eiρx
∞

∑
n=0

(−1)nan(x)
m−1

∑
s=1

(
s

∑
j=1

s!
(s− j)!

bsxs−j

)
(z + 1)j+1P(j−n,0)

n (1 + 2z)

=b0e(ρ, x) +
m−1

∑
s=1

bs

(
e(ρ, x)xs + eiρx

∞

∑
n=0

(−1)nan(x)
s

∑
j=1

s!
(s− j)!

xs−j(z + 1)j+1P(j−n,0)
n (1 + 2z)

)
. (62)

Then, upon comparison of (61) with (62), it can be observed that proving (61) is
equivalent to proving the equality

s−1

∑
r=0

s!
(r + 1)!

Cs−1
r

∂r+1

∂zr+1 (e(ρ, x))(z + 1)s+r+1 (63)

=e(ρ, x)xs + eiρx
∞

∑
n=0

s

∑
j=1

(−1)nan(x)
s!

(s− j)!
xs−j(z + 1)j+1P(j−n,0)

n (1 + 2z) (64)

for some natural number s ≤ m− 1. Thus, we are going to prove (64). The substitution of
the term with the derivative in (63) by Formula (54) for m = r + 1 is enough to obtain (64)
as follows

s−1

∑
r=0

s!
(r + 1)!

Cs−1
r

∂r+1

∂zr+1 (e(ρ, x))(z + 1)s+r+1

=
s−1

∑
r=0

s!
(r + 1)!

Cs−1
r e(ρ, x)

(
r

∑
j=0

(−1)jCr
j

(r + 1)!
(r + 1− j)!

xr−j+1(z + 1)j−2r−2

+eiρx
∞

∑
n=0

an(x)
r+2

∑
j=2

F(−n, j, 1, z + 1)
r+1

∑
s=j−1

(−1)s+j+1Cr
s−j+1

(r + 1)!
(r− s + 1)!

xr−s+1(z + 1)s−2r−1

)

=
s−1

∑
r=0

s!
(r + 1)!

Cs−1
r e(ρ, x)

(
r

∑
j=0

(−1)jCr
j

(r + 1)!
(r + 1− j)!

xr−j+1(z + 1)j−2r−2

+eiρx
∞

∑
n=0

an(x)
r+1

∑
j=1

F(−n, j + 1, 1, z + 1)
r+2

∑
s=j

(−1)s+jCr
s−j

(r + 1)!
(r− s + 1)!

xr−s+1(z + 1)s−2r−1

)

= e(ρ, x)xs + eiρx
∞

∑
n=0

s

∑
j=1

an(x)
s!

(s− j)!
xs−j(z + 1)j+1F(−n, j + 1, 1; z + 1).

This completes the proof of the Lemma.
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Equation (60) provides us with a simple method for computing the coefficients bj
in (59), and consequently for calculating the normalization polynomials.

Theorem 1. The coefficients bj of a normalization polynomial Xk(x) =
mk−1

∑
j=0

bjxj corresponding

to a complex singular number ρk satisfy the system of linear algebraic equations

A · B = D, (65)

where A is an m×mk matrix with entries defined by

Ajn =


e(ρk, xj), n = 1,
n−2

∑
r=0

n!
(r + 1)!

Cn−1
r

(
∂r+1

∂zr+1 e
(
ρk, xj

))∣∣∣∣
z=zk

(zk + 1)n+r+1, 1 < n ≤ mk − 1.
(66)

Here, xj ≥ 0 are distinct points, j = 1, . . . , m (m ≥ mk). B is an mk vector with its entries being the
normalization polynomial coefficients Bn = bn−1, n = 1, . . . , mk, and D is an m vector defined by

Dj = i Res(Ω(ρ, xj); ρk). (67)

Proof. The proof consists of observing that each row in (65) is just Formula (60) correspond-
ing to a point xj. The number of rows must be at least mk; otherwise, the system (65) is
underdetermined.

Thus, the coefficients of the normalization polynomial are obtained from the sys-
tem (65).

Definition 2. A set
J =

{
{ρk, mk, Xk(x)}k=1,...α, s(ρ)

}
(68)

is called the scattering data set of problem (1) and (10).
Here, ρk are the non-real singular numbers, mk their multiplicities, Xk(x) the correspond-

ing normalization polynomials, and s(ρ) is the scattering function (S-type function in the strip
|Im ρ| < ε0).

In order to recall a result on the characterization of the scattering data, we need the
following definition [39].

Definition 3. Let s(ρ) be an S-type function in the strip |Im ρ| < ε0 and let L be a curve lying in
the strip and running from −∞ to +∞, such that all roots (poles) of s(ρ) are situated above (below)
L. The increment divided by 2π of a continuous branch of Arg s(ρ), when ρ runs along L from
−∞ to +∞, is called the index of s(ρ) and denoted by Ind s.

Let us assume that a set J as in Definition 2 is given. A necessary and sufficient
condition (obtained in [18]) to ensure that this set represents the scattering data for a
problem (1) and (10) with Condition (2) is the following relation

Ind s + 2m +κ = 0 (69)

where

m = m1 + . . . + mα, κ =
1
2
[1− s(0)] =

{
0 for e(0) 6= 0,
1 for e(0) = 0.

In the case when mk = 1, the notion of the Birkhoff solution is useful for computing
the corresponding norming constants.
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Remark 7. Let E(ρ, x) denote the Birkhoff solution of Equation (1) (see [24] (p. 113)), i.e., a
solution satisfying the asymptotic relation

E(ρ, x) = (−iρ)(ν)e−iρx(1 + o(1)), x → ∞, ν = 0, 1

uniformly for |ρ| ≥ δ, for each δ > 0. For Im ρ > 0, this solution is not unique. Indeed, if E0(ρ, x)
is a Birkhoff solution, then E(ρ, x) = E0(ρ, x) + ce(ρ, x) is also a Birkhoff solution of (1) for any
constant c ∈ C. Note that for ρ = ρk (a singular number of the problem), the values of all Birkhoff
solutions at the origin coincide. We have E(ρk) := E(ρk, 0) = E0(ρk, 0), because e(ρk) = 0.
Moreover,

E(ρk) =
2iρk

e′(ρk, 0)
, (70)

which can be observed by considering the Wronskian W[e(ρ, x), E(ρ, x)] = −2iρ.

Remark 8. The solution ω(ρ, x) satisfying Conditions (39) has the form

ω(ρ, x) =
E(ρ)e(ρ, x)− e(ρ)E(ρ, x)

2iρ
, ρ ∈ C+. (71)

Note that ρk is a pole of Ω(ρ, x) in the upper half-plane of the complex variable ρ if
and only if it is a root of the Jost function e(ρ) (see (40)). Thus, in case of a simple pole ρk in
Equation (67), the residue can be computed as follows

Res(Ω(ρ, x); ρk) = Res
(

2iρ
e(ρ)

ω(ρ, x); ρk

)
= Res

(
E(ρ)e(ρ, x)− e(ρ)E(ρ, x)

e(ρ)
; ρk

)
=

E(ρk)e(ρk, x)− e(ρk)E(ρk, x)
ė(ρk)

=
E(ρk)e(ρk, x)

ė(ρk)
,

where ė(ρ) := d
dρ e(ρ), and the corresponding normalization polynomial (in fact normaliza-

tion constant) is given by

ck =
Res(Ω(ρ, x); ρk)

e(ρk, x)
i =

E(ρk)

ė(ρk)
i. (72)

Moreover, due to (70), we have

ck = −
2ρk

ė(ρk)e′(ρk, 0)
. (73)

Similarly to the case of a real-valued potential [51] (p. 95), one can see that

ck =
1∫ ∞

0 e2(ρk, x)dx
=

1

(e′(ρk, 0))2 ∫ ∞
0 ω2(ρk, x)dx

.

If |q(x)| ≤ c1 exp(−c2|x|γ), γ > 1 (for some constants c1, c2 > 0), then e(ρ) is an entire
function of ρ (see [51] (p. 95)). In this case, as a Birkhoff solution E(ρ, x), one can consider
the Jost solution e(−ρ, x), Im(ρ) > 0, and hence from (72) we obtain

ck =
e(−ρk)

ė(ρk)
i. (74)

Example 4. According to Remark 8, the normalization constant associated with the unique eigen-
value of the operator from Example 3 is

c1 =
e(ia tanh(b))

ė(−ia tanh(b))
i =

(
2a tanh(b)

tanh(b) + 1

)
(tanh(b)− 1),
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and, in particular, for q3(x), we have

c1 =
2(1 + tanh(1 + i)) tanh(1 + i)

1− tanh(1 + i)
.

Example 5. With the aid of Remark 8, an approximate value of the normalization constant for the
eigenvalue λ0 from Example 1 is obtained

c0 ≈ 16.339391035537 + 40.670169841396i.

3.4. Numerical Algorithm

The approximate solution of the direct problem can be performed with the following
steps.

1. Compute the Jost function using (41) and the recurrent integration procedure from [27],
for Im(ρ) ≥ 0.

2. Extend the Jost function e(ρ) to −ε0 < Im(ρ) < 0 using any convenient technique,
such as the classic analytic continuation, Padé approximants [28] or some other
approach [52,53].

3. Obtain the scattering function s(ρ) for 0 ≤ |Im(ρ)| < ε0 by Formula (42).
4. To locate the eigenvalues, find the non-real poles of the function Ω(ρ, x), which is

equivalent to finding zeroes of the function e(ρ) in the unit disk in terms of z. This
can be achieved with the aid of the argument principle theorem. In particular, in the
present work, we compute the change in the argument along rectangular contours γ.
If the change in the argument along γ is zero, consider another contour. Otherwise,
subdivide the region within the contour until the desired accuracy is attained. Note
that for a sufficiently large N, zeros of eN(ρ), approximate the square roots of the
eigenvalues of the problem arbitrarily closely. The proof is analogous to that in [54]
and is based on the Rouché theorem from complex analysis.

5. Obtain the normalization polynomials.

5.1 For simple poles, use Remark 8 to obtain the normalization constants.
5.2 Otherwise, for higher multiplicities, solve the linear system of Equation (65)

for the coefficients bnk , nk = 0, 1, . . . , mk − 1 computing Aj,n and Dj defined in
Equations (66) and (67) for several values of xj.

4. Inverse Problem

In order to reconstruct the potential in (1) from the scattering data, it is convenient to
introduce the function [39]

φs(x) =
1

2π

∫ ∞+iη

−∞+iη
(s(ρ)− 1)eixρdρ, (75)

where η is a number satisfying the inequalities 0 < η < ε0 (ε0s, defined in Section 3.2), and
the function

f (x) = φs(x)−
α

∑
k=1

Xk(x)eiρkx, x ≥ 0. (76)

Remark 9. Hereinafter, we use the notation∫
Lη

=
∫ ∞+iη

−∞+iη
(77)

for 0 < η < ε0 where Lη represents a line parallel to the real axis crossing iη.
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The kernel A(x, t) and the function f (x) satisfy the following Gel’fand–Levitan (G-L)
equation [39] (Theorem 10.1)

A(x, t) =
∫ ∞

x
A(x, u) f (u + t)du + f (x + t), 0 ≤ x ≤ t < ∞. (78)

4.1. Infinite Linear Algebraic System for Coefficients an(x)

Following [38], from the G-L Equation (78), we deduce the following system of linear
algebraic equations for the coefficients an(x) from the series representation (23).

Theorem 2. The complex-valued functions an(x) satisfy the equations

am(x)−
∞

∑
n=0

an(x)Amn(x) = fm(2x), m = 0, 1, . . . (79)

where

fm(x) :=
∫ ∞

0
f (s + x)Lm(s)e−

s
2 ds, (80)

Amn(x) :=
∫ ∞

0
fn(2x + s)Lm(s)e−

s
2 ds.

Proof. Substitution of the series representation (23) into (78) leads to the equalities

f (x + t) =
∞

∑
n=0

an(x)Ln(t− x)e
x−t

2 −
∞

∑
n=0

an(x)
∫ ∞

x
Ln(u− x)e

x−u
2 f (u + t)du

=
∞

∑
n=0

an(x)Ln(t− x)e
x−t

2 −
∞

∑
n=0

an(x)
∫ ∞

0
Ln(y)e−

y
2 f (x + y + t)dy, (81)

where the change in the order of summation and integration is justified by the general
Parseval identity [47] (p. 16).

We have∫ ∞

x
A(x, u) f (u + t)du =

〈
A(x, x + u), f (u + x + t)

〉
L2(0,∞)

=
∞

∑
n=0

〈
A(x, x + u), e−u/2Ln(u)

〉
L2(0,∞)

〈
e−u/2Ln(u), f (u + x + t)

〉
L2(0,∞)

=
∞

∑
n=0

an(x)
∫ ∞

0
e−

u
2 Ln(u) f (u + x + t)du.

Denote s = t− x. Equation (81) is equivalent to

f (s + 2x) =
∞

∑
n=0

an(x)Ln(s)e−
s
2 −

∞

∑
n=0

an(x)
∫ ∞

0
Ln(y)e−

y
2 f (s + 2x + y)dy. (82)

Multiplying the last equation by Lm(s)e−
s
2 and integrating this, we obtain∫ ∞

0
f (s + 2x)Lm(s)e−

s
2 ds =

∞

∑
n=0

an(x)
∫ ∞

0
Ln(s)Lm(s)e−sds

−
∞

∑
n=0

an(x)
(∫ ∞

0
Lm(s)e−

s
2

(∫ ∞

0
f (s + 2x + y)Ln(y)e−

y
2 dy
)

ds
)

. (83)

Note that ∫ ∞

0
Ln(s)Lm(s)e−sds = δmn,
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and ∫ ∞

0
f (s + 2x + y)Ln(y)e−

y
2 dy = fn(2x + s).

Thus, from (83) we obtain (79).

4.2. Expressions for fm(x) and Amn(x)

It is convenient to regard the functions fm(x) and Amn(x) as a sum of the components
corresponding to the continuous fm,c(x), Amn,c(x) and discrete spectra fm,d(x), Amn,d(x),
and simplify these expressions with the aid of the formula ([48], Formula 7.414 (6))

∫ ∞

0
Lm(s)es(iρ− 1

2 )ds =
(−1)m

(
1
2 + iρ

)m

(
1
2 − iρ

)m+1 . (84)

The continuous and discrete components for the function fm(x) have the form

fm,c(x) :=
∫ ∞

0
φs(s + x)Lm(s)e−

s
2 ds =

1
2π

∫
Lη

(s(ρ)− 1)eiρx
∫ ∞

0
Lm(s)eiρs− s

2 dsdρ

=
(−1)m

2π

∫
Lη

(s(ρ)− 1)

(
1
2 + iρ

)m

(
1
2 − iρ

)m+1 eiρxdρ, (85)

and

fm,d(x) := −
α

∑
k=1

∫ ∞

0
Xk(s + x)ei(s+x)ρk Lm(s)e−

s
2 ds,

= −
α

∑
k=1

eiρkx
∫ ∞

0

(
mk−1

∑
j=0

(
1
j!

)
djXk(x)

dxj sj

)
eiρksLm(s)e−

s
2 ds,

= −
α

∑
k=1

eiρkx
mk−1

∑
j=0

(
1
j!

)
djXk(x)

dxj

∫ ∞

0
sjLm(s)e−(

1
2−iρk)sds,

= (−1)m+1
α

∑
k=1

mk−1

∑
j=0

eiρkx djXk(x)
dxj (zk + 1)j+1P(j−m,0)

m (1 + 2zk). (86)

For the function Amn,c(x), we have

Amn,c(x) :=
∫ ∞

0
Lm(s) fn,c(2x + s)e−

s
2 ds

=
(−1)n

2π

∫
Lη

(s(ρ)− 1)

(
1
2 + iρ

)n

(
1
2 − iρ

)n+1

(∫ ∞

0
Lm(s)e−(

1
2−iρ)sds

)
e2iρxdρ

=
(−1)n+m

2π

∫
Lη

(s(ρ)− 1)

(
1
2 + iρ

)n+m

(
1
2 − iρ

)n+m+2 e2iρxdρ, (87)

and for Amn,d(x), we use (84) to obtain
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Amn,d(x) =
∫ ∞

0
Lm(s) fn,d(2x + s)e−

s
2 ds

= −
∫ ∞

0
Lm(s)

α

∑
k=1

mk−1

∑
j=0

dj

dxj (Xk(2x + s))(zk + 1)j+1F(−n, j + 1, 1; zk + 1)e2iρkxe−(
1
2−iρk)sds

= −
α

∑
k=1

mk−1

∑
j=0

(zk + 1)j+1F(−n, j + 1, 1; zk + 1)e2iρkx

∫ ∞

0

dj

dxj

(
mk−1

∑
p=0

(
sp

2p p!
dp

dxp (Xk(2x))
))

Lm(s)e−(
1
2−iρk)sds

= −
α

∑
k=1

mk−1

∑
j=0

mk−1

∑
p=0

1
2p p!

dp+j

dxp+j (Xk(2x))(zk + 1)j+1F(−n, j + 1, 1; zk + 1)e2iρkx

∫ ∞

0
spLm(s)e−(

1
2−iρk)sds

= (−1)m+n+1
α

∑
k=1

mk−1

∑
j=0

mk−1−j

∑
p=0

1
2p

dp+j

dxp+j (Xk(2x))(zk + 1)p+j+2P(j−n,0)
n (1 + 2zk)

P(p−m,0)
m (1 + 2zk)e2iρkx. (88)

Remark 10. When an eigenvalue ρ2
k is simple and the corresponding normalization polynomial

Xk(x) is just a normalization constant ck, expressions (86) and (88) can be written in the form

fm,d(x) = −
α

∑
k=1

eixρk (−zk)
m(zk + 1)ck, (89)

Amn,d(x) = −
α

∑
k=1

e2ixρk (−zk)
m+n(zk + 1)2ck. (90)

We illustrate the calculation of the functions (85)–(88) with some examples.

Example 6. Consider the scattering function obtained in Example 2:

s2(ρ) =

(
1− ρ

i− ρ

)(
ρ + i
ρ + 1

)
(91)

in the strip 0 ≤ Im(ρ) < 1, with no discrete spectrum and thus no normalization polynomials. Let
us compute the function φs(x) defined by (75), where the line Lη lies in the strip 0 < Im(ρ) < 1.
Since the function s2(ρ) is analytic in the strip 0 < Im(ρ) < 1, the value of the integral is
independent of the choice of 0 < η < 1. Using Jordan’s lemma to calculate the integral in (75),
we obtain

f (x) = φs(x) = −2ie−x.

Now, computing the functions fm(x) and Amn(x) from Formula (85) and (87) and using the
residue theorem, we obtain

fm(x) = −4i · 3−(m+1)e−x, Anm(x) = −8i · 3−(n+m+2)e−2x.

Thus, in the case of the potential q2(x), the system of Equation (79) can be written explicitly.
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Example 7. Consider the scattering function s3(ρ) from Example 3. It has two poles in the upper
half-plane: at i and i tanh(1 + i). Hence, using the residue theorem, we find that

φs(x) =
2(1 + tanh(1 + i))e−x(1+tanh(1+i))

(
ex tanh(1+i) − ex tanh(1 + i)

)
tanh(1 + i)− 1

,

f (x) = −2e(2−x+2i), fm(x) = −4 · 3−(m+1)e(2−x+2i), Amn(x) = −8e2−2x+2i3−(m+n+2).

Again, the corresponding system of Equation (79) can be written explicitly.

Example 8. Consider s1(ρ) from Example 1. To compute φs(x), we consider the singularities
of s1(ρ) in the upper half-plane. From the set D(s1) (see Example 1), we have that s1(ρ) has an
infinite number of isolated singularities at the points ρk = ik

2 with k ∈ N \ {0} and a singular
number ρ0; see (46). Using properties of the gamma function, we obtain

Res
ρ=ρk

k=1,2,...

(s1(ρ)− 1) =

(
(1− i)−4iρk 5−2iρk J2iρk ((2− 2i)

√
5)

J−2iρk ((2− 2i)
√

5)Γ(1− 2iρk)

)
Res
ρ=ρk

k=1,2,...

Γ(1 + 2iρ)

=

(
(1− i)2k5k J−k((2− 2i)

√
5)

Jk((2− 2i)
√

5)Γ(1 + k)

)
(−1)ki

2(k− 1)!
=

(
5(1− i)2)k

2k!(k− 1)!
i,

and

Res
ρ=ρ0

(s1(ρ)− 1) =
e(−ρ0)

e′(ρ0)
= −ic0,

where c0 is the normalization constant obtained in Example 5. Therefore, for x > 0, we have

φs(x) = ieixρ0 Res
ρ=ρ0

(s1(ρ)− 1) + i
∞

∑
k=1

e−
xk
2 Res

ρ=ρk
(s1(ρ)− 1)

= c0eixρ0 − 1
2

∞

∑
k=1

(
−e−

x
2

)k

(k− 1)!
= c0eixρ0 +

e−e−x/2−x/2

2
.

Hence, the function f (x) has the form

f (x) = c0eixρ0 +
e−e−x/2−x/2

2
− c0eixρ0 =

e−e−x/2−x/2

2
,

and we obtain the functions fm,c(x) and fm,d(x) in terms of z0 =
1
2+iρ0
1
2−iρ0

(see (9)) as follows

fn,c(x) = c0eixρ0(−1)nzn
0 (z0 + 1) + (−1)n

∞

∑
k=1

(
−e−

x
2

)k

(k− 1)!
(1− k)n

(1 + k)n+1 , (92)

and

fn,d(x) = (−1)n+1c0eixρ0(z0 + 1)zn
0 . (93)

Thus, from Equations (92) and (93) we obtain

fn(x) = (−1)n
∞

∑
k=1

(
−e−

x
2

)k

(k− 1)!
(1− k)n

(1 + k)n+1 .
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Likewise, applying the residue theorem, we have

Amn(x) = 2(−1)n+m
∞

∑
k=1

(−e−x)
k

(k− 1)!
(1− k)n+m

(1 + k)n+m+2 .

Thus, as in the previous two examples, the system of Equation (79) can be written explicitly.

The cancellation of terms when summing up (92) with (93) is not incidental and is
generalized below in Remark 12.

To calculate the integrals in functions fm and Amn in the case when the scattering func-
tion is given explicitly, we implement Jordan’s lemma and the residue theorem considering
the asymptotics (44). However, often the function s(ρ) is not given in a closed form but
as a table of data—then, the following techniques can be useful to compute the integrals.
First, we recall a widely used technique for the quadrature of highly oscillatory integrals
through approximations of the Fourier sine and cosine transform. This is illustrated below
in Example 16. A second option is a transformation of integrals in fm and Amn into integrals
over a finite interval providing a certain advantage for its numerical implementation. This
is illustrated below in Example 21.

Remark 11. We mainly discuss the calculation of the functions fm. The calculation of Amn
is analogous.

1. Suppose s(ρ) is given in a closed form. By Pol we denote the set of its poles in the open upper
half-plane. Since s(ρ) satisfies the asymptotics (44), the integral in (85) can be computed with
the aid of Jordan’s lemma and the residue theorem as follows

fm,c(x) = (−1)mi ∑
ρj∈Pol

Res
ρ=ρj

(z + 1)zm(s(ρ)− 1)eiρx, (94)

provided the series on the right-hand side is convergent; see [55] (p. 459).
If Pol contains only simple poles, we obtain

fm,c(x) = (−1)mi ∑
ρj∈Pol

(zj + 1)zm
j eiρjxRes

ρ=ρj
(s(ρ)− 1). (95)

2. Consider the integral in (85)

fm,c(x) =
(−1)me−ηx

2π

∫ ∞

−∞
(s(σ + iη)− 1)

(
1
2 + i(σ + iη)

)m

(
1
2 − i(σ + iη)

)m+1 eiσxdσ (96)

for some 0 < η < ε0. Following the approach from [56] (p. 236), denote

g(σ) := (s(σ + iη)− 1)

(
1
2 + i(σ + iη)

)m

(
1
2 − i(σ + iη)

)m+1 ,

and set ψ(σ) = g(σ) + g(−σ), φ(σ) = g(σ)− g(−σ). Then

∫ ∞

−∞
(s(σ + iη)− 1)

(
1
2 + i(σ + iη)

)m

(
1
2 − i(σ + iη)

)m+1 eiσxdσ =
∫ ∞

0
ψ(σ) cos(σx)dσ + i

∫ ∞

0
φ(σ) sin(σx)dσ. (97)
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The integrals on the right hand side (the Fourier cosine and sine transforms) are approximated
by the corresponding sums

h
N

∑
k=0

ψ

((
k +

1
2

)
h
)

cos
(

x
(

k +
1
2

))
and h

N

∑
k=0

φ(kh) sin(xkh), (98)

where h and N are chosen to be sufficiently small and large, respectively.
3. Transform the line Lη into a circle centered at −2η

1+2η of radius 1
2+η with the aid of the formulas

ρ =
i(1 + 4η − exp(iθ))

2(1 + exp(iθ))
, dρ = exp(iθ)

(1 + 2η)

(1 + exp(iθ))2 dθ. (99)

This enables us to consider the integral in (85) in the form

fm,c(x) =
(−1)m

2π

∫ 2π

0

(
s
(

i(1 + 4η − exp(iθ))
2(1 + exp(iθ))

)
− 1
)

exp
(
−x
(

1 + 4η − exp(iθ)
2(1 + exp(iθ))

))
·(

1
2 −

(
1+4η−exp(iθ)
2(1+exp(iθ))

))m

(
1
2 +

(
1+4η−exp(iθ)
2(1+exp(iθ))

))m+1 exp(iθ)
(1 + 2η)

(1 + exp(iθ))2 dθ,

reducing the integration to a finite interval.

Remark 12. Suppose that the eigenvalues are simple, and Formula (74) is applicable. Denote
the set K = {ρ1, . . . , ρα} of non-real singular values. From (89), (90) and (95), we have that the
functions fm(x) and Amn(x) can be computed as

fm(x) = (−1)mi ∑
ρj∈Pol \K

1
ė(ρj)

(zj)
m(zj + 1)eiρjxRes

(
e(−ρ); ρ = ρj

)
,

Amn(x) = (−1)n+mi ∑
ρj∈Pol \K

1
ė(ρj)

(zj)
n+m(zj + 1)2e2iρjxRes

(
e(−ρ); ρ = ρj

)
.

4.3. Stability of the System and Its Solution

Consider the truncated system (79):

am(x)−
M

∑
n=0

an(x)Amn(x) = fm(2x), m = 0, . . . , M. (100)

Denote its solution as UM =
{

aM
m
}M

m=0. In the following two theorems, we prove
the unique solvability of (100), the convergence of its solution to the exact one as well as
its stability.

Theorem 3. Let x ≥ 0 be fixed. Consider the system (100) truncated to M + 1 equations. Then,
for a sufficiently large M, the truncated system is uniquely solvable, and

aM
m (x)→ am(x), M→ ∞, m = 0, 1 . . . . (101)

Proof. Since { fm(2x)}∞
m=0 ∈ `2 and {Am,n(x)}∞

m,n=0 ∈ `2 ⊗ `2 and we look for
{am(x)}∞

m=0 ∈ `2, the assertion of the theorem for the truncated system follows directly
from the general theory presented in [57] (Chapter 14, §3).

Theorem 4. The approximate solution
{

aM
m (x)

}M
m=0 of the system is stable.
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Proof. Note that the truncated system (100) coincides with that obtained by applying
the Bubnov–Galerkin procedure to the G-L Equation (78) with the orthonormal system
of Laguerre polynomials in L2([0, ∞); e−x); see [58] (§14). Let IM denote the (M + 1)×
(M + 1) identity matrix, LM = {Am,n(x)}M

m,n=0 be the coefficient matrix of the truncated

system and RM = { fm(2x)}M
m=0 the right hand side of (100). Following [58] (§9), consider a

system called inexact
(IM + LM + ΓM)VM = RM + δM,

where ΓM is an (M + 1)× (M + 1) matrix representing errors in the coefficients Am,n, and
δM is the column vector representing errors in the coefficients fm. Let VM be a solution of
the non-exact system. The solution of the Bubnov–Galerkin procedure is said to be stable
if there exist constants c1, c2 > 0, such that for ‖ΓM‖ ≤ r and arbitrary δM the non-exact
system is solvable, and the following inequality holds

‖UM −VM‖ ≤ c1‖ΓM‖+ c2‖δM‖. (102)

Now, since in the case under consideration, the inequality (102) is true (see [58]
(Theorems 14.1 and 14.2)), the approximate solution is stable.

4.4. Algorithm to Recover the Potential

Given a scattering data set J as in Definition 2, the algorithm to recover q(x) consists
of the following steps.

1. Compute the functions fm(x) and Amn(x) with the aid of (85)–(88).
2. Solve the truncated system of linear algebraic Equation (100) to obtain the coefficient

a0(x).
3. Recover the potential q(x) from (38).

5. Numerical Examples

We implemented the algorithms proposed in Sections 3.4 and 4.4 to solve the direct
and inverse problems, respectively, with machine precision and with the aid of Matlab2021.
Several examples are discussed, some of which have been introduced in previous sections.

5.1. Direct Problem

In this subsection, we discuss the computation of the scattering data, based on the
series representation of the Jost solution (8). We deal with the approximate solution
obtained by truncating the series (36).

The computation of the coefficients an(x) is performed with the aid of the recurrent
integration procedure from [27].

First of all, we discuss the choice of the number N in (36). Below, we show that a
satisfactory accuracy is attained for a relatively small N (from several units to several
dozens), and a reliable indicator

εN = max

∣∣∣∣∣ N

∑
n=0

an(x)− 1
2

∫ ∞

x
q(t)dt

∣∣∣∣∣ (103)

can be used to choose an appropriate N.
In the case of simple singular numbers ρk, the norming constants can be computed

with the aid of (73):

ck ≈ −
2ρk

ėN(ρk)e′N(ρk, 0)
. (104)

Another possibility consists of using (74) in the form

ck ≈
[m, n]eN(ρ)(−ρk)

ėN(ρk)
, (105)
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where [m, n]eN(ρ)(−ρk) stands for the Padé approximant of eN(ρ) at ρ = −ρk. This can
be achieved when the accuracy of this rational approximation in the upper half-plane is
satisfactory, i.e., when one has a suitable small value of max

∣∣∣[m, n]eN(ρ)(ρ)− eN(ρ)
∣∣∣ in a

sufficiently large region in the upper half-plane of the complex variable ρ.
A reliable algorithm to compute derivatives of (36) in (104) is proposed in [27].
To obtain the scattering function (42) in the strip |Im(ρ)| < ε0 we consider two options

depending on how the computation of the Jost function is performed for ρ in the lower
half-plane. The first one uses

s(ρ) ≈
[m, n]eN(ρ)(−ρ)

eN(ρ)
,

provided [m, n]eN(ρ)(ρ) extends eN(ρ) analytically onto a certain strip in the lower half
ρ-plane. A second option for the computation of s(ρ) is

s(ρ) ≈ eN(−ρ)

eN(ρ)
, (106)

where the expression (36) is calculated at points ρ of a parallel line sufficiently close to the
real axis and contained in the lower half ρ-plane.

Remark 13. The notation for the approximate Jost solution (Jost function) may contain two indices,
k and N: ek,N(ρ, x) (ek,N(ρ)), where k denotes the solution associated with the Schrödinger equation
with the potential qk(x) and N is the parameter from (36).

Example 9. Consider the potential q2(x) from Example 2. We present the indicator εN in Table 1
for different values of N in (103).

Table 1. Example 9: indicator εN for different values of N.

N εN for x ∈ [0, 12] N εN for x ∈ [0, 12]

2 1.57× 10−1 30 6.7× 10−12

3 5.24× 10−2 35 6.02× 10−12

5 5.82× 10−3 40 5.21× 10−12

10 2.39× 10−5 45 4.98× 10−12

15 9.86× 10−8 55 4.34× 10−12

20 4.11× 10−10 180 1.98× 10−12

Figure 1 shows the real and imaginary parts of the approximate and exact Jost solution
computed from (36) at a sample point ρ = 1 + i/3 with N = 30, i.e., e2,30(1 + i/3, x). The
maximum absolute error of the computed Jost solution for x in the interval [0, 12] is 2.14× 10−13.
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Figure 1. Real (left) and imaginary (right) parts of e2(1 + i/3, x) and approximate Jost solution
e2,30(1 + i/3, x).

Table 2 presents the maximum absolute and relative errors of the approximate Jost function
e2,N(ρ(z)) for z ∈ D for different values of N.

Table 2. Maximum absolute and relative errors of the approximate Jost function e2,N(ρ(z)) in D.

N 2 5 20 25 30 40 180

Abs. Error 1.57× 10−1 5.82× 10−3 4.06× 10−10 1.68× 10−12 2.48× 10−14 1.98× 10−14 1.96× 10−14

Rel. Error 1.78× 10 6.58× 10−1 4.58× 10−8 1.89× 10−10 9.66× 10−13 3.17× 10−13 1.57× 10−13

Figure 2 shows the function |e2,30(ρ(z))| for z ∈ D. Here, we illustrate the existence of a
unique singular number. Indeed, this singular number ρ = −1 corresponds to z = −0.6− 0.8i
and the value e2,30(−1) is −5.55× 10−15 + 2.66× 10−15i.

Figure 2. Function |e2,30(ρ(z))| for z ∈ D.
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The distribution of the absolute and relative errors of the approximate Jost function is presented
in Figure 3 and Figure 4 (respectively), where the maximum absolute error is 1.98× 10−14 and the
maximum relative error is 3.17× 10−13.

Figure 3. Absolute error of approximate Jost function e2,30(ρ(z)) for z ∈ D.

Figure 4. Relative error of approximate Jost function e2,30(ρ(z)) for z ∈ D.

Furthermore, a good approximation of the derivative of the Jost function becomes essential for
the argument principle algorithm performance. This is necessary to obtain the eigenvalues as the
squares of non-real zeros of the approximate Jost function. In Figure 5, we illustrate de2,30(ρ(z))

dz ,
and Figures 6 and 7 depict the distribution of the absolute and relative errors, respectively. The
maximum absolute error is 9.6× 10−13 and the maximum relative error is 7.21× 10−13.

Figure 5. Function
∣∣∣ de2,30(ρ(z))

dz

∣∣∣ for z ∈ D.



Mathematics 2023, 11, 3544 28 of 51

Figure 6. Absolute error of de2,30(ρ(z))
dz , z ∈ D.
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Figure 7. Relative error of de2,30(ρ(z))
dz , z ∈ D.

To find the singular numbers, we consider the circle {z ∈ C : |z| = 1} (real axis in ρ) and a
cubic spline interpolation of the approximate Jost function (N = 30). For the spline interpolation,
we use the Matlab routine csapi. To locate the zeros of the spline, we use slmsolve from the Shape
Language Modeling (SLM) toolbox, version 1.14 by John D’Errico [59], available for Matlab2021a.
The value ρ1 = −1.000000000000003 was obtained with an absolute error of 3.11 × 10−15.
Additionally, the argument principle algorithm applied to e2,30(ρ(z)) in D discarded any eigenvalue
of the problem (non-real zero ρ).

The second step of the algorithm from Section 3.4 requires computing the Jost function in the
strip −ε0 < Im(ρ) < 0 (ε0 = ε

2 = 1). In this example, we extend e2,30(ρ(z)) analytically via
Padé’s approximation. The Padé approximant [m, n]e2,30(ρ)

was computed in Matlab2021a using the
routine pade.

In Table 3, we computed the maximum absolute and relative errors of the Padé approximant
[1, 1]e2,N(ρ) of e2,N(ρ) with N = 3, 5, 20, 30, 40, 50 and 180 for 0 ≤ Im(ρ) < 1. These values
indicate the possibility of dealing with this Padé approximant when computing the set of scattering
data. Additionally, from Table 4, we confirm that this approximant satisfactorily extends the Jost
function to a desirable strip in the lower half-plane (the strip is related to the one needed for the
calculation of the scattering function s2(ρ)).
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Table 3. Maximum absolute and relative errors of the Padé approximant [1, 1]e2,N(ρ)
with respect to

e2,N(ρ) in a strip in the upper half ρ-plane.

N Max. Abs. Error of [1, 1]e2,N(ρ)(ρ) N Max. Rel. Error of [1, 1]e2,N(ρ)(ρ)

with 0 ≤ Im(ρ) < 1 with 0 ≤ Im(ρ) < 1

3 7.18× 10−1 3 2.97

5 5.45× 10−1 5 2.14

20 1.26× 10−6 20 4.3× 10−6

30 4.6× 10−11 30 1.58× 10−10

40 8.71× 10−12 40 3.10× 10−11

50 1.93× 10−11 50 6.56× 10−11

180 1.05× 10−10 180 3.56× 10−10

Table 4. Maximum absolute and relative errors of the Padé approximant [1, 1]e2,N(ρ)
with respect to

the exact Jost function e2(ρ) in a strip in the lower half ρ-plane.

N Max. Abs. Error of [1, 1]e2,N(ρ)(ρ) N Max. Rel. Error of [1, 1]e2,N(ρ)(ρ)

in−1 < Im(ρ) ≤ 0 in−1 < Im(ρ) ≤ 0

3 3.07 3 2.99

5 2.66 5 2.16

20 7.99× 10−6 20 4.34× 10−6

30 2.89× 10−10 30 1.59× 10−10

40 5.65× 10−11 40 3.12× 10−11

50 1.23× 10−10 50 6.61× 10−11

180 6.54× 10−10 180 3.59× 10−10

To obtain s2(ρ) numerically on the strip 0 < Im(ρ) < ε0 = 1, we use the truncated series
e2,30(ρ) and the Padé approximant [1, 1]e2,30(ρ)

:

s2(ρ) ≈
[1, 1]e2,30(ρ)

(−ρ)

e2,30(ρ)
.

The maximum absolute error inside the region R = [−30, 30]×
[
10−2i,

(
ε0 − 10−2)i] is

9.64× 10−10.

Remark 14. The order of the Padé approximant used for the Jost function is not arbitrary.
Although the maximum absolute errors inside the region R of other approximations of s2(ρ)
using [2, 2]e2,30(ρ)

(
9.35× 10−11), [3, 3]e2,30(ρ)

(
1.34× 10−11), [4, 4]e2,30(ρ)

(
1.5× 10−11) and

[7, 7]e2,30(ρ)

(
6.37× 10−12) are better in comparison with [1, 1]e2,30(ρ)

, we choose [1, 1]e2,30(ρ)
as

the most suitable option to avoid the appearance of Froissart doublets. Indeed, the use of the Padé
approximants when there is no available information about the smoothness of the function to be
approximated is challenging. Some publications propose modified algorithms [60], even using the
Toeplitz matrix theory with many numerical implementations in Maple, Wolfram Mathematica
(see [61]) or Matlab (see [62]). For the purposes of this paper, it is sufficient to use only the informa-
tion obtained from the truncated series eN(ρ) and the argument principle algorithm to construct
the approximant. Consider the number K of zeros counting multiplicities of the approximate Jost
function eN(ρ) (singular numbers being calculated using the argument principle algorithm) located
inside D as the degree of the polynomial in the numerator in the Padé approximant. Recalling that,
in most cases, an accurate Padé’s approximation is obtained on the diagonal approximant types for
analytical functions, it is reasonable to choose the Padé approximant as [K, K]eN(ρ).
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Example 10. Consider the potential q3(x) from Example 3. The approximate Jost function e3,N(ρ)
is computed in the strip 0 ≤ Im(ρ) < ε

2 = 1 for several values of N. In Table 5, the maximum
absolute error of the approximate Jost function is presented.

Table 5. Maximum absolute error of the Jost function e3,N(ρ) for N = 2, 5, 20, 30, 50 and 180.

N 2 5 20 30 50 180

Abs.
Error 2.34× 10−1 8.65× 10−3 6.03× 10−10 5.57× 10−14 4.72× 10−14 4.67× 10−14

Similarly to the previous example, a search for real singular numbers was performed; however,
none were detected. Subsequently, the argument principle algorithm located a non-real singular num-
ber in D, with the value z1 ≈ −0.386709149322063 − 0.105221869864471i
(ρ1 ≈ −0.271752585319512 + 1.083923327338694i). Its absolute error is 8× 10−15. The contour
refinement is not a concern, since the performed algorithm from [54] is based on the argument
principle algorithm followed by several Newton iterations.

Additionally, the Jost function was extended to the strip |Im(ρ)| < ε0 = 1 through the Padé
approximant

[1, 1]e3,30(ρ)
=

ρ
(
4.69× 1015 + 4.94× 1013i

)
+ 1.94× 1015 − 4.92× 1015i

ρ(4.69× 1015 + 6.12× 1014i)− 6.11× 1014 + 4.69× 1015i
.

The corresponding maximum absolute error of [1, 1]e3,30(ρ)
(ρ) inside the rectangle

R1 := [−20, 20] ×
[
0i,
(
ε0 − 10−2)i] in the complex ρ-plane is 8.43 × 10−11. Inside

R2 := [−20, 20]×
[(
−ε0 + 10−2)i, (ε0 − 10−2)i], the maximum absolute error is 8.42× 10−11.

Next, an approximate value of the normalization constant corresponding to ρ1 was computed

c1 ≈
[1, 1]e3,30(ρ)

(−ρ1)

ė3,30(ρ1)
i ≈ −10.317711295453737 + 12.894194226972697i

with an absolute error of 2.8× 10−9.
Finally, we calculate the scattering function by

s3(ρ) ≈
[1, 1]e3,30(ρ)

(−ρ)

e3,30(ρ)
. (107)

The maximum absolute error of the approximation of s3(ρ) inR1 is 1× 10−9 (see Figure 8).

Figure 8. Absolute error of the approximate scattering function s3(ρ) ≈
[1,1]e3,30(ρ)

(−ρ)

e3,30(ρ)
.
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Example 11. Consider the potential q1(x) from Example 1. Table 6 shows the parameter εN for
some values of N.

Table 6. Example 11: parameter εN for different values of N.

N εN for x ∈ [0, 12] N εN for x ∈ [0, 12]

2 4.43 38 1.12× 10−5

3 2.91 48 6.97× 10−7

5 1.13 58 5.17× 10−8

10 1.32× 10−1 88 4.46× 10−11

15 1.88× 10−2 98 5.12× 10−12

20 3.17× 10−3 108 9.48× 10−13

28 2.27× 10−4 178 1.49× 10−12

Note that the approximation of the Jost function in this example requires more terms in the series
representation than in previous examples. To control the accuracy of the approximation, in addition to
the parameter εN, one can use the asymptotic relation for the Jost function from [24] (p. 105),

e(ρ) = 1 +
ω(0)

iρ
− q(0)

(2iρ)2 +
ω2(0)
(2iρ)2 + o

(
1
ρ2

)
, |ρ| → ∞, ρ ∈ C+ \ {0}, (108)

where ω(x) = − 1
2

∫ ∞
x q(s)ds. This relation is valid for q(x) with first and second summable

derivatives.
Figure 9 depicts the Jost function computed with N = 98 and the singular number

ρ0 ≈ 1.784065846059995 + 0.608788673578742i. Figure 10 shows the fulfillment of the asymp-

totic relation (108), namely the graph of
∣∣∣e1,98(ρ)− ω(0)

iρ + q(0)
(2iρ)2 −

ω2(0)
(2iρ)2

∣∣∣, which tends to 1 when
|ρ| → ∞.

Figure 9. Absolute value of e1,98(ρ) in the upper half ρ-plane. The marked point is the singular
number ρ0.
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Figure 10. Graph of
∣∣∣e1,98(ρ)−

ω(0)
iρ +

q(0)
(2iρ)2 − ω2(0)

(2iρ)2

∣∣∣ tending to 1 when |ρ| → ∞.

The eigenvalue is computed numerically as a zero of the exact Jost function with the aid
of Wolfram Mathematica v.12 (Wolfram Research, Inc., Champaign, IL, USA) λ0 ≈ λ∗0 :=
2.8122672899483 + 2.1722381890043i. This “exact” eigenvalue is compared with the approxima-
tion 2.812267289948449 + 2.172238189004328i obtained as the square of the approximate ρ0. The
absolute error is 1.52× 10−13.

For the numerical calculation of the analytic extension of e1,98(ρ) onto the strip − 1
2 <

Im(ρ) < 0, it is not possible to consider the Padé approximant [1, 1]e1,98(ρ)
. This does not approx-

imate e1,98(ρ) accurately even in the upper half-plane of the complex variable ρ. Using the Padé
approximant [7, 7]e1,98(ρ)

the absolute error was 0.17.
Instead of using Formula (105) to compute the normalization constant c0, Formula (104)

is applied to obtain the approximation c0 ≈ 16.339391965970112 + 40.670169715260290i with
absolute error 3.05× 10−12.

To compute the scattering function s1(ρ) on a line parallel to the real axis contained in the strip
|Im(ρ)| < ε0 = |Im(ρ0)| ≈ 0.608788673578742i, Formula (106) was used. The function e1(ρ) is
represented by (36) for ρ on a line in the lower half ρ-plane parallel and sufficiently close to the real
axis. Having calculated these series representations for the functions involved in s1(ρ), we compute

s1(ρ) ≈
e1,98(−ρ)

e1,98(ρ)

with a maximum absolute error 1.45× 10−7 along the line Lη=0.1 (see (77)).
In this example, we obtain a satisfactory accuracy in the calculations of the scatterin data set

using the expression (36) alone and the derivatives required by (104).

Example 12 ([44]). Consider the potential

q4(x) := Ri sin(x)e−x,

with R being a constant (Reynolds number). When R > 0 is sufficiently large, the eigenvalues may exist.
For example, for R = 10, there is one eigenvalue in the box B := 1.604391258

44 + 1.7978849i81
67 [44]

(see also [45]).
The Jost solution is not available in a closed form. In order to check the validity of the numerical

calculation of the coefficients an(x) for e4,N(ρ.x), we consider the indicator εN (Table 7).
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Table 7. Example 12: indicator εN for different values of N (potential q4(x) with R = 10).

N εN for x ∈ [0, 12] N εN for x ∈ [0, 12]

2 4.43 55 3.92× 10−7

3 2.91 105 9.77× 10−11

5 5.97× 10−1 136 1.06× 10−12

10 7.85× 10−2 137 9.19× 10−13

15 1.17× 10−2 155 6.11× 10−13

20 1.70× 10−3 175 7.77× 10−13

45 6.95× 10−6 200 9.72× 10−13

Figure 11 depicts the Jost function computed with N = 137 and the approximation of the
singular number ρ1 ≈ 1.416695330664399 + 0.634534798062634i, with its square belonging to
the box B. Additionally, Figure 12 shows the fulfillment of the asymptotic relation (108).

Figure 11. Absolute value of e4,137(ρ) (R = 10) in the upper half ρ-plane and the marked point is the
approximate singular number ρ1.

Figure 12. Graph of
∣∣∣e4,137(ρ)−

ω(0)
iρ +

q(0)
(2iρ)2 − ω2(0)

(2iρ)2

∣∣∣ tending to 1 when |ρ| → ∞ (R = 10).

The normalization constant c1 is calculated using (104),

c1 ≈ 0.423317609673475 + 10.608764849282464i.

Finally, the scattering function is approximated by
e4,137(−ρ)

e4,137(ρ)
.

Now, take R = 30 in the potential q4(x). In this case, two boxes localizing the only two
eigenvalues λ1 and λ2 were obtained in [44],

B1 := 2.55564161435
19 + 7.68818701819

03i, B2 := 6.3746591
12 + 2.469955

46i.
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Table 8 provides the values of the indicator εN for several values of N.

Table 8. Example 12: indicator εN for different values of N (R = 30).

N εN for x ∈ [0, 12] N εN for x ∈ [0, 12]

5 1.09× 101 105 1.27× 10−7

10 2.86 155 2.30× 10−10

15 7.71× 10−1 175 2.78× 10−11

20 1.17× 10−1 200 5.70× 10−12

45 1.66× 10−3 220 6.46× 10−12

55 1.65× 10−4 230 7.04× 10−12

Approximate eigenvalues computed from e4,N(ρ) for different values of N, are presented in
Tables 9 and 10.

Table 9. Approximate eigenvalue λ̃1 computed using different values of N in e4,N(ρ) (R = 30).

N λ̃1

35 2.555647790300414 + 7.688132784089897i

65 2.555641614022092 + 7.688187017680658i

105 2.555641614273991 + 7.688187018110548i

200 2.555641614273991 + 7.688187018110548i

230 2.555641614273991 + 7.688187018110548i

Table 10. Approximate eigenvalue λ̃2 computed using different values of N in e4,N(ρ) (R = 30).

N λ̃2

35 6.368733224187178 + 2.460948309337657i

65 6.374657558248066 + 2.460950123973226i

105 6.374654410969357 + 2.460950093296220i

200 6.374654410861196 + 2.460950093077938i

230 6.374654410861196 + 2.460950093077938i

Note that λ̃1 ∈ B1 and λ̃2 ∈ B2 for N = 200. Finally, the normalization constants are
calculated using e4,200(ρ) in (104),

c1 ≈ 1.669128547357084× 102 − 1.694940279771396× 102i

c2 ≈ −54.578951306154920 + 45.276710620944780i.

Although, in this example, more powers for the series representation of the Jost function were
used, the method proved to be applicable to obtaining the scattering data set without any additional
informatio. The good accuracy achieved is confirmed by the ability t use the scattering data obtained
as input data to solve the inverse scattering problem to recover the potential q4(x) with R = 30
below in Example 22.

5.2. Inverse Problem

In the present section, we discuss the accuracy, convergence and stability of the
proposed method for solving the inverse scattering problem.
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Remark 15. By qk,M(x), we denote the approximation of the potential qk(x) (k = 1, 2, 3, 4, 5)
obtained by solving the truncated system (100) with the sum up to M, i.e., with M + 1 equations.

5.2.1. Convergence and Accuracy

Example 13. Consider the scattering data calculated in Example 3:

J =
{{

ρ1 = i tanh(1 + i), m1 = 1, c1 =
2(i + i tanh(1 + i)) tanh(1 + i)

i− i tanh(1 + i)

}
,

s3(ρ) =
(ρ + i tanh(1 + i))(ρ + i)
(ρ− i tanh(1 + i))(ρ− i)

}
where s3(ρ) is an S-type function in the strip 0 ≤ |Im(ρ)| < ε0 = 1.

We shall recover the potential q3(x) = −2 sech2(x − 1 − i). The system (100) of linear
algebraic equations for this example is obtained in a closed form (see Example 7). For a different
number of equations in the truncated system, we obtain a solution symbolically by using the Matlab
routine solve. The potential q3(x) is recovered from (38). Figure 13 presents the recovered potential
in each case.
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Figure 13. Real (left) and imaginary (right) part of the recovered potential q3,M(x) for M = 4, 7, 9 and 11.

The corresponding absolute and relative errors are presented in Figure 14 and Figure 15, respec-
tively. Note that a high accuracy is attained even in the case of a very reduced number of equations
in the truncated system. Moreover, a very fast convergence of the method can be appreciated.

0 2 4 6 8 10
10

-25

10
-20

10
-15

10
-10

10
-5

10
0

Figure 14. Absolute error of the recovered potential q3,M(x) with M = 4, 7, 9 and 11.
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Figure 15. Relative error of the recovered potential q3,M(x) with M = 4, 7, 9 and 11.

Example 14. Consider the scattering data J = {s2(ρ)} from Example 2. As was shown above
(Example 6), the system (100) for this example can be written explicitly. Again, when solving
the corresponding truncated system for different values of M we observe a fast convergence and
remarkable accuracy even for small values of M (see Table 11 and Figure 16).

Table 11. Maximum absolute error of the approximate potential q2,M(x) for some values of M.

M in (100) 0 1 2 3 6 8

max
x∈[0,6]

|q2(x)− q2,M(x)| 1.05 1.13× 10−1 1.25× 10−2 1.4× 10−3 1.91× 10−6 2.35× 10−8

Figure 16. Exact and computed potential q2,6(x).

Example 15. Consider the closed form of the scattering function s1(ρ) from Example 1. We
compute functions fm,c(x) and Amn,c(x) using the first option from Remark 11. Some poles and
residues are given in Table 12 (computed with the aid of the package Numerical Calculus of
Mathematica v.12).
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Table 12. Poles and residues in the upper half-plane of the function s1(ρ)− 1.

Poles Residues

0.5i 5

1.784065846059995 + 0.608788673578742i 40.670169841396− 16.339391035537i

1i −25i

1.5i − 125
3

2i 625
18 i

2.5i 625
36

3i − 625
108 i

3.5i − 1743
1265

4i 249
1012 i

6i 7
267,683 i

7i − 1
10,857,221 i

Note that the absolute value of the residues decreases considerably as the poles move away from
the origin on the imaginary axis. This allows us to use a small number of poles for the calculation of
the functions fm,c(x) and Amn,c(x).

The convergence of the method in this case results to be slower; see Figure 17, although a
satisfactory accuracy is attained for M = 9.

Figure 17. Absolute error for different values of M in the truncated system (100) (left) and the
absolute value of the recovered potential q1,19(x) computed with 20 equations (right) for x ∈ [0, 10].

5.2.2. Stability of the System

Since the stability of the method was proved in Theorem 4, we are able to work
efficiently with noisy scattering data. First, we consider the natural noise arising from the
numerical implementations of the last two procedures in Remark 11, i.e., calculation of
the approximate matrix in (100) from the scattering function s(ρ) given in a closed form.
Another situation considered in this subsection is the recovery of the potential from a
uniformly noisy scattering function.

Remark 16. Henceforth, denote by f̃m(x), f̃m,c(x), Ãmn(x) and Ãmn,c(x) the numerical approxi-
mation of fm(x), fm,c(x), Amn(x) and Amn,c(x).

Remark 17. In the last step of the algorithm from Section 4.4, for recovering q with the aid of (38),
the coefficient a0 needs to be differentiated twice. This was performed by interpolating a0(x) with
a quintic spline through the Matlab routine spapi and a posterior differentiation with the Matlab
command fnder.
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Example 16. Let us consider the scattering data from Example 2. The recovery of the potential
q2(x) from the exact scattering function s2(ρ), obtained by using approximate functions f̃m(x)
and Ãmn(x) in the truncated system (100), is presented. The computation of functions fm(x) and
Amn(x) requires numerical integration along the line Lη=0.5 (see (77)). For this purpose, the last
two procedures in Remark 11 were applied.

Method 1. The second option in Remark 11 is implemented. With the scattering function (91)
at points ρ = σ + 0.5i and σ = −(k + 1/2)h for k = 0, 1, . . . , N(x), where N(x) = 55000/x
and h = 0.145454545, the calculation of the Fourier transforms in (98) is carried out. In Table 13,
the maximum absolute error of f̃m(x) is presented for 4 values of the parameter m.

Table 13. Example 16: maximum absolute error of f̃m,c(x) calculated with the second procedure in
Remark 11.

m 0 1 2 3

max
x∈(0,20)

∣∣ fm(x)− f̃m(x)
∣∣ 1.102× 10−9 7.995× 10−10 7.988× 10−10 8.757× 10−10

Now, we compute Ãmn,c(x) using the same numerical integration method with parameters
N(x) = 5500/x and h = 0.127272727.

Table 14 shows the maximum absolute error of Ãmn(x) for parameters m, n = 0, 1, 2, 3.

Table 14. Example 16: maximum absolute error of Ãmn(x) calculated with the second procedure in
Remark 11.

m
max

x∈(0,20)

∣∣Amn(x)− Ãmn(x)
∣∣

n = 0 n = 1 n = 2 n = 3

0 4.721× 10−10 4.712× 10−10 4.711× 10−10 4.714× 10−10

1 4.712× 10−10 4.711× 10−10 4.714× 10−10 4.712× 10−10

2 4.711× 10−10 4.714× 10−10 4.712× 10−10 4.699× 10−10

3 4.714× 10−10 4.712× 10−10 4.699× 10−10 4.678× 10−10

The system (100) constructed with f̃m(x) and Ãmn(x) is solved numerically in Matlab for
several values of M. Maximum absolute and relative errors of the approximation of the potential
q2,M are shown in Table 15.

Table 15. Example 16: maximum absolute and relative errors of the approximation of the potential
q2,M(x) by the recovered potential for some values of M in (100).

M in (100) 0 1 2 3 5 7

Abs. Error of q2,M(x) 9.3× 10−1 1× 10−1 1.1× 10−2 1.21× 10−3 1.06× 10−4 1.14× 10−4

Rel. Error of q2,M(x) 1.6 1.74× 10−2 1.93× 10−3 2.14× 10−4 4.15× 10−6 2.04× 10−6

Figure 18 presents the absolute value of the recovered q2 potential from 4 equations in (100).
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Figure 18. Recovered potential q2,3(x) by Method 1 in Example 16.

Method 2. Now, we compute the approximate functions f̃m(x) (see Table 16) and Ãmn(x)
(see Table 17) following the third procedure in Remark 11.

Table 16. Example 16: maximum absolute error of f̃m(x) after applying the third procedure in
Remark 11.

m 0 1 2 3

max
x∈(0,20)

∣∣ fm(x)− f̃m(x)
∣∣ 6.05× 10−5 2.02× 10−5 6.73× 10−6 2.24× 10−6

Table 17. Example 16: maximum absolute error of Ãmn(x) after applying the third procedure in
Remark 11.

m
max

x∈(0,20)

∣∣Amn(x)− Ãmn(x)
∣∣

n = 0 n = 1 n = 2 n = 3

0 1.27× 10−13 4.26× 10−14 1.42× 10−14 4.74× 10−15

1 1.22× 10−9 1.42× 10−14 4.74× 10−15 1.58× 10−15

2 4.07× 10−10 1.36× 10−10 1.58× 10−15 5.29× 10−16

3 1.36× 10−10 4.52× 10−11 1.5× 10−11 1.68× 10−12

In Table 18, the absolute error of the recovered potential for some values of M in (100) is presented.

Table 18. Example 16: maximum absolute error of recovered potential q2,M(x) using the third option
in Remark 11.

M in (100) 0 1 2 3 5 7

max
x∈(0,20)

|q2(x)− q2,M(x)| 8.25× 10−1 2.34× 10−1 5.25× 10−2 9.71× 10−3 5.71× 10−3 2.23× 10−3

Rel. Error of q2,M(x) 1.24 1.21× 10−1 5.2× 10−1 8× 10−2 6.19× 10−2 7.25× 10−3

Both methods (procedures 2 and 3 from Remark 11) illustrated in the above exam-
ple have proven to be suitable for calculating the functions fm and Amn from a table of
values for the s2(ρ). Nevertheless, it is worth mentioning that although the first method
(procedure 2) produced slightly more accurate results, this approach might be sensitive to
the choice of the N(x) and h parameters, whereas the second method (procedure 3) only
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requires the implementation of trapz, the Matlab integration routine on a dense set of points
defined in the interval (0, 2π). Hence, for the purposes of this paper, it is sufficient to
consider procedure 3 from Remark 11 in the following examples, so as to obtain satisfactory
approximations of fm and Amn.

As expected from the results of Example 14 for this potential, the numerical method
for recovering the potential q2(x) converges very fast. Indeed, an acceptable approximation
of q2(x) is achieved with only four equations in this case, where an inexact matrix in the
linear system (100) is considered. In fact, the difference between the approximate and the
exact potential presented in Figure 18 is indistinguishable.

In the following examples, a noisy scattering function with a uniformly distributed
noise ε(ρ) added to the rand routine of Matlab is considered.

Example 17. Consider the scattering function s2(ρ) and denote the noisy scattering function
by ŝ2(ρ) := s2(ρ) + ε(ρ). Here, ε(ρ) is ±5% uniformly distributed complex-valued noise (the
percentage of the noise is applied pointwise to the modulus and argument of the value of s2(ρ)). The
maximum absolute error of ŝ2 on the line Lη=0.5 is 2.46× 10−1. The potential was recovered using
five equations with a maximum absolute error of 5.2× 10−1. The real and imaginary parts of the
potential and the absolute error of its recovery are shown in Figure 19.

Figure 19. Example 17: figures on the top part show the recovered potential q2,4(x), and the bottom
figure shows the absolute error of the recovered potential.

Despite the noise that ŝ2(ρ) produces in the matrix of the system (100), the method
recovers the shape of the potential q2 with reasonable accuracy.

Example 18. Consider the scattering function s3(ρ) and define ŝ3(ρ) := s3(ρ) + ε(ρ) where ε(ρ)
is a ±10% uniformly distributed complex-valued noise (considered as in the previous example).
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The maximum absolute error of ŝ3 on the line Lη=0.5 is 1.75. The potential was recovered using
eight equations with a maximum absolute error of 8.6× 10−1. The real and imaginary parts of the
potential as well as the absolute error of its recovery are shown in Figure 20.

Figure 20. Example 18: figures on the top part show the potential q3,7(x) recovered with eight
equations, and the bottom figure presents the absolute error of the recovered potential.

Although, in this case, the absolute error of ŝ3(ρ) is larger, the shape of the recovered potential
is still quite close to that of the exact one.

5.2.3. In-Out

In this subsection, we consider the results obtained in Section 5.1 as input data for the
inverse problem.

Example 19. We use the approximate scattering function s3(ρ) from Example 10 calculated
by (107). Particularly, the form in which it is given allows for us to approximate functions f̃m,c(x)
and Ãmn,c(x) with the aid of the numerical calculus of residues, i.e., the first procedure in Remark 11
(see Tables 19 and 20).

Table 19. Example 19: maximum absolute error of the approximation of the function fm,c(x) using
calculus of residues.

m 0 1 2 3

max
x∈(0,15)

∣∣ fm,c(x)− f̃m,c(x)
∣∣ 4.795× 10−10 1.911× 10−10 7.494× 10−11 2.861× 10−11
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Table 20. Example 19: maximum absolute error of the approximation of the function Amn,c(x) using
calculus of residues.

m
max

x∈(0,15)

∣∣Amn,c(x)− Ãmn,c(x)
∣∣

n = 0 n = 1 n = 2 n = 3

0 2.995× 10−10 1.206× 10−10 4.835× 10−11 1.895× 10−11

1 1.206× 10−10 4.835× 10−11 1.895× 10−11 7.238× 10−12

2 4.835× 10−11 1.895× 10−11 7.238× 10−12 2.73× 10−12

3 1.895× 10−11 7.238× 10−12 2.73× 10−12 1.057× 10−12

The potential q3(x) was recovered with an absolute error of 1.8× 10−5 in the interval (0, 15)
using 8 equations.

Example 20. Consider the approximate scattering function s1(ρ) from Example 11. The coefficient
a0(x) was recovered using 14 equations with a maximum absolute error of 4.29× 10−3, from which
the potential was recovered with a maximum absolute error of 0.23, Figure 21.

Figure 21. The (left) figure shows the recovered potential q1,13(x), and the (right) figure presents the
absolute error of the recovered potential.

Example 21. Consider the approximate scattering data obtained in Example 9. The approximate
functions f̃m(x) (see Table 21) and Ãmn(x) (see Table 22) were obtained accurately enough to
recover the potential (see Table 23).

Table 21. Example 21: maximum absolute error of the approximation of the function fm(x).

m 0 1 2 3

max
x∈(0,100)

∣∣ fm(x)− f̃m(x)
∣∣ 8.92× 10−3 2.97× 10−3 9.91× 10−4 3.3× 10−4

Table 22. Example 21: maximum absolute error of the approximation of the function Amn(x).

m
max

x∈(0,15)

∣∣Amn(x)− Ãmn(x)
∣∣

n = 0 n = 1 n = 2 n = 3

0 1.5× 10−7 4.8× 10−8 1.6× 10−8 5.4× 10−9

1 2.7× 10−6 1.6× 10−8 5.4× 10−9 1.8× 10−9

2 9× 10−6 2.9× 10−6 1.8× 10−9 6× 10−10

3 3× 10−6 9.9× 10−7 3.3× 10−7 2× 10−10
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Table 23. Maximum absolute error of the approximation of the potential by the recovered potential
q2,M(x).

M in (100) max
x∈(0,20)

|q2(x)− q2M (x)|

0 1.09

1 1.63× 10−1

2 6.44× 10−2

3 5.41× 10−2

5 5.3× 10−2

7 5.3× 10−2

Figure 22 illustrates the stability and convergence of the method with the absolute error
stabilized at 5.3× 10−2.

Figure 22. Absolute error of the approximation of the potential by the recovered potential q2,M(x)
using 1, 2, 3, 4, 6 and 8 equations.

Example 22. Consider the potential q4(x) = 30i sin(x) exp(−x) introduced in Example 12.
Using the results of the solution of the direct scattering problem from Example 12, we recover q4(x)
using 20 equations with a maximum absolute error of 8.67× 10−1 (Figure 23).

Figure 23. Real (left) and imaginary (right) parts of the exact potential and the recovered q4,19(x)
(R = 30).
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It is worth mentioning that the coefficient a0(x) is recovered with an absolute error of
2.28× 10−2 (Figure 24). The error is calculated and compared with the solution of the Cauchy
problem

a′′0 (x)− a′0(x) = q4(x)(a0(x) + 1), (109)

a0(b) = 0, a′0(b) = −
1
2

,

for a sufficiently large value of b > 0, obtained using ode45 routine of Matlab2021a.

Figure 24. Example 22: absolute error of the recovered coefficient a0(x) with 20 equations.

This is a case where closed formulas for the scattering data set are unavailable. Therefore, the
In–Out procedure confirms a satisfactory accuracy in the solution of both the direct and inverse
scattering problems.

Example 23. Consider the singular potential

q5(x) =
exp(−2.5x)(

x− π
2
)1/3 .

In Table 24, we present the parameter εN for different values of N in (103).

Table 24. Example 23: indicator εN for different values of N.

N εN for x ∈ [0, 4] N εN for x ∈ [0, 4]

2 1.57× 10−1 35 1.10× 10−3

3 5.24× 10−2 40 1.03× 10−3

5 3.97× 10−3 45 9.57× 10−4

10 2.25× 10−3 150 4.84× 10−4

15 1.77× 10−3 250 3.60× 10−4

25 1.33× 10−3 450 2.56× 10−4



Mathematics 2023, 11, 3544 45 of 51

Using data from Table 24, we computed the scattering data with N = 45. No eigenvalue was
detected, so the scattering data set consists of the scattering function approximated by the expression

s5(ρ) ≈
e5,45(−ρ)

e5,45(ρ)
, ρ ∈ R.

Using this scattering data set to solve the inverse problem, we obtained the coefficient a0(x) as
shown in Figure 25. The maximum absolute error resulted in 1.9× 10−4.

Figure 25. Example 23: coefficient a0(x) with four equations.

The potential is recovered as shown in Figure 26. The corresponding absolute error is presented
in Figure 27. Indeed, the maximum absolute error is 9.82× 10−2.

Figure 26. Recovered potential q5,3(x).

Figure 27. Absolute error of q5,3(x).
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This example shows the applicability of the proposed algorithms to both the solution of the
direct and inverse scattering problems in the case of non-smooth potentials.

6. Conclusions

An approach to solving the direct and inverse scattering problems on the half-line
for the one-dimensional Schrödinger equation with an exponentially decreasing complex-
valued potential is developed. It is based on a series representation of the Jost solution
from [25], which is shown in the present work to remain valid in a non-selfadjoining case.

When solving the direct problem, this representation is used to calculate the scattering
data set through a simple and efficient procedure, which includes a proposed algorithm for
computing normalization polynomials (which are part of the scattering data set) by solving
a finite system of linear algebraic equations for its coefficients.

When solving the inverse problem, the use of the series representation combined
with the Gel’fand–Levitan equation reduces the problem to a system of linear algebraic
equations for the series coefficients, and the knowledge of the first coefficient is sufficient
to recover the potential.

The numerical results illustrate the remarkable accuracy of the proposed algorithms
in solving both the direct and inverse scattering problems.
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Appendix A. Proofs of Auxiliary Equalities for Lemma 1

Let us prove Equation (57). Consider

∂

∂z

(
e(ρ, x)

k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

)

−eiρx
∞

∑
n=0

an(x)P(0,1−n)
n

k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

=ez(ρ, x)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

+e(ρ, x)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(−2k + j)(z + 1)j−2k−1

−eiρx
∞

∑
n=0

an(x)P(0,1−n)
n

k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k.

Using the representation (52) for the Jost solution, the last expression can be written
as follows

xe(ρ, x)
(z + 1)2

k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(z + 1)j−2k

+e(ρ, x)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j(j− 2k)(z + 1)j−2k−1
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=e(ρ, x)
k−1

∑
j=0

(−1)jCk−1
j

k!
(k− j)!

xk−j+1(z + 1)j−2k−2
(

1 + (j− 2k)
(

x−1(z + 1)
))

=e(ρ, x)
k−1

∑
j=0

(−1)jCk
j

(k + 1)!
(k + 1− j)!
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+e(ρ, x)(−1)kCk
k

(k + 1)!
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=e(ρ, x)
k

∑
j=0

(−1)jCk
j

(k + 1)!
(k + 1− j)!

xk−j+1(z + 1)j−2k−2.

Now, let us prove equality (58). Consider

∂

∂z

(
eiρx
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∑
n=0

an(x)
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j=2
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k
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n=0
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k
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m=j−1

(−1)j−m+1Ck−1
m−j+1

k!
(k−m)!

xk−m(z + 1)m−2k+1

+
k+1

∑
j=2
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k
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Note that the last expression can be written as eiρx ∑∞
n=0 an(x)Fn(z) where
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x
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Associating terms in the expression for Fn(z), we obtain

Fn(z) =
k+1

∑
j=2

F(−n, j, 1, z + 1)
k
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m=j−1
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Simplification of the last expression results in
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where we applied Formula (55). Thus,
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which is the desired result.

References
1. Bagarello, F.; Gazeau, J.P.; Szafraniec, F.H.; Znojil, M. Non-Selfadjoint Operators in Quantum Physics; John Wiley & Sons: Hoboken,

NJ, USA, 2015.
2. Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having P T symmetry. Phys. Rev. Lett. 1998, 80, 5243.

[CrossRef]
3. Bender, C.M.; Boettcher, S. Quasi-exactly solvable quartic potential. J. Phys. A Math. Gen. 1998, 31, L273. [CrossRef]
4. Ushveridze, A.G. Quasi-Exactly Solvable Models in Quantum Mechanics; CRC Press: New York, NY, USA, 2017.
5. Chandrasekhar, S. On characteristic value problems in high order differential equations which arise in studies on hydrodynamic

and hydromagnetic stability. Am. Math. 1954, 61, 32–45. [CrossRef]
6. Dolph, C.L. Recent developments in some non-self-adjoint problems of mathematical physics. Bull. Am. Math. 1961, 67, 1–69.

[CrossRef]
7. Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2011.
8. Lombard, R.J.; Mezhoud, R.; Yekken, R.; Ezzouar, U.B. Complex potentials with real eigenvalues and the inverse problem. Rom. J.

Phys. 2018, 63, 101.

http://doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0305-4470/31/14/001
http://dx.doi.org/10.1080/00029890.1954.11988569
http://dx.doi.org/10.1090/S0002-9904-1961-10493-X


Mathematics 2023, 11, 3544 50 of 51

9. Hryniv, O.R.; Manko, S.S. Inverse scattering on the half-line for ZS-AKNS systems with integrable potentials. Integr. Oper. Theory
2016, 84, 323–355. [CrossRef]

10. Bairamov, E.; Seyyidoglu, M.S. Non-Self-Adjoint singular Sturm-Liouville problems with boundary conditions dependent on the
eigenparameter. In Abstract and Applied Analysis; Hindawi: London, UK, 2010; Volume 2010.

11. Gasymov, M.G. On the decomposition in a series of eigenfunctions for a nonselfconjugate boundary value problem of the solution
of a differential equation with a singularity at a zero point. Dokl. Akad. Nauk Russ. Acad. Sci. 1965, 165, 261–264.

12. Naimark, M.A. Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space; Dawson, E.R., Everitt, W.N.,
Translators; Ungar Publishing: New York, NY, USA, 1968.

13. Yurko, V.A. Introduction to the Theory of Inverse Spectral Problems; Fizmatlit: Moscow, Russia, 2007. (In Russian)
14. Barrera-Figueroa, V. Analysis of the spectral singularities of Schrödinger operator with complex potential by means of the SPPS

method. J. Phys. Conf. Ser. 2016, 698, 012029. [CrossRef]
15. Kir, E. Spectrum and principal functions of the non-self-adjoint Sturm–Liouville operators with a singular potential. Appl. Math.

2005, 18, 1247–1255. [CrossRef]
16. Naimark, M.A. Investigation of the spectrum and the expansion in eigenfunctions of a nonselfadjoint operator of the second

order on a semi-axis. Tr. Mosk. Mat. Obs. 1954, 3, 181–270. (In Russian)
17. Pavlov, B.S. On the non-selfadjoint operator −y′′ + q(x)y on a semiaxis. Dokl. Akad. Nauk SSSR 1961, 141, 807–810. (In Russian)
18. Pavlov, B.S. On a Non-Selfadjoint Schrödinger operator, Probl. Math. Phys., No. I, Spectral Theory and Wave Processes; Izdat. Leningrad.

Univ.: Leningrad, Russia, 1966; pp. 102–132. (In Russian)
19. Pavlov, B.S. On a Non-Selfadjoint Schrödinger Operator II, Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems;

Izdat. Leningrad. Univ: Leningrad, Russia, 1967; pp. 133–157. (In Russian)
20. Sabatier, P.C. Applied Inverse Problems; Lecture Notes in Physics; Springer: Heidelberg, Germany, 1978; Volume 85.
21. Samsonov, B.F. Spectral singularities of non-Hermitian Hamiltonians and SUSY transformations. J. Phys. A Math. Gen. 2005,

38, L571. [CrossRef]
22. Sitenko, A.G. Lectures in Scattering Theory; Pergamon Press: Oxford, UK, 1971.
23. Agranovich, Z.S.; Marchenko, V.A. The Inverse Problem of Scattering Theory; Courier Dover Publications: New York, NY, USA, 2020.
24. Freiling, G.; Yurko, V. Inverse Sturm–Liouville Problems and Their Applications; NOVA Science Publishers: New York, NY, USA, 2001.
25. Kravchenko, V.V. On a method for solving the inverse scattering problem on the line. Math. Methods Appl. Sci. 2019, 42, 1321–1327.

[CrossRef]
26. Kravchenko, V.V. Direct and Inverse Sturm-Liouville Problems: A Method of Solution, Frontiers in Mathematics; Birkhäuser: Cham,

Switzerland, 2020.
27. Delgado, B.B.; Khmelnytskaya, K.V.; Kravchenko, V.V. A representation for Jost solutions and an efficient method for solving the

spectral problem on the half line. Math. Methods Appl. Sci. 2020, 43, 9304–9319. [CrossRef]
28. Baker, G.A., Jr.; Graves-Morris, P.R. Padé Approximants, Part I: Basic Theory; Cambridge University Press: Cambridge, UK, 1981.
29. Baker, G.A., Jr.; Graves-Morris, P.R. Padé Approximants, Part 2: Extensions and Applications; Cambridge University Press: Cambridge,

UK, 1981.
30. Henrici, P. Applied and Computational Complex Analysis; Power Series, Integration, Conformal Mapping, Location of Zeros; John

Wiley & Sons: New York, NY, USA, 1974; Volume 1.
31. Suetin, S.P. Padé approximants and efficient analytic continuation of a power series. Russ. Math. Surv. 2002, 57, 43. [CrossRef]
32. Bondarenko, E.I.; Rofe-Beketov, F.S. Inverse scattering problem on the semiaxis for the system with the triangle matrix potential.

Zhurnal Mat. Fiz. Anal. Geom. [J. Math. Phys. Anal. Geom.] 2003, 10, 412–424.
33. Levitan, B.M. Inverse Sturm-Liouville Problems; VSP: Zeist, The Netherlands, 1987.
34. Lyantse, V.É. The inverse problem for a nonselfadjoint operator. Dokl. Akad. Nauk. Russ. Acad. Sci. 1966, 166, 30–33.
35. Xu, X.C.; Bondarenko, N.P. Stability of the inverse scattering problem for the self-adjoint matrix Schrödinger operator on the half

line. Stud. Appl. Math. 2022, 149, 815–838. [CrossRef]
36. Delgado, B.B.; Khmelnytskaya, K.V.; Kravchenko, V.V. The transmutation operator method for efficient solution of the inverse

Sturm-Liouville problem on a half-line. Math. Methods Appl. Sci. 2019, 42, 7359–7366. [CrossRef]
37. Grudsky, S.M.; Kravchenko, V.V.; Torba, S.M. Realization of the inverse scattering transform method for the Korteweg-de Vries

equation. Math. Methods Appl. Sci. 2023, 46, 9217–9251. [CrossRef]
38. Kravchenko, V.V.; Shishkina, E.L.; Torba, S.M. A transmutation operator method for solving the inverse quantum scattering

problem. Inverse Probl. 2020, 36, 125007. [CrossRef]
39. Lyantse, V.É. An analog of the inverse problem of scattering theory for a nonselfadjoint operator. Mat. Sb. 1967, 1, 485. (In Russian)
40. Suetin, P.K. Classical Orthogonal Polynomials, 3rd ed.; Fizmatlit: Moscow, Russia, 2005. (In Russian)
41. Szego, G. Orthogonal Polynomials, American Mathematical Society Colloquium Publications, 23; American Mathematical Society:

New York, NY, USA, 1939.
42. Xiang, S. Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature. J. Math. Anal.

Appl. 2012, 393, 434–444. [CrossRef]
43. Frank, R.L.; Laptev, A.; Safronov, O. On the number of eigenvalues of Schrödinger operators with complex potentials. J. Lond.

Math. Soc. 2016, 94, 377–390. [CrossRef]

http://dx.doi.org/10.1007/s00020-015-2269-7
http://dx.doi.org/10.1088/1742-6596/698/1/012029
http://dx.doi.org/10.1016/j.aml.2005.02.013
http://dx.doi.org/10.1088/0305-4470/38/34/L02
http://dx.doi.org/10.1002/mma.5445
http://dx.doi.org/10.1002/mma.5881
http://dx.doi.org/10.1070/RM2002v057n01ABEH000475
http://dx.doi.org/10.1111/sapm.12522
http://dx.doi.org/10.1002/mma.5854
http://dx.doi.org/10.1002/mma.9049
http://dx.doi.org/10.1088/1361-6420/abbf8f
http://dx.doi.org/10.1016/j.jmaa.2012.03.056
http://dx.doi.org/10.1112/jlms/jdw039


Mathematics 2023, 11, 3544 51 of 51

44. Brown, B.M.; Langer, M.; Marletta, M.; Tretter, C.; Wagenhofer, M. Eigenvalue bounds for the singular Sturm–Liouville problem
with a complex potential. J. Phys. A Math. Gen. 2003, 36, 3773. [CrossRef]

45. Chanane, B. Computing the spectrum of non-self-adjoint Sturm–Liouville problems with parameter-dependent boundary
conditions. J. Comput. Appl. Math. 2007, 206, 229–237. [CrossRef]

46. Satsuma, J.; Yajima, N.B. Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Prog.
Theor. Phys. Suppl. 1974, 55, 284–306. [CrossRef]

47. Akhiezer, N.I.; Glazman, I.M. Theory of Linear Operators in Hilbert Space; Dover: New York, NY, USA, 1993.
48. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: New York, NY, USA, 2007.
49. Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Co.: New York, NY,

USA, 1953; Volume 1.
50. Ancarani, L.U.; Gasaneo, G. Derivatives of any order of the Gaussian hypergeometric function 2F1(a, b, c; z) with respect to the

parameters a, b and c. J. Phys. A Math. Theor. 2009, 42, 395208. [CrossRef]
51. Ramm, A.G. Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering; Springer: New York, NY,

USA, 2005.
52. Trefethen, L.N. Approximation Theory and Approximation Practice; SIAM: Philadelphia, PA, USA, 2013.
53. Trefethen, L.N. Quantifying the ill-conditioning of analytic continuation. BIT Numer. Math. 2020, 60, 901–915. [CrossRef]
54. Kravchenko, V.V.; Torba, S.M.; Velasco-García, U. Spectral parameter power series for polynomial pencils of Sturm-Liouville

operators and Zakharov-Shabat systems. J. Math. Phys. 2015, 56, 073508. [CrossRef]
55. Roussos, I.M. Improper Riemann Integrals; Taylor & Francis Group: Boca Raton, FL, USA, 2013.
56. Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration, 2nd ed.; Dover Publishers: New York, NY, USA, 2007.
57. Kantorovich, L.V.; Akilov, G.P. Functional Analysis, 2nd ed.; Silcock, H.L., Translator; Pergamon Press: Oxford-Elmsford, NY,

USA, 1982.
58. Mikhlin, S.G. The Numerical Performance of Variational Methods; Wolters-Noordhoff Publishing: Groningen, The Netherlands, 1971.
59. D’Errico, J. SLM-Shape Language Modeling. 2009. Available online: http://www.mathworks.commatlabcentral/fileexchange/24

443-slm-shape-language-modeling:Mathworks (accessed on 10 March 2022).
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