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Abstract: This study employs a supervised learning method to predict the tunnel boring machine
(TBM) penetration rate (PR) with high accuracy. To this end, the extreme gradient boosting
(XGBoost) model is optimized based on two swarm intelligence algorithms, i.e., the sparrow search
algorithm (SSA) and the whale optimization algorithm (WOA). Three other machine learning mod-
els, including random forest (RF), support vector machine (SVM), and artificial neural network
(ANN) models, are also developed as the drawback. A database created in Shenzhen (China), com-
prising 503 entries and featuring 10 input variables and 1 output variable, was utilized to train and
test the prediction models. The model development results indicate that the use of SSA and WOA
has the potential to improve the XGBoost model performance in predicting the TBM performance.
The performance evaluation results show that the proposed WOA-XGBoost model has achieved the
most satisfactory performance by resulting in the most reliable prediction accuracy of the four per-
formance indices. This research serves as a compelling illustration of how combined approaches,
such as supervised learning methods and swarm intelligence algorithms, can enhance TBM predic-
tion performance and can provide a reference when solving other related engineering problems.

Keywords: tunnel boring machine; penetration rate; extreme gradient boosting; swarm intelligence
algorithm

MSC: 68T20

1. Introduction

With the development of the economy and society, urban ground space can no longer
adequately accommodate the growing demands of transportation. Consequently, there is
a need to expand transportation systems below ground. In response, an increasing num-
ber of cities, particularly major international urban centers, have embarked on the con-
struction of underground metro systems. Meanwhile, considering the characteristics of a
high excavation efficiency, a low construction cost, and small negative environmental im-
pacts [1,2], the Tunnel Boring Machine (TBM) technique has gained widespread utiliza-
tion in metro construction. However, its performance is significantly influenced by ma-
chine parameters, surface topography, and geological conditions, thereby introducing
substantial project construction instability. To provide reasonable support for engineering
period planning, controlling engineering costs, and minimizing common risk probability
[3,4], the accurate prediction of TBM performance has become a pressing and consequen-
tial engineering challenge.
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In the existing literature, three parameters, namely, the penetration rate (PR), ad-
vance rate (AR), and utilization index (UI), have been employed for assessing the TBM
performance [5-8]. Among them, the PR represents the ratio of the excavation distance to
the operation time, and it has found extensive application in published studies [9]. Over
time, numerous empirical and theoretical models have been applied to evaluate the pen-
etration rate of TBMs. For instance, the Colorado School of Mines (CSM) model [10], es-
tablished through laboratory tests and rock-breaking mechanisms, has gained wide ac-
ceptance. Similarly, the Norwegian University of Science and Technology (UTNU) model
[11], which considers the interaction between hob and rock mass, enjoys popularity.
Nonetheless, these models exhibit variability in prediction performance due to their lim-
ited consideration of variables [12]. Moreover, the presence of constants in these models
significantly impacts their applicability [13].

In recent years, artificial intelligence (AI) technology has been rapidly developed, as
well as its ability to establish a robust relationship between input and output variables.
This technology has been demonstrated through the successful resolution of various en-
gineering challenges in the fields of medicine [14], agriculture [15], machinery [16], and
mining [17-20]. Unlike the empirical and the theoretical models, the Al technology repre-
sented by the machine learning (ML) models does not have limitations on the number of
input variables and does not rely on constants [13,21], addressing some of the drawbacks
associated with traditional models. Moreover, due to their complex model structures and
high computational capabilities, ML models can solve nonlinear problems more effec-
tively than most traditional models. The literature shows that the ML technique is increas-
ingly applied to predict the PR of TBM. For instance, Armaghani et al. [22] utilized two
optimized artificial neural networks (ANN) models to predict the PR based on a database
collected from the Pahang-Selangor raw water transfer (PSRWT) tunnel in Malaysia. Al-
varez Grima et al. [23] employed an adaptive neuro-fuzzy inference system (ANFIS)
model to predict the PR values of TBM. Mahdevari et al. [24] established a nonlinear rela-
tionship between machine parameters and PR using a support vector regression (SVR)
model. Koopialipoor et al. [25] applied a deep neural network (DNN) to analyze the PR
of TBM based on the Pahang-Selangor row water transfer tunnel database. Furthermore,
more applications of ML techniques in investigating the TBM performance can be found
in the studies of Xu et al. [26], Zhou et al. [27], Torabi et al. [5], Wang et al. [28], and
Agrawal et al. [29]. Although numerous studies have explored the application of ML tech-
niques in assessing the TBM performance of PR, limited attention has been given to inves-
tigating the suitability of the XGBoost method, particularly the optimized XGBoost model,
for predicting the PR of TBM. Meanwhile, there is a scarcity of research on TBM perfor-
mance prediction in complex geological conditions characterized by composite strata and
a relatively high proportion of boulders. Furthermore, the advancement in swarm optimi-
zation algorithms offers an alternative approach for exploring the optimal hyperparame-
ter combination in a supervised learning model. However, the integration of the swarm
optimization algorithm with the XGBoost model is relatively uncommon. Therefore, the
present study aims to introduce a hybrid prediction approach for predicting the PR of
TBM by combining a supervised learning method with two popular swarm intelligence
algorithms called the sparrow search algorithm (SSA) and the whale optimization algo-
rithm (WOA). Here, two novel proposed hybrid XGBoost models, including SSA-XGBoost
and WOA-XGBoost models, are proposed, and the XGBoost, random forest (RF), support
vector machine (SVM), and ANN models are also prepared as the benchmark using the
same input and output variables. In the subsequent sections, first, the backgrounds of the
XGBoost, SSA, and WOA are given. Then, the procedure of combining XGBoost and
swarm intelligence algorithm is introduced. After that, the application of these models in
predicting TBM performance using the Shenzhen Metro Line 10 database is described.
Eventually, a sensitivity analysis is conducted to identify the most crucial parameters for
predicting the PR of TBM.
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2. Related Work

In this section, the related work of using the ML method to predict TBM PR is re-
viewed and presented. In this presented study, three kinds of input variables, including
machine, composite stratum, and boulder parameters, are considered and utilized as the
input variables, and the PR is the output variable. Consequently, the related works are
shown in Table 1. As shown, Yagize et al. [30] used an ANN to establish a prediction model
for estimating TBM performance, and 151 datasets collected from Quees Tunnels in the
City of New York, USA were analyzed. Rock material, TBM, and rock mass properties
were used as the input variables, while PR was the output variable. Their analysis revealed
highly accurate performance estimations. Xu et al. [26] found that KNN has the highest
prediction precision based on a database collected from the PSRWT project in Malaysia.
Shan et al. [8] applied a long short term memory (LSTM) model to evaluate the TBM per-
formance of metros located in the cities of Changsha to Zhengzhou, China, and the ob-
tained results show that the performance of Recurrent Neural Networks (RNN) surpassed
that of LSTM. In addition, for the hybrid model, Armaghani et al. [22] introduced an ANN
optimized by imperialism competitive algorithm (ICA) to predict the TBM PR in the
PSRWT project. They found that the ICA-ANN model had a determination coefficient of
0.912 for testing data. It was also found that the performance of ICA-ANN was much bet-
ter than that of ANN model. By proposing 6 optimized XGB-based models based on 1286
datasets, Zhou et al. [27] identified the particle swarm optimization (PSO)-XGBoost
model, which yielded an impressive R-squared (R?) value of 0.951, as a highly accurate,
powerful, and practical approach for TBM performance prediction. Similar research en-
deavors can be observed using stacking framework optimized by whale optimization al-
gorithm (Stacking-WOA) and improved sparrow search algorithm-gradient boosting re-
gression tree technique (ISSA-GBRT) in the studies conducted by Song et al. [31] and Yang
et al. [32], respectively.

Table 1. Related works on TBM PR prediction using ML method.

Study ML Model Input Variables Outif;E;eVar- Samples
Yagiz et al. [30] ANN Rock material properties PR 151
TBM parameters

Machine characteristics

Xu et al. [26] KNN Rock mass properties PR 209
Rock material properties

Shan et al. [8] RNN Machine characteristics PR 550
Armaghani et al. Machine characteristics

ICA-ANN Rock mass properties PR 1286

[22] Rock material properties

Machine characteristics
Rock mass properties PR 1286
Rock material properties

Zhou et al. [27] PSO-XGBoost

Rock material properties

PR 591
Machine characteristics

Song et al. [31] Stacking-WOA

Machine characteristics
Composite stratum parameters PR 308
Bolder parameters

Yang et al. [32] ISSA-GBRT

3. Methodology
3.1. Extreme Gradient Boosting (XGBoost)

XGBoost, initially introduced by Chen and He [33], is a robust decision tree algorithm
founded on the gradient boosting tree method [34]. This algorithm excels in the efficient
construction of boosted trees and can be effectively employed to address both
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classification and regression tasks. In the development of the XGBoost model, the residual
is strategically employed to enhance the model performance by optimizing the loss func-
tion, while a regularization term is incorporated to mitigate the risk of overfitting [35].

In general, an objective function Obj(x) for the XGBoost model can be described as
follows:

Obj(x) = g(x) +k(x) (1)

where x is the input variable. f(x) and g(x) are the residual and regular term, respectively.

The prediction results (y) of the ith sample after tth iteration can be defined as fol-

lows:

;?:fo(xi) =0
yj:fl("i) :fo(xi) +fl(xi) = ]/?+f1(xi)
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Meanwhile, the regular term can be defined as follows:

T

g(x) :)/T+O.5)\Zw2 3)

j=1

where T is the number of leaves, and w is the vector of scores on leaves. Additionally, y
and A represent constants employed to regulate the tree’s complexity.
Therefore, the object function Obj(x) can be transformed into the following;:

n A T
Obj(x) = Zg(y,-,y,- 1+ft(xf)) +yT+0.50) o’ )
i=1 j=1

3.2. Sparrow Search Algorithm

Sparrows are social birds found worldwide and are distinguished by their high in-
telligence and strong memory in comparison to other avian species. Their social behavior
categorizes sparrows into producers and scroungers, with sparrows frequently transition-
ing between these roles to locate superior food sources [36]. The individual’s role within
the group is primarily dictated by their energy reserves, which means that sparrows with
lower energy reserves are more likely to adopt the scrounger role. Thus, Xue and Shen
[37] introduced a swarm intelligence algorithm known as the Sparrow Search Algorithm
(SSA) to solve the optimization problem.

In the SSA, the producers are responsible for searching food and providing foraging
areas or directions for all scroungers, so producers have a broad search range. In each
search iteration, the producer’s position can be updated as follows:

Z) if R,<ST

X/ - ex
g p(a - iter,

X! 4+Q-L if R,= ST

X[+1 —

ij

()

where t and itermax are the current iterations and the largest number of iterations, respec-
tively. X{; means the value of the jth dimension of the ith sparrow at the tth iteration. a

is a random number. Rz and ST are the alarm value and the safety threshold, respectively.



Mathematics 2023, 11, 4237

5 of 17

A sparrow will move to a broad search range when Rz < ST and will fly back to the safe
area in other cases.
The position of the scrounger can be described as follows:

Xzi;orst B Xi[' cpoe n
Q-exp|— 5~ if i> Y
1

X4 |X,~f,~*XIt)H| -AY L otherwise

t+1
X —

ij

(6)

where X is the optimal position of the producer, and Xuworst means the current global worst
position of the scrounger.

When a sparrow is aware of danger, these sparrows will fly back to the safe area, and
this behavior can be expressed using the following mathematical equation:

if fi> fs
) iffi=fe

leesr + ,B : |X1t,] - Xl‘fwst

t+1 —

v X +K- (

| t st
ij worst

(fiifu) +€

where Xeest is the current global optimal position. § and k are the step size control param-
eter and a random number, respectively. Meanwhile, f;, f;, and f. are the fitness values of
the current sparrow and the current global best and worst fitness values, respectively.

Using the above-presented mathematical formulas, the updated sparrow location can
be achieved, and the best solution for an engineering problem can be found with an ini-
tialization sparrow population.

7)

3.3. Whale Optimization Algorithm

As a nature-inspired population-based optimization algorithm, the WOA algorithm
is inspired by the bubble-net feeding of humpback whales in the ocean [38]. WOA encom-
passes three key stages: encircling prey, bubble-net attacking, and searching around the
best prey.

Before attacking, humpbacks enclose the fish and then try to find the optimum solu-
tion. In this stage, the mathematical formula of the position updating can be expressed as

X=X, — AlCX; = X|| (8)

where Xi, Xi+1, and X, are the current individual position of whale, the individual posi-
tion of whale after ith iteration, and the current optimal individual position, respectively.
In addition, A and C are both coefficients.

In the bubble-net preying phase, two social behaviors, including shrink wrapping
and spiral uprising, can be selected for the humpback. Generally, the selection probability
between two cases is 0.5, and local optimization can be achieved through these processes.
In this algorithm, the mathematical model is expressed as follows:

{X,-A|CX:X1-| p<0.5
X = 9)

. |X;*X,.|eb’cos(2nl)+X: p=0.5

where b is a constant defining the spiral shape, and I/ and p are both random numbers.
In the searching phase, a whale can explore the food source by adjusting the param-
eter A, and this hunting behavior can be represented as follows:

Xi+1 - and - A|CX‘rlmd - Xi (10)

where Xy is the randomly selected whale position.
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3.4. Hybrid XGBoost Model

In an XGBoost model, some hyperparameters, such as the number of trees, learning

rate, and minimum child weight, are typically determined using the trial-and-test method.
In this case, finding the optimal combination of hyperparameters can often be challenging.
Hence, many researchers have explored the use of meta-heuristic algorithms to assist in
hyperparameter selection, and the effectiveness of this approach has been demonstrated.
In this study, two swarm intelligence algorithms, including the sparrow search algorithm
and the whale optimization algorithm, were applied to select the optimal hyperparame-
ters of the XGBoost model for predicting the PR of TBM, as shown in Figure 1.

fp
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Figure 1. Procedure of using machine learning method to predict TBM performance.

As can be seen in the above picture, the procedure for establishing SSA-XGBoost and

WOA-XGBoost models involves the following steps:

)
(2)
©)

(4)

©)

Collect the input and output variables based on engineering problems.

Scale the collected datasets into the same data range.

Divide the collected database into training and test datasets, with the training dataset
used for training models and the test dataset used for assessing the prediction per-
formance of the trained models.

Use the SSA and WOA to search the optimal hyperparameter combinations, incor-
porating validation methods like k-fold cross-validation to mitigate issues of under-
fitting and overfitting. In this study, 10-fold cross-validation is utilized. In the utiliza-
tion of SSA in searching for the optimal hyperparameter combination, the best spar-
row position is regarded as the optimal solution to the engineering problem. During
each iteration, the discovered solution undergoes testing via the 10-fold cross-valida-
tion technique, and the resulting fitness value is employed to steer the exploration of
optimal solutions within SSA. This process terminates once the predefined error
threshold is attained. A similar procedure is observed in the application of WOA to
optimize the XGBoost model.

Construct the optimal model for predicting the PR of TBM based on the identified
hyperparameter combination.

Evaluate the prediction model’s performance using various evaluation techniques
such as the performance ranking or the Taylor diagrams.
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3.5. Performance Evaluation

To evaluate the prediction performance, four performance indices, including coeffi-
cient of determination (R?), mean absolute error (MAE), root-mean-squared error (RMSE),
and a20-index, are employed and computed, as defined by the following formulas [39-
45].

> (PR,—PR,)?
i=1

R*=1—- (11)

n

S(re. )’

i=1

n

1
MAE = — > |PR,— PR, (12)
i=1
1 2
RMSE =, |—(PR,— PR,) (13)
n
. Ny
a20 —index = — (14)
n

where PR., PRy, and n represent the actual PR value, predicted PR value, and the number
of samples, respectively. a20-index is defined as the count of datasets where the ratio of
actual values to predicted values falls within the range of 0.8 to 1.2. Furthermore, an opti-
mal prediction model is characterized by an R? value of 1, an a20-index of 1, an MAE value
of 0, and an RMSE value of 0.

While this study employs four performance indices, it can be challenging to identify
a prediction model that outperforms others across all performance indices for both train-
ing and test datasets. Therefore, comprehensive comparative methods are essential. In this
study, a ranking method and a Taylor diagram approach are selected. In the ranking
method, each performance index’s computed values are ranked, and the prediction mod-
els are evaluated based on their total ranking values. A higher total ranking value indicates
a superior prediction performance. For the Taylor diagram, it offers a comprehensive com-
parison of standard deviation, RMSE, and correlation coefficient. Each prediction model
is represented by a colored point on the Taylor diagram, with an ideal model performance
indicated by a black star. If the position of the prediction model is closer to the black star,
it has a better performance than other models.

4. Engineering Validation
4.1. Materials

Shenzhen Metro Line 10 is part of the Shenzhen Metro system (see Figure 2a) and
started operation on 18 August 2020. As shown in Figure 2b, this Metro Line starts from
the Futian Port Station and ends at the Shuangyong Street Station, and the tunnel between
the Beier Road Station and the Bantian North Road Station was constructed using a TBM.
According to the geological survey results [9], this tunnel passes through the composite
strata, including gravel cohesive soil, fully weathered granite, and sand-like strongly
weathered granite and multiple boulder groups. Generally, the PR of TBM is influenced
by the machine parameters and the geological conditions.
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Figure 2. Shenzhen Metro Line 10. (a) Shenzhen Metro system. (b) A view of the study area. (c)
Location of the metro in China.

In this study, 503 datasets (see Figure 3) provided by Yang et al. [9] were selected and
used to develop a ML model. Among them, four machine parameters (chamber earth pres-
sure (CEP), total thrust (TT), cutterhead torque (CT), and cutterhead speed (CS)), three
composite stratum parameters (cohesion (c), internal friction angle (IFA), and compression
modulus (CM)), and three boulder parameters (the ratio of boulder (RB), uniaxial com-
pressive strength (UCS), and rock quality designation (RQD)) were selected as the input
variables. Of these variables, the machine parameters were acquired from the TBM rec-
ords. Data related to the composite stratum and boulder parameters were gathered
through drilling and laboratory experiments. The ratio of boulders was determined uti-
lizing the three-dimensional resistivity CT method. Meanwhile, the PR of TBM served as
an output variable. The statistical distribution of the input and output variables is plotted
in Figure 3.
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Figure 3. Parameter distribution of the input and output variables.

4.2. Performance Comparison

To validate the prediction performance of the proposed SSA-XGBoost model and
WOA-XGBoost model, the collected TBM database was normalized into a range of 0 to 1,
and then this database was divided into training and test datasets with a ratio of 80% to
20% [46,47]. Next, the XGBoost model was trained by SSA and WOA to search for the
optimal hyperparameter combination. Meanwhile, a 10-fold cross-validation method was
applied to guide the search process to avoid overfitting. In this process, a training dataset
can be divided into 10 folds; 9 subsets are used to train the prediction model, and the
remaining 1 is selected to evaluate the performance with the corresponding hyperparam-
eter combination in the current iteration [48]. Meanwhile, the RMSE value calculated from
the fitness function is used as the prediction error. In each iteration, the above calculation
process will be repeated 10 times, and the average result of 10 fitness values will be used
as the final performance of the current iteration.

For the SSA-XGBoost model, two parameters, including the swarm population and
the maximum number of iterations, should be defined. Following the methodology out-
lined in the studies by Zhou et al. [49] and Faradonbeh et al. [50], a maximum of 100 iter-
ations was set, and the swarm population values were varied across values of 25, 50, 75,
100, and 150. Table 2 and Figure 4a show the calculated performance metrics, and a rank-
ing method provided by Zorlu et al. [51] is employed, respectively. After developing five
optimal SSA-XGBoost models, the index values of the training and test datasets were
ranked to comprehensively explain the model performance. Then, the best SSA-XGBoost
model with a swarm population of 75 and a total ranking value of 38 was determined to
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have a performance of R? of 0.93, MAE of 2.19, RMSE of 2.82, and an a20-index of 0.88
using the training datasets, as well as R? of 0.93, MAE of 2.19, RMSE of 2.82, and a20-index
of 0.88 using the test datasets.

50 I 220-index]
] I RMSE

150,

100 75

(a) SSA-XGBoost. (b) WOA-XGBoost.

Figure 4. Comprehensive ranking comparison of two optimized XGBoost models with various
swarm populations.

Table 2. The performance of optimizing XGBoost models with SSA.

Training Dataset Test Dataset
Swarm Pop-
ulaion R MAE RMSE 2" R MAE Rmsg 20 Towl
Index Index
25 0.92 2.39 3.05 0.86 0.90 2.80 3.68 0.80 -
50 0.91 243 3.13 0.85 0.89 2.89 3.78 0.83 -
75 0.93 2.19 2.82 0.88 0.90 2.70 3.60 0.81 -
100 0.93 2.24 2.86 0.89 0.90 2.75 3.64 0.81 -
150 0.90 2.62 3.34 0.84 0.89 2.98 3.88 0.79 -
25 3 3 3 3 3 3 3 2 23
50 2 2 2 2 2 2 2 5 19
75 5 5 5 4 5 5 5 4 38
100 4 4 4 5 4 4 4 4 33
150 1 1 1 1 1 1 1 1 8

In the case of WOA-XGBoost modeling with the same training and test datasets, five
WOA-XGBoost models were developed, employing swarm populations of 25, 50, 75, 100,
and 150. Based on the calculated performance metrics and comprehensive ranking, as
shown in Table 3 and Figure 4b, the optimal swarm population, with a total ranking value
of 40, can be determined to be 150. Additionally, the optimal WOA-XGBoost model ex-
hibited the following performance metrics: R? of 0.95, MAE of 1.91, RMSE of 2.45, and an
a20-index of 0.92 using the training dataset, and R? of 0.91, MAE of 2.62, RMSE of 3.41,
and a20-index of 0.81 using the test dataset.

Table 3. The performance of optimizing XGBoost models with WOA.

Training Dataset Test Dataset
Swarm Pop- 20-1 Total
ulation R® MAE RMSE ° dex“ R2  MAE RMSE a20-Index
25 093 224 287 08 091 267 355 0.81 -
50 091 252 322 08 08 28 379 0.79 -

75 0.90 2.54 3.24 0.85 0.89 2.87 3.80 0.80 -
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100 0.93 2.21 2.84 0.89 0.91 2.68 3.54 0.81 -

150 0.95 1.91 2.45 0.92 091 2.62 3.41 0.81 -

25 3 3 3 3 3 4 3 5 27
50 2 2 2 2 2 1 2 1 14
75 1 1 1 1 1 2 1 2 10
100 4 4 4 4 4 3 4 5 32
150 5 5 5 5 5 5 5 5 40

In addition to the introduced SSA-XGBoost and WOA-XGBoost models, four con-
ventional models, namely XGBoost, RF, SVM, and ANN, were also developed for the pur-
pose of comparison. Similar to the process for determining the optimal SSA-XGBoost and
WOA-XGBoost models, the performance indices of the XGBoost, RF, SVM, and ANN were
computed and ranked. In this procedure, the trial-and-error method was employed to as-
certain the hyperparameters for the RF, SVM, and ANN models. For the RF model, the
hyperparameters to be determined included the number of trees and the number of vari-
ables used for each tree’s growth. In the case of the SVM model, the hyperparameters were
the penalty factor (C) and gamma (g) in the RBF kernel. As for the ANN model, the sole
hyperparameter was the number of nodes in the hidden layer. As depicted in Table 4 and
Figure 5, these prediction models can be arranged in the following order based on their
performance improvement: ANN, SVM, RF, XGBoost, SSA-XGBoost, and WOA-XGBoost.

ANN

50

Il 220-index

40

30

20

20

30

1 SSA-XGBoost
40 -

50 -

XGBoost

Figure 5. Comprehensive ranking comparison of various XGBoost prediction models.

Table 4. The performance of various TBM performance prediction models.

Training Dataset Test Dataset
Swarm Pop- 20 20-  Total
ulation R* MAE RMSE R MAE RMSE
Index Index
XGBoost 0.90 2.56 3.26 0.85 0.89 285 3.78 0.80 -
RF 0.87 2.86 3.77 0.80 0.86 3.23 431 0.77 -
SVM 0.89 3.11 3.55 0.78 084 371 4.58 0.73 -
ANN 0.84 3.30 4.20 0.76 0.85 3.42 4.52 0.74 -
WOA- 0.95 191 2.45 0.92 0.91 2.62 341 0.81 -
XGBoost
SSA-
XGBoost 0.93 2.19 2.82 0.88 090 270 3.60 0.81 -
XGBoost 4 4 4 3 4 4 4 4 31

RF 2 3 2 3 3 3 3 3 22
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SVM 3 2 3 2 1 1 1 1 14
ANN 1 1 1 1 2 2 2 2 12
WOA-
XGBoost 6 6 6 6 6 6 6 6 48
SSA-
XGBoost 5 5 5 5 5 5 5 6 41

Predicted PR

d)

Predicted PR

50

40

30

20

10

Apart from the computation of performance indices and the presented ranking out-
comes, the comparison of actual and predicted PR values of TBM is graphically illustrated
in Figure 6. It is easy to find that the predicted results provided by the WOA-XGBoost
model have the highest distribution frequency. Meanwhile, a greater number of data
points signify that the predicted results are distributed within the range where the ratio
of the predicted PR to the actual PR falls between 0.8 and 1.2. Consequently, the prediction
performance of the WOA-XGBoost model is substantiated.
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Figure 6. Correlation analysis of the actual and predicted TBM performance. (a) SSA-XGBoost. (b)
WOA-XGBoost. (c) XGBoost. (d) RF. (e) SVM. (f) ANN.

To provide a comprehensive comparison of prediction performance, the Taylor dia-
gram, originally proposed by Taylor [52], is employed and depicted in Figure 7. This dia-
gram encompasses the calculation and presentation of the standard deviation, RMSE, and
correlation coefficient of the PR prediction model. The model positioned closest to the
reference point, denoted by a black star, signifies superior performance. As evident, the
hybrid XGBoost model, particularly the WOA-XGBoost model, outperformed all other
models.
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Reference
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WOA-XGBoost
XGBoost
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® SVM
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Figure 7. Taylor diagrams of the training and testing datasets. (a) Training datasets. (b) Testing da-
tasets.

In summary, the WOA-XGBoost model demonstrated the best prediction perfor-
mance for both training and test datasets, and it is highly recommended for TBM perfor-
mance prediction. Meanwhile, the proposed WOA-XGBoost model had an R? of 0.95 and
0.91 for training and test datasets, which is better than the prediction model provided by
Yang et al. [9].

4.3. Sensitivity Analysis

In addition to achieving accurate predictions of TBM performance, it is essential to
address the challenge of effectively controlling and enhancing TBM performance. To ful-
fill this objective, a sensitivity analysis is crucial for assessing the sensitivity of each input
variable and optimizing engineering design. In this context, the cosine amplitude method
[53-55] was selected, and the relationship between the input variable Xi and the output
variable Xj can be computed using the following equation.

Z Xige X ji
_ k=1
i = (15)

n n
2 2
E :xik X E :xjk
k=1 k=1

As shown in Figure 8, all the input variables can be ranked in descending order as
follows: CS, CEP, TT, IFA, CT, C, CM, UCS, RQD, and PB. Notably, C, IFA, CM, RB, UCS,
and RQD cannot be changed during the construction, leaving the machine parameters,
particularly the cutterhead speed, as the sole potential avenue for enhancing TBM perfor-
mance.

Rock Quality Designation (RQD) 0.231
Uniaxial Compressive Strength (UCS) 0.233

Ratio of Boulder (RB) 0.176

Compression Modulus (CM) 0.847

Internal Friction Angle (IFA) | 0.923

Sohesion (C) J0.91

Cutterhead Speed (CS) | 0.951

[¢ Torque (CT) |0.916

Total Thrust (TT) | 0.931

Chamber Earth Pressure (CEP) | 0.935

T T T T T T T T 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sensitivity Index

Figure 8. Sensitivity analysis of input variables on TBM performance. The red, blue, and purple bars
represent boulder, composite stratum, and machine parameters, respectively.
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5. Discussion

To facilitate engineering period planning, cost reduction, and mitigation of common
risks, precise prediction of TBM PR holds significant importance. This study provided two
hybrid prediction models based on XGBoost optimized by SSA and WOA alongside four
ML models, including XGBoost, RF, SVM, and ANN, which served as benchmarks based
on a database created in Shenzhen, China. Compared to empirical and theoretical models,
the proposed hybrid XGBoost model incorporates a more extensive set of variables, and
it does not rely on constants that might limit its applicability. When compared to previ-
ously reported machine learning models in previous studies, the hybrid XGBoost model
demonstrates superior prediction performance. However, in line with the well-known “no
free lunch theorem,” no single algorithm outperforms all others when addressing all en-
gineering problems. Therefore, the development of SSA-XGBoost and WOA-XGBoost
models is significant. While the prediction model in this study was developed based on
the TBM database from Shenzhen, the model framework and analysis methods can serve
as a reference for similar engineering projects. For instance, in the prediction of TBM PR
in other engineering sites, similar model development and evaluation processes can be
applied. This approach enables the reliable prediction of TBM PR, effectively guiding
metro construction projects.

6. Conclusions

Utilizing supervised learning techniques and swarm optimization algorithms, this
study introduces two hybrid evolutionary models for TBM PR prediction. The primary
findings of this research can be summarized as follows:

(1) The use of a swarm intelligence algorithm (SSA and WOA) can effectively improve
the XGBoost model’s performance.

(2) The WOA-XGBoost model stands out as the most accurate predictor of TBM perfor-
mance, and this model exhibits a potential for addressing other prediction challenges.

(3) The CS emerges as the most influential parameter affecting the TBM performance.

Author Contributions: Conceptualization, Z.Y.; methodology, Z.Y. and C.L.; software, Z.Y.; valida-
tion, Z.Y., C.L. and J.Z; formal analysis, Z.Y.; investigation, Z.Y.; resources, Z.Y., C.L. and J.Z.; data
curation, Z.Y. and C.L.; writing —original draft preparation, Z.Y.; writing—review and editing, Z.Y.;
visualization, Z.Y.; supervision, C.L.; project administration, J.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in the study of
Yang et al. at [10.1007/s00366-020-01217-2], reference number [5].

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Liu, Q; Huang, X.; Gong, Q.; Du, L.; Pan, Y.; Liu, J. Application and Development of Hard Rock TBM and Its Prospect in China.
Tunn. Undergr. Space Technol. 2016, 57, 33—46. https://doi.org/10.1016/;.tust.2016.01.034.

2. Zhang, Y.; Wei, M,; Su, G,; Li, Y.; Zeng, ].; Deng, X. A Novel Intelligent Method for Predicting the Penetration Rate of the Tunnel
Boring Machine in Rocks. Math. Probl. Eng. 2020, 2020, 3268694. https://doi.org/10.1155/2020/3268694.

3. Jahed Armaghani, D.; Faradonbeh, R.S.; Momeni, E.; Fahimifar, A.; Tahir, M.M. Performance Prediction of Tunnel Boring
Machine through Developing a Gene Expression Programming Equation. Eng. Comput. 2018, 34, 129-141.
https://doi.org/10.1007/s00366-017-0526-x.

4.  Harandizadeh, H.; Armaghani, D.].; Asteris, P.G.; Gandomi, A.H. TBM Performance Prediction Developing a Hybrid ANFIS-PNN
Predictive Model Optimized by Imperialism Competitive Algorithm; Springer: London, UK, 2021; Volume 33, ISBN 0052102106.

5. Torabi, S.R.; Shirazi, H.; Hajali, H.; Monjezi, M. Study of the Influence of Geotechnical Parameters on the TBM Performance in

Tehran-Shomal Highway Project Using ANN and SPSS. Arab. |. Geosci. 2013, 6, 1215-1227. https://doi.org/10.1007/s12517-011-
0415-3.



Mathematics 2023, 11, 4237 15 of 17

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Zeng, ].; Roy, B.; Kumar, D.; Mohammed, A.S.; Armaghani, D.J.; Zhou, ]J.; Mohamad, E.T. Proposing Several Hybrid PSO-
Extreme Learning Machine Techniques to Predict TBM Performance. Eng. Comput. 2021, 38, 1-17. https://doi.org/10.1007/s00366-
020-01225-2.

Hassanpour, J.; Ghaedi Vanani, A.A.; Rostami, J.; Cheshomi, A. Evaluation of Common TBM Performance Prediction Models
Based on Field Data from the Second Lot of Zagros Water Conveyance Tunnel (ZWCT2). Tunn. Undergr. Space Technol. 2016, 52,
147-156. https://doi.org/10.1016/j.tust.2015.12.006.

Shan, F.; He, X.; Jahed Armaghani, D.; Zhang, P.; Sheng, D. Success and Challenges in Predicting TBM Penetration Rate Using
Recurrent Neural Networks. Tunn. Undergr. Space Technol. 2022, 130, 104728. https://doi.org/10.1016/j.tust.2022.104728.

Yang, H.; Wang, Z; Song, K. A New Hybrid Grey Wolf Optimizer-Feature Weighted-Multiple Kernel-Support Vector
Regression Technique to Predict TBM Performance. Eng. Comput. 2022, 38, 2469-2485. https://doi.org/10.1007/s00366-020-01217-
2.

Rostami, J. Development of a Force Estimation Model for Rock Fragmentation with Disc Cutters through Theoretical Modeling and
Physical Measurement of Crushed Zone Pressure; Colorado School of Mines: Golden, CO, USA, 1997.

Bruland, A. Hard Rock Tunnel Boring; Norwegian University of Science and Technology: Trondheim, Norway, 1998.
Koopialipoor, M.; Nikouei, S.S.; Marto, A.; Fahimifar, A.; Jahed Armaghani, D.; Mohamad, E.T. Predicting Tunnel Boring
Machine Performance through a New Model Based on the Group Method of Data Handling. Bull. Eng. Geol. Environ. 2019, 78,
3799-3813. https://doi.org/10.1007/s10064-018-1349-8.

Alsaihati, A.; Elkatatny, S.; Gamal, H. Rate of Penetration Prediction While Drilling Vertical Complex Lithology Using an
Ensemble Learning Model. ]. Pet. Sci. Eng. 2022, 208, 109335. https://doi.org/10.1016/j.petrol.2021.109335.

Mohapatra, P.; Chakravarty, S.; Dash, P.K. An Improved Cuckoo Search Based Extreme Learning Machine for Medical Data
Classification. Swarm Evol. Comput. 2015, 24, 25-49. https://doi.org/10.1016/j.swevo0.2015.05.003.

Nhu, V.H.; Janizadeh, S.; Avand, M.; Chen, W.; Farzin, M.; Omidvar, E.; Shirzadi, A.; Shahabi, H.; Clague, ].J.; Jaafari, A.; et al.
GIS-Based Gully Erosion Susceptibility Mapping: A Comparison of Computational Ensemble Data Mining Models. Appl. Sci.
2020, 10, 2039. https://doi.org/10.3390/app10062039.

Chen, Y.; Zhang, T.; Zhao, W.; Luo, Z.; Lin, H. Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-
Aware Permutation Entropy and Multiclass Relevance Vector Machine. Sensors 2019, 19, 4542. https://doi.org/10.3390/s19204542.
Qiu, Y.; Zhou, J. Short—Term Rockburst Damage Assessment in Burst-Prone Mines : An Explainable XGBOOST Hybrid Model
with SCSO Algorithm. Rock Mech. Rock Eng. 2023, 1-26. https://doi.org/10.1007/s00603-023-03522-w.

Zhou, J.; Shen, X.; Qiu, Y.; Shi, X.; Khandelwal, M. Cross-Correlation Stacking-Based Microseismic Source Location Using Three
Metaheuristic Optimization Algorithms. Tunn. Undergr. Space Technol. 2022, 126, 104570.
https://doi.org/10.1016/j.tust.2022.104570.

Li, C; Zhou, J.; Du, K.; Armaghani, D.J.; Huang, S. Prediction of Flyrock Distance in Surface Mining Using a Novel Hybrid
Model of Harris Hawks Optimization with Multi-Strategies-Based Support Vector Regression. Nat. Resour. Res. 2023, 1-29.
https://doi.org/10.1007/s11053-023-10259-4.

Shahani, N.M.; Zheng, X ; Liu, C.; Li, P.; Hassan, F.U. Application of Soft Computing Methods to Estimate Uniaxial Compressive
Strength and Elastic Modulus of Soft Sedimentary Rocks. Arab. J. Geosci. 2022, 15, 384. https://doi.org/10.1007/s12517-022-09671-
6.

Balaji, K.; Rabiei, M. Status of Data-Driven Methods and Their Applications in Oil and Gas Industry, Introduction to Data
Driven Methods. In SPE Europec Featured at 80th EAGE Conference and Exhibition; OnePetro: Richardson, TX, USA, 2018; pp. 11—
14.

Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S. Development of Hybrid Intelligent Models for
Predicting TBM Penetration Rate in Hard Rock Condition. Tunn. Undergr. Space Technol. 2017, 63, 29-43.
https://doi.org/10.1016/j.tust.2016.12.009.

Alvarez Grima, M.; Bruines, P.A.; Verhoef, P.N.W. Modeling Tunnel Boring Machine Performance by Neuro-Fuzzy Methods.
Tunn. Undergr. Space Technol. 2000, 15, 259-269. https://doi.org/10.1016/S0886-7798(00)00055-9.

Mahdevari, S.; Shahriar, K.; Yagiz, S.; Akbarpour Shirazi, M. A Support Vector Regression Model for Predicting Tunnel Boring
Machine Penetration Rates. Int. ]. Rock Mech. Min. Sci. 2014, 72, 214-229. https://doi.org/10.1016/j.ijrmms.2014.09.012.
Koopialipoor, M.; Tootoonchi, H.; Jahed Armaghani, D.; Tonnizam Mohamad, E.; Hedayat, A. Application of Deep Neural
Networks in Predicting the Penetration Rate of Tunnel Boring Machines. Bull. Eng. Geol. Environ. 2019, 78, 6347-6360.
https://doi.org/10.1007/s10064-019-01538-7.

Xu, H,; Zhou, J.; Asteris, P.G.; Armaghani, D.]J.; Tahir, M.M. Supervised Machine Learning Techniques to the Prediction of
Tunnel Boring Machine Penetration Rate. Appl. Sci. 2019, 9, 3715. https://doi.org/10.3390/app9183715.

Zhou, J.; Qiu, Y.; Armaghani, D.J.; Zhang, W.; Li, C.; Zhu, S.; Tarinejad, R. Predicting TBM Penetration Rate in Hard Rock
Condition: A Comparative Study among Six XGB-Based Metaheuristic Techniques. Geosci. Front. 2021, 12, 101091.
https://doi.org/10.1016/j.gsf.2020.09.020.

Wang, Y.; Gao, X,; Jiang, P.; Guo, X.; Wang, R.; Guan, Z.; Chen, L.; Xu, C. An Extreme Gradient Boosting Technique to Estimate
TBM Penetration Rate and Prediction Platform. Bull. Eng. Geol. Environ. 2022, 81, 1-19. https://doi.org/10.1007/s10064-021-02527-
5.



Mathematics 2023, 11, 4237 16 of 17

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Agrawal, A K,; Murthy, V.M.S.R.; Chattopadhyaya, S.; Raina, A.K. Prediction of TBM Disc Cutter Wear and Penetration Rate
in Tunneling Through Hard and Abrasive Rock Using Multi-Layer Shallow Neural Network and Response Surface Methods.
Rock Mech. Rock Eng. 2022, 55, 3489-3506. https://doi.org/10.1007/s00603-022-02834-7.

Yagiz, S.; Gokceoglu, C.; Sezer, E.; Iplikci, S. Application of Two Non-Linear Prediction Tools to the Estimation of Tunnel Boring
Machine Performance. Eng. Appl. Artif. Intell. 2009, 22, 808-814. https://doi.org/10.1016/j.engappai.2009.03.007.

Song, K.; Yang, H.; Wang, Z. A Hybrid Stacking Framework Optimized Method for TBM Performance Prediction. Bull. Eng.
Geol. Environ. 2023, 82, 27. https://doi.org/10.1007/s10064-022-03047-6.

Yang, H.; Liu, X,; Song, K. A Novel Gradient Boosting Regression Tree Technique Optimized by Improved Sparrow Search
Algorithm for Predicting TBM Penetration Rate. Arab. ]. Geosci. 2022, 15, 461. https://doi.org/10.1007/s12517-022-09665-4.

Chen, T.; He, T. Xgboost: Extreme Gradient Boosting. R Package Version 0.4-2 2015, 1, 1-4.

Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189-1232.

Zhou, J.; Qiu, Y.; Zhu, S.; Armaghani, D.J.; Khandelwal, M.; Mohamad, E.T. Estimation of the TBM Advance Rate under Hard
Rock  Conditions Using XGBoost and Bayesian Optimization.  Undergr.  Space 2021, 6, 506-515.
https://doi.org/10.1016/j.undsp.2020.05.008.

Barnard, C.J.; Sibly, R.M. Producers and Scroungers: A General Model and Its Application to Captive Flocks of House Sparrows.
Anim. Behav. 1981, 29, 543-550. https://doi.org/10.1016/S0003-3472(81)80117-0.

Xue, J.; Shen, B. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Syst. Sci. Control Eng. 2020, 8,
22-34. https://doi.org/10.1080/21642583.2019.1708830.

Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng.  Softw. 2016, 95, 51-67.
https://doi.org/10.1016/j.advengsoft.2016.01.008.

Shahani, N.M.; Zheng, X.; Guo, X.; Wei, X. Machine Learning-Based Intelligent Prediction of Elastic Modulus of Rocks at Thar
Coalfield. Sustainability 2022, 14, 3689. https://doi.org/10.3390/su14063689.

Wei, X.; Shahani, N.M.; Zheng, X. Predictive Modeling of the Uniaxial Compressive Strength of Rocks Using an Artificial Neural
Network Approach. Mathematics 2023, 11, 1650. https://doi.org/10.3390/math11071650.

Li, E;; Yang, F.; Ren, M.; Zhang, X.; Zhou, J.; Khandelwal, M. Prediction of Blasting Mean Fragment Size Using Support Vector
Regression Combined with Five Optimization Algorithms. ]. Rock Mech. Geotech. Eng. 2021, 13, 1380-1397.
https://doi.org/10.1016/j.jrmge.2021.07.013.

Hasanipanah, M.; Jahed Armaghani, D.; Bakhshandeh Amnieh, H.; Koopialipoor, M.; Arab, H. A Risk-Based Technique to
Analyze Flyrock Results Through Rock Engineering System. Geotech. Geol. Eng. 2018, 36, 2247-2260.
https://doi.org/10.1007/s10706-018-0459-1.

Barzegar, R.; Sattarpour, M.; Deo, R.; Fijani, E.; Adamowski, ]. An Ensemble Tree-Based Machine Learning Model for Predicting
the Uniaxial Compressive Strength of Travertine Rocks. Neural Comput. Appl. 2020, 32, 9065-9080.
https://doi.org/10.1007/s00521-019-04418-z.

Ly, H.B.; Pham, B.T.; Le, L.M,; Le, T.T.; Le, V.M.; Asteris, P.G. Estimation of Axial Load-Carrying Capacity of Concrete-Filled
Steel Tubes Using Surrogate Models. Neural Comput. Appl. 2021, 33, 3437-3458. https://doi.org/10.1007/s00521-020-05214-w.
Yu, Z.; Shi, X.; Zhou, J.; Gou, Y.; Rao, D.; Huo, X. Machine-Learning-Aided Determination of Post-Blast Ore Boundary for
Controlling Ore Loss and Dilution. Nat. Resour. Res. 2021, 30, 4063-4078. https://doi.org/10.1007/s11053-021-09914-5.

Nguyen, H.; Bui, X.N.; Choi, Y.; Lee, CW.; Armaghani, D.J. A Novel Combination of Whale Optimization Algorithm and
Support Vector Machine with Different Kernel Functions for Prediction of Blasting-Induced Fly-Rock in Quarry Mines. Nat.
Resour. Res. 2021, 30, 191-207. https://doi.org/10.1007/s11053-020-09710-7.

Hasanipanah, M.; Keshtegar, B.; Thai, D.K,; Troung, N.T. An ANN-Adaptive Dynamical Harmony Search Algorithm to
Approximate the Flyrock Resulting from Blasting. Eng. Comput. 2022, 38, 1257-1269. https://doi.org/10.1007/s00366-020-01105-
9.

Nguyen, H.; Bui, X.N. Soft Computing Models for Predicting Blast-Induced Air over-Pressure: A Novel Artificial Intelligence
Approach. Appl. Soft Comput. . 2020, 92, 106292. https://doi.org/10.1016/j.as0c.2020.106292.

Zhou, J.; Guo, H.; Koopialipoor, M.; Jahed Armaghani, D.; Tahir, M.M. Investigating the Effective Parameters on the Risk Levels
of Rockburst Phenomena by Developing a Hybrid Heuristic Algorithm. Eng. Comput. 2021, 37, 1679-1694.
https://doi.org/10.1007/s00366-019-00908-9.

Faradonbeh, R.S.; Armaghani, D.].; Amnieh, H.B.; Mohamad, E.T. Prediction and Minimization of Blast-Induced Flyrock Using
Gene Expression Programming and Firefly Algorithm. Neural Comput. Appl. 2018, 29, 269-281. https://doi.org/10.1007/s00521-
016-2537-8.

Zorlu, K.; Gokceoglu, C.; Ocakoglu, F.; Nefeslioglu, H.A.; Acikalin, S. Prediction of Uniaxial Compressive Strength of
Sandstones Using Petrography-Based Models. Eng. Geol. 2008, 96, 141-158. https://doi.org/10.1016/j.enggeo.2007.10.009.
Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. ]. Geophys. Res. Atmos. 2001, 106, 7183—
7192. https://doi.org/10.1029/2000]D900719.

Yang, Y.; Zhang, Q. A Hierarchical Analysis for Rock Engineering Using Artificial Neural Networks. Rock Mech. Rock Eng. 1997,
30, 207-222. https://doi.org/10.1007/BF01045717.



Mathematics 2023, 11, 4237 17 of 17

54. Li, E.; Zhou, J.; Shi, X.; Jahed Armaghani, D.; Yu, Z.; Chen, X.; Huang, P. Developing a Hybrid Model of Salp Swarm Algorithm-
Based Support Vector Machine to Predict the Strength of Fiber-Reinforced Cemented Paste Backfill. Eng. Comput. 2021, 37, 3519-
3540. https://doi.org/10.1007/s00366-020-01014-x.

55.  Shahani, N.M.; Ullah, B.; Shah, K.S.; Hassan, F.U.; Ali, R.; Elkotb, M.A.; Ghoneim, M.E.; Tag-Eldin, E.M. Predicting Angle of
Internal Friction and Cohesion of Rocks Based on Machine Learning Algorithms. Mathematics 2022, 10, 3875.
https://doi.org/10.3390/math10203875.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



