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Abstract: We present a systematic introduction to a class of functions that provide fundamental
solutions for autonomous linear integer-order and fractional-order delay differential equations. These
functions, referred to as delay functions, are defined through power series or fractional power series,
with delays incorporated into their series representations. Using this approach, we have defined delay
exponential functions, delay trigonometric functions and delay fractional Mittag-Leffler functions,
among others. We obtained Laplace transforms of the delay functions and demonstrated how they
can be employed in finding solutions to delay differential equations. Our results, which extend and
unify previous work, offer a consistent framework for defining and using delay functions.
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1. Introduction

Special functions play a vital role in simplifying the analysis of many problems in
mathematical physics and applied mathematics [1], especially in the solution of differential
equations. For example, the exponential function and the Mittag-Leffler function [2,3]
are fundamental in composing solutions for linear integer-order and linear fractional-
order differential equations, respectively. Given the importance and prevalence of delay
differential equations in mathematical modeling across a diverse array of disciplines,
including biology [4,5], economics [4], engineering [6], pharmacokinetics [7], physics [8],
population dynamics [9], and traffic modeling [4], it is natural to seek similar special
functions for linear integer-order and linear fractional-order delay differential equations.

Indeed, there has been some progress in this direction, such as the Lambert W func-
tion [10] and delayed exponential functions for linear first-order delay differential equa-
tions [11,12], delay sine and cosine functions for linear second-order delay differential
equations [13], and delayed Mittag-Leffler functions for fractional-order delay differential
equations [14–17]. The introduction of such functions has proliferated in recent years; to
date, this has been conducted in a non-uniform way, with varying notations and different
types of series representations.

Certain special delay functions have been previously introduced for particular delay
equations. In this work, we provide a systematic approach for obtaining representations
to delay functions that provide solutions to delay differential equations. This provides a
uniform representation of delay functions and it enables the identification of a large class of
new delay functions that generalize special functions. First, we show how we can use the
known series expansion solution of a given differential equation to create a corresponding
delay function series expansion solution for a corresponding delay differential equation. In
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this way, we introduce a large class of previously unknown delay functions that provide
solutions to delay differential equations. We then introduce a new solution method for
delay differential equations by showing how solutions for arbitrary autonomous linear
delay differential equations can be constructed from trial delay function series expansions.
We also present the first table of Laplace transforms for delay functions, facilitating the
use of Laplace transform methods in solving linear delay differential equations. Finally,
we have generalized our approach using fractional power series and generalized power
series to derive solutions for linear fractional-order delay differential equations and cer-
tain non-autonomous delay differential equations. This generalization is a further novel
aspect of our systematic approach to delay functions as solutions of associated delay
differential equations.

We hope that our approach will highlight the importance of delay functions, includ-
ing those defined previously, and make them more accessible to a broader mathematics
community. In general terms, delay functions are represented as truncated power series,
truncated fractional power series, or truncated generalized power series, each incorpo-
rating a delay parameter σ, with the variable in the nth term of the series delayed by nσ.
If the delay function is taken to be a function of a real variable, the series expansion can
be truncated using a Heaviside function, which also facilitates the calculation of Laplace
transform properties.

In Section 2, we define delay functions through truncated power series with delays
incorporated in the series representation. Explicit definitions are given for delay exponen-
tial functions, delay trigonometric functions, delay hyperbolic trig functions, and delay
hypergeometric functions. We calculated the derivatives of these functions and explored
some of their basic properties. In Section 3, we define fractional delay functions through
truncated fractional power series with delays incorporated in the series representation.
Delay Mittag-Leffler functions and generalized delay Mittag-Leffler functions have been
defined through this approach. In Section 4, we provide Laplace transform results for
delay functions and fractional delay functions. In Section 5, we show how standard delay
functions arise as solutions of autonomous linear integer-order delay differential equations,
and in Section 6, we show how fractional delay functions arise as solutions of autonomous
linear fractional-order delay differential equations. In Section 7, we introduce generalized
power series delay functions and illustrate their application to a non-autonomous delay
differential equation with a periodic coefficient. We provide a brief summary in Section 8.

2. Standard Delay Functions

Here, we define standard delay functions as truncated power series with the nth term
delayed by nσ. The Heaviside function, which facilitates the analysis of truncated power
series, is introduced first.

Definition 1. The Heaviside function of a real variable x is defined as

Θ(x) =

{
0 x < 0,
1 x ≥ 0.

(1)

See, for example, Lighthill [18], for further details on Heaviside and related functions.

Definition 2. A delay function of a variable x with delay parameter σ is defined as

df(x; σ) =
+∞

∑
n=0

an(x− nσ)nΘ
( x

σ
− n

)
,

x
σ
∈ R. (2)
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The Heaviside function truncates the series expansion; thus, we can write

df(x; σ) =
b x

σ c

∑
n=0

an(x− nσ)n,
x
σ
∈ R. (3)

This explicit truncated form is preferred for defining delay functions over complex
variables, x, σ ∈ C, with x

σ ∈ R. Note that if σ ∈ R>0, then the domain for the delay
function is restricted to x ∈ R≥0, and conversely, if σ ∈ R<0, then the domain for the delay
function is restricted to x ∈ R≤0.

The definition of the delay function allows for a natural correspondence between a
function and a delay function. This correspondence is noteworthy because some properties
and relations of the original function have analogs in the delay function. In particular,
this will allow us to correlate the solutions of certain ordinary differential equations with
those of delay differential equations. In brief, for a real-valued function, f (x), defined by a
power series

f (x) =
+∞

∑
n=0

anxn, x ∈ R, (4)

we can define a corresponding delay function

df(x; σ) =
+∞

∑
n=0

an(x− nσ)nΘ
( x

σ
− n

)
,

x
σ
∈ R, (5)

which is convergent on the domain of f (x). The convergence is assured by the truncation
of the series in the definition of the delay function. The introduction of delay functions
through infinite series expansions without the Heaviside function would typically lead

to non-convergence. For example, if f (x) is an analytic function with an = f (n)(0)
n! , then

∑+∞
n=0 an(x− nσ)n would fail the nth term test at x = 0, σ = 1; viz limn→+∞

nn

n! → +∞.

Example 1. If we consider the exponential function,

exp(x) =
+∞

∑
n=0

xn

Γ(n + 1)
, (6)

then we can define a corresponding delay function

df(x; σ) =
+∞

∑
n=0

(x− nσ)n

Γ(n + 1)
Θ
( x

σ
− n

)
,

x
σ
∈ R. (7)

If we consider the exponential function,

exp(−x) =
+∞

∑
n=0

(−1)n xn

Γ(n + 1)
, (8)

then we can define a corresponding delay function

dg(x; σ) =
+∞

∑
n=0

(−1)n (x− nσ)n

Γ(n + 1)
Θ
( x

σ
− n

)
,

x
σ
∈ R. (9)

Note that with these definitions, df(−x;−σ) = dg(x; σ).

To avoid possible ambiguity, we define the delay exponential function below.
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Definition 3. The delay exponential function is defined as

dexp(x; σ) =
+∞

∑
n=0

(x− nσ)n

Γ(n + 1)
Θ
( x

σ
− n

)
,

x
σ
∈ R. (10)

A delayed exponential function, similar to the above, has been previously introduced
using a slightly different notation in [11,12]. It immediately follows from Definition 3 that

dexp(λx; λσ) =
+∞

∑
n=0

λn(x− nσ)n

Γ(n + 1)
Θ
( x

σ
− n

)
,

x
σ
∈ R, λ ∈ C, (11)

which identifies the parameter λ as a common scale factor for x and σ.
Alternative representations of this function are also possible. For example, if t > 0 and

0 < τ < 1
e , then we can use Laplace transform methods, as shown below, to write

dexp(−t;−τ) =
+∞

∑
k∈Z

exp
(

Wk(−τ)
τ t

)
1 + Wk(−τ)

, (12)

where Wk(z) denotes the kth branch of the Lambert W function [10], which satisfies

Wk(z) exp(Wk(z)) = z (13)

with
lim
|z|→+∞

Wk(z)→ lnk z = ln z + 2πik. (14)

Figure 1 shows plots of the delay exponential functions dexp(x; σ) and dexp(−x;−σ)
for three different delay values. For positive x and σ, the behavior is similar to the standard
exponential function, with the growth slower for larger delays. For negative x and σ, the
behavior is similar to the standard exponential function for very small delays, but for larger
delays, the delay exponential function exhibits oscillatory behavior.

The following lemma shows that the derivative of the delay exponential function is
proportional to the function itself but with x replaced by x− σ.

Lemma 1. The derivative of the delay exponential function is given by

d
dx

dexp(λx; λσ) = λdexp(λ(x− σ); λσ),
x
σ
∈ R\{0}, λ ∈ C. (15)

Proof. We first note that the nth-generalized derivative of the Heaviside function is given
by

Θ(n)(x) = δ(n−1)(x), (16)

where δ(n−1)(x) denotes the (n− 1)th derivative of the Dirac delta generalized function
δ(x). Hence, by differentiating Equation (11), term-by-term, gives

d
dx

dexp(λx; λσ) =
+∞

∑
n=1

λn(x− nσ)n−1

Γ(n)
Θ
( x

σ
− n

)
(17)

+
+∞

∑
n=0

λn(x− nσ)n

Γ(n + 1)
1
σ

δ
( x

σ
− n

)
= λ

+∞

∑
n=0

λn((x− σ)− nσ)n

Γ(n + 1)
Θ
(

x− σ

σ
− n

)
(18)

= λdexp(λ(x− σ); λσ), (19)
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where the only contribution from the Dirac delta sum is when n = 0 but this term vanishes
on the domain x

σ ∈ R\{0}.
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Figure 1. Plots of the delay exponential functions dexp(x; σ) (a) and dexp(−x;−σ) (b) for delays
σ = 0.1, 0.5, 1.0. The solid green line is for σ = 1.0 and the dashed blue and red lines are for σ = 0.1
and σ = 0.5, respectively.

We next focus on delay trigonometric functions and begin with the definition of the
delay cosine and delay sine functions.

Definition 4. The delay cosine function is defined as

dcos(x; σ) =
+∞

∑
n=0

(−1)n (x− (2n)σ)2n

Γ(2n + 1)
Θ
( x

σ
− 2n

)
,

x
σ
∈ R. (20)

Definition 5. The delay sine function is defined as

dsin(x; σ) =
+∞

∑
n=0

(−1)n (x− (2n + 1)σ)2n+1

Γ(2n + 2)
Θ
( x

σ
− 2n− 1

)
,

x
σ
∈ R. (21)

The delay sine and cosine functions were previously introduced by [13] in connection
with second-order delay differential equations.

It is evident from Definitions 4 and 5 that dcos(−x;−σ) = dcos(x; σ) and
dsin(−x;−σ) = −dsin(x; σ), which mirrors the even and odd nature of the cosine and
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sine functions, respectively. Plots of the delay cosine and delay sine functions are shown in
Figure 2 for three different delay values. These delay functions are oscillatory but not peri-
odic for finite delays. Also, the amplitude of the oscillations increases as the delay increases.
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Figure 2. Plots of the delay cosine function dcos(x; σ) (a) and the delay sine function dsin(x; σ) (b) for
delays σ = 0.05, 0.1, 0.2. The solid green line is for σ = 0.2 and the dashed blue and red lines are for
σ = 0.05 and σ = 0.1, respectively.

The next lemma shows that the derivatives of the delay cosine and delay sine functions
are analogous to the derivatives of their non-delay counterparts.

Lemma 2. The derivatives of the delay cosine and delay sine functions are given by

d
dx

dcos(λx; λσ) = −λdsin(λ(x− σ); λσ),
x
σ
∈ R\{0}, λ ∈ C, (22)

and
d

dx
dsin(λx; λσ) = λdcos(λ(x− σ); λσ),

x
σ
∈ R, λ ∈ C, (23)

respectively.
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Proof. We verify Equation (22) by differentiating Equation (20) term-by-term, with x and σ
scaled by the parameter λ, to give

d
dx

dcos(λx; λσ)

=
+∞

∑
n=1

(−1)n λ2n(x− (2n)σ)2n−1

Γ(2n)
Θ
( x

σ
− 2n

)
(24)

+
+∞

∑
n=0

(−1)n λ2n(x− (2n)σ)2n

Γ(2n + 1)
1
σ

δ
( x

σ
− 2n

)
= −λ

+∞

∑
n=0

(−1)n λ2n+1((x− σ)− (2n + 1)σ)2n+1

Γ(2n + 2)
Θ
(

x− σ

σ
− 2n− 1

)
(25)

= −λdsin(λ(x− σ); λσ), (26)

where we note that the only contribution from the Dirac delta sum is when n = 0 but this
term vanishes on the domain x

σ ∈ R\{0}. Similarly, Equation (23) follows by differentiating
Equation (21) term-by-term, with x and σ scaled by the parameter λ, to give

d
dx

dsin(λx; λσ)

=
+∞

∑
n=0

(−1)n λ2n+1(x− (2n + 1)σ)2n

Γ(2n + 1)
Θ
( x

σ
− 2n− 1

)
(27)

+
+∞

∑
n=0

(−1)n λ2n+1(x− (2n + 1)σ)2n+1

Γ(2n + 2)
1
σ

δ
( x

σ
− 2n− 1

)
= λ

+∞

∑
n=0

(−1)n λ2n((x− σ)− (2n)σ)2n

Γ(2n + 1)
Θ
(

x− σ

σ
− 2n

)
(28)

= λdcos(λ(x− σ); λσ), (29)

where we note that the Dirac delta sum vanishes for all n ≥ 0.

The following proposition shows that Euler’s formula eix = cos(x) + i sin(x) can be
extended to delay functions.

Proposition 1. Euler’s formula for delay functions is given by the equation

dexp(ix; iσ) = dcos(x; σ) + idsin(x; σ),
x
σ
∈ R. (30)

Proof. Starting with Equation (11), where λ = i, we observe that

dexp(ix; iσ)

=
b x

σ c

∑
n=0

in(x− nσ)n

Γ(n + 1)
(31)

=
b x

2σ c

∑
k=0

i2k(x− 2kσ)2k

Γ(2k + 1)
+
b x+σ

2σ c−1

∑
k=0

i2k+1(x− (2k + 1)σ)2k+1

Γ(2k + 2)
(32)

=
b x

2σ c

∑
k=0

(−1)k (x− 2kσ)2k

Γ(2k + 1)
+ i
b x+σ

2σ c−1

∑
k=0

(−1)k (x− (2k + 1)σ)2k+1

Γ(2k + 2)
(33)

= dcos(x; σ) + idsin(x; σ). (34)
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Using Proposition 1, we can obtain other identities involving delay trigonometric
functions. An example of such an identity is given in the following corollary.

Corollary 1. A relation between the delay cosine and delay sine functions is given by

dexp(ix; iσ)dexp(−ix;−iσ) = dcos2(x; σ) + dsin2(x; σ),
x
σ
∈ R. (35)

Proof. From Proposition 1, we can write

dexp(ix; iσ)dexp(−ix;−iσ) = (dcos(x; σ)− idsin(x; σ))(dcos(x; σ) + idsin(x; σ)), (36)

which simplifies to yield Equation (35).

We can also formulate the delay cosine and delay sine functions in terms of delay
exponential functions in a similar manner as their non-delay counterparts.

Corollary 2. The delay cosine and delay sine functions have a delay exponential representation
given by

dcos(x; σ) =
1
2
(dexp(ix; iσ) + dexp(−ix;−iσ)),

x
σ
∈ R, (37)

and
dsin(x; σ) =

1
2i
(dexp(ix; iσ)− dexp(−ix;−iσ)),

x
σ
∈ R, (38)

respectively.

Proof. It follows from Proposition 1 that

dcos(x; σ) = dexp(ix; iσ)− idsin(x; σ) (39)

and replacing i with −i in Equation (30), we arrive at

idsin(x; σ) = dcos(x; σ)− dexp(−ix;−iσ). (40)

Substituting Equation (40) into Equation (39) and rearranging, we obtain Equation (37).
Similarly, it follows from Proposition 1 that

idsin(x; σ) = dexp(ix; iσ)− dcos(x; σ) (41)

and replacing i with −i in Equation (30), we arrive at

dcos(x; σ) = dexp(−ix;−iσ) + idsin(x; σ). (42)

Substituting Equation (42) into Equation (41) and rearranging, we obtain Equation (38).

The delay cosine and delay sine functions both have an analog delay hyperbolic
function, which we define next.

Definition 6. The delay hyperbolic cosine function is defined as

dcosh(x; σ) =
+∞

∑
n=0

(x− (2n)σ)2n

Γ(2n + 1)
Θ
( x

σ
− 2n

)
,

x
σ
∈ R. (43)

Definition 7. The delay hyperbolic sine function is defined as

dsinh(x; σ) =
+∞

∑
n=0

(x− (2n + 1)σ)2n+1

Γ(2n + 2)
Θ
( x

σ
− 2n− 1

)
,

x
σ
∈ R. (44)
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It is clear from the above definitions that dcosh(−x;−σ) = dcosh(x; σ) and
dsinh(−x;−σ) = −dsinh(x; σ), mirroring the even and odd nature of the hyperbolic
cosine and hyperbolic sine functions, respectively.

Plots of the delay hyperbolic cosine and delay hyperbolic sine functions are shown in
Figure 3 for three different delay values.
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Figure 3. Plots of the delay hyperbolic cosine function dcosh(x; σ) (a) and the delay hyperbolic sine
function dsinh(x; σ) (b) for delays σ = 0.05, 0.1, 0.2. The solid green line is for σ = 0.2 and the dashed
blue and red lines are for σ = 0.05 and σ = 0.1, respectively.

The derivatives of the delay hyperbolic cosine and delay hyperbolic sine functions
closely resemble the derivatives of their non-delay counterparts.

Lemma 3. The derivative of the delay hyperbolic cosine and delay hyperbolic sine functions are
given by

d
dx

dcosh(λx; λσ) = λdsinh(λ(x− σ); λσ),
x
σ
∈ R\{0}, λ ∈ C, (45)

and
d

dx
dsinh(λx; λσ) = λdcosh(λ(x− σ); λσ),

x
σ
∈ R, λ ∈ C, (46)

respectively.
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Proof. The method to verify Equations (45) and (46) is almost identical to that presented in
Lemma 2 but with the initial removal of the (−1)n term from Equations (24) and (27).

The next theorem shows that the hyperbolic identity exp(x) = cosh(x) + sinh(x) can
be extended to delay functions.

Proposition 2. The delay hyperbolic cosine and delay hyperbolic sine functions satisfy the equation

dexp(x; σ) = dcosh(x; σ) + dsinh(x; σ),
x
σ
∈ R. (47)

Proof. Starting with Equation (10), we observe that

dexp(x; σ) =
b x

σ c

∑
n=0

(x− nσ)n

Γ(n + 1)
(48)

=
b x

2σ c

∑
k=0

(x− 2kσ)2k

Γ(2k + 1)
+
b x+σ

2σ c−1

∑
k=0

(x− (2k + 1)σ)2k+1

Γ(2k + 2)
(49)

=
b x

2σ c

∑
k=0

(x− 2kσ)2k

Γ(2k + 1)
+
b x+σ

2σ c−1

∑
k=0

(x− (2k + 1)σ)2k+1

Γ(2k + 2)
(50)

= dcosh(x; σ) + dsinh(x; σ). (51)

Using Proposition 2, we can obtain other identities involving delay hyperbolic trig
functions. An example of such an identity is stated in the next corollary.

Corollary 3. A relation between the delay hyperbolic cosine and delay hyperbolic sine functions is
given by

dexp(x; σ)dexp(−x;−σ) = dcosh2(x; σ)− dsinh2(x; σ),
x
σ
∈ R. (52)

Proof. From Proposition 2, we can write

dexp(x; σ)dexp(−x;−σ) = (dcosh(x; σ) + dsinh(x; σ))(dcosh(x; σ)− dsinh(x; σ)), (53)

which simplifies to yield Equation (52).

We can also express the delay hyperbolic cosine and delay hyperbolic sine functions
in terms of delay exponential functions.

Corollary 4. The delay hyperbolic cosine and delay hyperbolic sine functions have a delay exponen-
tial representation given by

dcosh(x; σ) =
1
2
(dexp(x; σ) + dexp(−x;−σ)),

x
σ
∈ R, (54)

and
dsinh(x; σ) =

1
2
(dexp(x; σ)− dexp(−x;−σ)),

x
σ
∈ R, (55)

respectively.

Proof. It follows from Proposition 2 that

dcosh(x; σ) = dexp(x; σ)− dsinh(x; σ) (56)
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and setting x = −x and σ = −σ in Equation (47), we arrive at

dsinh(x; σ) = dcosh(x; σ)− dexp(−x;−σ). (57)

Substituting Equation (57) into Equation (56) and rearranging, we obtain Equation (54).
Similarly, it follows from Proposition 2 that

dsinh(x; σ) = dexp(x; σ)− dcosh(x; σ), (58)

and setting x = −x and σ = −σ in Equation (47), we arrive at

dcosh(x; σ) = dexp(−x;−σ) + dsinh(x; σ). (59)

Substituting Equation (59) into Equation (58) and rearranging, we obtain Equation (55).

We can use the known series expansions of the inverse hyperbolic trigonometric
functions to construct corresponding series expansions for delay inverse hyperbolic trig
functions. It is important to note that the delay inverse hyperbolic trig functions are not
inverse functions for the delay hyperbolic trig functions. The delay inverse hyperbolic trig
functions do however share some of the other properties with their non-delay counterparts.
This is highlighted in the following example.

Example 2. Starting with the series expansion for the inverse hyperbolic tangent function

arctanh(x) =
+∞

∑
n=0

x2n+1

2n + 1
, |x| < 1, (60)

we identify the corresponding delay inverse hyperbolic tangent function

darctanh(x; σ) =
+∞

∑
n=0

(x− (2n + 1)σ)2n+1

2n + 1
Θ
( x

σ
− 2n− 1

)
, |x| < 1. (61)

The derivative of the inverse hyperbolic tangent function is

d
dx

arctanh(x) =
+∞

∑
n=0

x2n, |x| < 1, (62)

which we recognize as the series expansion for

f (x) =
1

1− x2 , |x| < 1. (63)

The derivative of the delay inverse hyperbolic tangent function is

d
dx

darctanh(x; σ) =
+∞

∑
n=0

(x− (2n + 1)σ)2nΘ
( x

σ
− 2n− 1

)
, |x| < 1, (64)

=
+∞

∑
n=0

((x− σ)− 2nσ)2nΘ
(

x− σ

σ
− 2n

)
, |x| < 1, (65)

= df(x− σ; σ), (66)

where

df(x; σ) =
+∞

∑
n=0

(x− 2nσ)2nΘ
( x

σ
− 2n

)
, |x| < 1, (67)

is the corresponding delay function for f (x) defined above. Thus, the derivative of the delay inverse
hyperbolic tangent function is the corresponding delay function for the derivative of the standard
inverse hyperbolic tangent function.
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We now formulate the delay function of the hypergeometric function. We begin with
a definition.

Definition 8. The delay hypergeometric function is defined as

pdFq(a1, . . . , ap; b1, . . . , bq; x; σ) =
+∞

∑
n=0

∏
p
i=1(ai)

n

∏
q
j=1(bj)n

(x− nσ)n

Γ(n + 1)
Θ
( x

σ
− n

)
,

x
σ
∈ R. (68)

Here, (c)n denotes the rising factorial Pochhammer symbol for n ≥ 0, i.e. (c)0 = 1, (c)1 = c and
(c)n = c(c + 1) · · · (c + n− 1) for n > 1.

The next lemma presents the derivative of the delay hypergeometric function.

Lemma 4. The derivative of the delay hypergeometric function is given by

d
dx pdFq(a1, . . . , ap; b1, . . . , bq; x; σ)

=
∏

p
i=1 ai

∏
q
j=1 bj

pdFq(a1 + 1, . . . , ap + 1; b1 + 1, . . . , bq + 1; x− σ; σ),
x
σ
∈ R\{0}. (69)

Proof. Differentiating Equation (68) term-by-term gives

d
dx pdFq(a1, . . . , ap; b1, . . . , bq; x; σ)

=
+∞

∑
n=1

∏
p
i=1(ai)

n

∏
q
j=1(bj)n

(x− nσ)n−1

Γ(n)
Θ
( x

σ
− n

)
(70)

+
+∞

∑
n=0

∏
p
i=1(ai)

n

∏
q
j=1(bj)n

(x− nσ)n

Γ(n + 1)
1
σ

δ
( x

σ
− n

)

=
+∞

∑
n=0

∏
p
i=1(ai)

n+1

∏
q
j=1(bj)n+1

((x− σ)− nσ)n

Γ(n + 1)
Θ
(

x− σ

σ
− n

)
(71)

=
∏

p
i=1 ai

∏
q
j=1 bj

+∞

∑
n=0

∏
p
i=1(ai + 1)n

∏
q
j=1(bj + 1)n

((x− σ)− nσ)n

Γ(n + 1)
Θ
(

x− σ

σ
− n

)
(72)

=
∏

p
i=1 ai

∏
q
j=1 bj

pdFq(a1 + 1, . . . , ap + 1; b1 + 1, . . . , bq + 1; x− σ; σ), (73)

where we note that the only contribution from the Dirac delta sum is when n = 0 but this
term vanishes on the domain x

σ ∈ R\{0}.

3. Fractional Delay Functions

Here, we define fractional delay functions based on fractional power series, which
have been proven to be useful for solving fractional-order differential equations [19–21].
We begin with the definition of a fractional power series.

Definition 9. The fractional power series of a real function, f (t), is an infinite series of the form

f (t) =
+∞

∑
n=0

aα,ntαn, 0 < α < 1, t ≥ 0. (74)

We now expand our definition of delay functions by defining fractional delay functions,
which may prove useful for solving fractional delay equations.
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Definition 10. For 0 < α < 1, a fractional delay function of a variable x with delay parameter σ
is defined as

dfα(x; σ) =
+∞

∑
n=0

aα,n(x− nσ)αnΘ
( x

σ
− n

)
,

x
σ
∈ R. (75)

Arguably, the most fundamental function in fractional calculus is the function eα(x) =
Eα(−xα) [3], where

Eα(x) =
+∞

∑
n=0

xn

Γ(αn + 1)
(76)

is the Mittag-Leffler function and the parameter α ∈ (0, 1). The fractional power series
representation of the function eα(x) can be used as a basis to define delay fractional Mittag-
Leffler functions.

Definition 11. For 0 < α < 1, the delay fractional Mittag-Leffler function is defined as

dE+
α (x; σ) =

+∞

∑
n=0

(x− nσ)αn

Γ(αn + 1)
Θ
( x

σ
− n

)
,

x
σ
∈ R, (77)

and

dE−α (−x;−σ) =
+∞

∑
n=0

(−1)n (x− nσ)αn

Γ(αn + 1)
Θ
( x

σ
− n

)
,

x
σ
∈ R. (78)

The delay Mittag-Leffler function, similar to Equation (77) for x ∈ R+, was introduced
as a solution of a linear homogeneous [15] and a linear non-homogeneous [14,17] fractional-
order delay differential equation. Note that our notation for the delay fractional Mittag-
Leffler function follows the notation used for general fractional delay functions stated in
Definition 10.

Plots of the delay fractional Mittag-Leffler function dE−α (−x;−σ) with α = 0.8, 0.2
are shown in Figure 4 for three different delay values. The delay fractional Mittag-Leffler
function dE−α (−x;−σ) has larger amplitude oscillations for larger delays. The oscillations
are smoother for larger values of α. Further study is needed to determine if the oscillations
vanish for sufficiently small σ and sufficiently large α / 1.

Next, we generalize the delay fractional Mittag-Leffler function given by Equation (77)
via the inclusion of two additional parameters.

Definition 12. For 0 < α < 1 and β, γ ∈ R≥0, the generalized delay fractional Mittag-Leffler
function is defined as

dE+
α,β,γ(x; σ) =

+∞

∑
n=0

(x− nσ)αn+γ

Γ(αn + β)
Θ
( x

σ
− n

)
,

x
σ
∈ R. (79)

Interestingly, we can express the derivative of the generalized delay fractional Mittag-
Leffler function, Equation (79), as a linear combination of three generalized delay fractional
Mittag-Leffler functions, but with different parameters and arguments.

Lemma 5. For 0 < α < 1 and β, γ ∈ R≥0, the derivative of the generalized delay fractional
Mittag-Leffler function is given by

d
dx

dE+
α,β,γ(x; σ) = γdE+

α,β,γ−1(x; σ) (80)

+ dE+
α,α+β−1,α+γ−1(x− σ; σ)

− (β− 1)dE+
α,α+β,α+γ−1(x− σ; σ),

x
σ
∈ R\{0}.
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Figure 4. Plots of the delay fractional Mittag-Leffler function dE−α (−x;−σ) with α = 0.8 (a) and
α = 0.2 (b) for delays σ = 0.1, 0.5, 1.0. The solid green line is for σ = 1.0 and the dashed blue and red
lines are for σ = 0.1 and σ = 0.5, respectively.

Proof. Differentiating Equation (79) term-by-term gives

d
dx

dE+
α,β,γ(x; σ) =

+∞

∑
n=1

αn(x− nσ)αn+γ−1

Γ(αn + β)
Θ
( x

σ
− n

)
(81)

+ γ
+∞

∑
n=0

(x− nσ)αn+γ−1

Γ(αn + β)
Θ
( x

σ
− n

)
+

+∞

∑
n=0

(x− nσ)αn+γ

Γ(αn + β)

1
σ

δ
( x

σ
− n

)
=

+∞

∑
n=1

αn(x− nσ)αn+γ−1

Γ(αn + β)
Θ
( x

σ
− n

)
+ γdE+

α,β,γ−1(x; σ), (82)

where we note that the Dirac delta sum vanishes on the domain x
σ ∈ R\{0}, irrespective of

the value of γ ∈ R≥0. We then simplify the remaining sum in Equation (82) by replacing

αn
Γ(αn + β)

=
1

Γ(αn + β− 1)
− (β− 1)

Γ(αn + β)
, (83)
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so that

+∞

∑
n=1

αn(x− nσ)αn+γ−1

Γ(αn + β)
Θ
( x

σ
− n

)
=

+∞

∑
n=1

(x− nσ)αn+γ−1

Γ(αn + β− 1)
Θ
( x

σ
− n

)
(84)

− (β− 1)
+∞

∑
n=1

(x− nσ)αn+γ−1

Γ(αn + β)
Θ
( x

σ
− n

)
=

+∞

∑
n=0

((x− σ)− nσ)αn+α+γ−1

Γ(αn + α + β− 1)
Θ
(

x− σ

σ
− n

)
(85)

− (β− 1)
+∞

∑
n=0

((x− σ)− nσ)αn+α+γ−1

Γ(αn + α + β)
Θ
(

x− σ

σ
− n

)
= dE+

α,α+β−1,α+γ−1(x− σ; σ) (86)

− (β− 1)dE+
α,α+β,α+γ−1(x− σ; σ).

Substituting the results from Equation (86) into Equation (82), we obtain Equation (80).

The following lemma provides two special cases of Lemma 5.

Lemma 6. For 0 < α < 1, two derivatives of the generalized delay fractional Mittag-Leffler
function with different values for β and γ are given by

d
dx

dE+
α,1,0(x; σ) = dE+

α,α,α−1(x− σ; σ),
x
σ
∈ R\{0}, (87)

and
d

dx
dE+

α,1,1(x; σ) = dE+
α,1,0(x; σ) + dE+

α,α,α(x− σ; σ),
x
σ
∈ R\{0}. (88)

Proof. This follows from an application of Lemma 5 with the specified values of β and γ.

4. Laplace Transform Results

In this section, we derive results that enable the Laplace transform of both standard
and fractional delay functions to be readily determined. These results essentially rely on
finding the delay function corresponding to the given power series and then taking the
Laplace transform term-by-term of the resulting sum.

4.1. Standard Delay Functions

We first consider the Laplace transform of standard delay functions.

Theorem 1. If f (t) permits a power series representation, Equation (4), with Laplace transform

Lt[ f (t)](s) =
∫ +∞

0
e−st f (t) dt = f̂ (s), s ∈ C, (89)

then the Laplace transform of the corresponding delay function df(t; τ) is given by

Lt[df(t; τ)](s) = esτ f̂ (sesτ), τ > 0, (90)

and
Lt[df(λt; λτ)](s) =

1
λ

esτ f̂
( s

λ
esτ
)

, λ ∈ C, τ > 0. (91)
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Proof. Starting with the power series

f (t) =
+∞

∑
n=0

antn (92)

we take the Laplace transform term-by-term with

Lt[tn](s) = Γ(1 + n)s−(1+n) (93)

to obtain

f̂ (s) =
+∞

∑
n=0

anΓ(1 + n)s−(1+n). (94)

From Equation (92), we identify the corresponding standard delay function

df(t; τ) =
+∞

∑
n=0

an(t− nτ)nΘ
(

t
τ
− n

)
, (95)

and we take the Laplace transform term-by-term and use

Lt

[
(t− nτ)nΘ

(
t
τ
− n

)]
(s) = Γ(1 + n)s−(1+n)e−snτ (96)

to write

Lt[df(t; τ)](s) =
+∞

∑
n=0

anΓ(1 + n)s−(1+n)e−snτ (97)

= esτ
+∞

∑
n=0

anΓ(1 + n)(sesτ)−(1+n) (98)

= esτ f̂ (sesτ) (99)

= d̂f(s; τ). (100)

The second result follows in a similar manner. Starting with

df(λt; λτ) =
+∞

∑
n=0

anλn(t− nτ)nΘ
(

t
τ
− n

)
(101)

and proceeding as above, we have

Lt[df(λt; λτ)](s) =
+∞

∑
n=0

anλnΓ(1 + n)s−(1+n)e−snτ (102)

=
1
λ

esτ
+∞

∑
n=0

anΓ(1 + n)
( s

λ
esτ
)−(1+n)

(103)

=
1
λ

e
s
λ λτ

+∞

∑
n=0

anΓ(1 + n)
( s

λ
e

s
λ λτ
)−(1+n)

(104)

=
1
λ

d̂f
( s

λ
; λτ

)
. (105)

The following example demonstrates how the previous theorem can be used to obtain
the Laplace transform of a standard delay function.
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Example 3. The exponential function, defined by the power series,

exp(t) =
+∞

∑
n=0

tn

Γ(n + 1)
(106)

has Laplace transform

Lt[exp(t)](s) =
1

s− 1
. (107)

It then follows from Theorem 1 that the corresponding delay exponential function has Laplace
transform

Lt[dexp(t; τ)](s) = esτ 1
sesτ − 1

=
1

s− e−sτ
. (108)

Thus, in this example, we have

d̂f(s; τ) =
1

s− e−sτ
. (109)

It then follows from Equation (105) with λ = −1 that

Lt[dexp(−t;−τ)](s) = −d̂f(−s;−τ) =
1

s + e−sτ
. (110)

Example 4. The representation of the delay exponential function dexp(−t;−τ) in terms of Lam-
bert W functions, Equation (12), can now be recovered by finding the inverse Laplace transform of

Lt[dexp(−t;−τ)](s) =
1

s + e−sτ
= F(s), (111)

using the complex inversion formula

f (t) =
1

2πi

∫ γ+i+∞

γ−i+∞
eztF(z) dz. (112)

In this formula, γ ∈ R is to the right of all of the singularities of F(z). If 0 < τ < 1
e , then it

is known [10] that F(z) has simple poles, at z + e−zτ = 0 given by z∗ = Wk(−τ)
τ . It is a simple

exercise in complex analysis to show that the Bromwich contour integral is equivalently given as the
modified Bromwich contour integral

1
2πi

∫ γ+i+∞

γ−i+∞
eztF(z) dz =

1
2πi

∫
Γ

eztF(z) dz, (113)

where Γ is a closed path from γ− iL to γ + iL with γ > 0 on the right side plane, completed with
a circular arc of radius R on the left-hand side, in the limit L, R→ +∞. The modified Bromwich
contour integral can then be evaluated using the Cauchy residue theorem,

1
2πi

∫
Γ

eztF(z) dz = ∑
k∈Z

Res(eztF(z), z∗k ) (114)

= ∑
k∈Z

ez∗t

1− τe−z∗k τ
(115)

= ∑
k∈Z

e
Wk(−τ)

τ t

1 + Wk(−τ)
. (116)

In Table 1, we provide a summary list of some standard delay functions and their
Laplace transforms, which can be obtained via Theorem 1.
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Table 1. The left-hand column lists some special delay functions with their corresponding Laplace
transforms in the right-hand column.

Delay Function Laplace Transform

delay exponential
dexp(t; τ) = ∑+∞

n=0
(t−nτ)n

Γ(n+1) Θ
( t

τ − n
) 1

s−e−sτ

dexp(−t;−τ) = ∑+∞
n=0(−1)n (t−nτ)n

Γ(n+1) Θ
( t

τ − n
) 1

s+e−sτ

delay sine

dsin(t; τ) = ∑+∞
n=0(−1)n (t−(2n+1)τ)2n+1

Γ(2n+2) Θ
( t

τ − 2n− 1
) 1

s2esτ+e−sτ

delay cosine

dcos(t; τ) = ∑+∞
n=0(−1)n (t−(2n)τ)2n

Γ(2n+1) Θ
( t

τ − 2n
) s

s2+e−2sτ

delay hyperbolic sine

dsinh(t; τ) = ∑+∞
n=0

(t−(2n+1)τ)2n+1

Γ(2n+2) Θ
( t

τ − 2n− 1
) 1

s2esτ−e−sτ

delay hyperbolic cosine

dcosh(t; τ) = ∑+∞
n=0

(t−(2n)τ)2n

Γ(2n+1) Θ
( t

τ − 2n
) s

s2−e−2sτ

delay fractional Mittag-Leffler
dE+

α (t; τ) = ∑+∞
n=0

(t−nτ)αn

Γ(αn+1) Θ
( t

τ − n
) 1

s−e−sτ s1−α

dE−α (−t;−τ) = ∑+∞
n=0(−1)n (t−nτ)αn

Γ(αn+1) Θ
( t

τ − n
) 1

s+e−sτ s1−α

generalized delay fractional Mittag-Leffler
dE+

α,β,γ(t; τ) = ∑+∞
n=0

(t−nτ)αn+γ

Γ(αn+β)
Θ
( t

τ − n
)

s−γ−1 ∑+∞
n=0

Γ(αn+γ+1)
Γ(αn+β)

(e−sτs−α)n

dE−α,β,γ(−t;−τ) = ∑+∞
n=0(−1)n (t−nτ)αn+γ

Γ(αn+β)
Θ
( t

τ − n
)

s−γ−1 ∑+∞
n=0(−1)n Γ(αn+γ+1)

Γ(αn+β)
(e−sτs−α)n

delay Le Roy-type
dF(γ)α,β (t; τ) = ∑+∞

n=0
(t−nτ)αn

[Γ(β+αn)]γ Θ( t
τ − n) s−1 ∑+∞

n=0
Γ(1+αn)

[Γ(β+αn)]γ s−αne−snτ

4.2. Fractional Delay Functions

Next, we consider the Laplace transform of fractional delay functions.

Theorem 2. If f (t) permits a fractional power series representation (Definition 9) with the Laplace
transform

Lt[ f (t)](s) =
∫ +∞

0
e−st f (t) dt = f̂ (s), s ∈ C, (117)

then the Laplace transform of the corresponding fractional delay function dfα(t; τ) is given by

Lt[dfα(t; τ)](s) = e
sτ
α f̂ (se

sτ
α ), τ > 0, (118)

and
Lt[dfα(λt; λτ)](s) =

1
λ

e
sτ
α f̂
( s

λ
e

sτ
α

)
, λ ∈ C, τ > 0. (119)

Proof. Starting with the fractional power series

f (t) =
+∞

∑
n=0

aα,ntαn, (120)

we take the Laplace transform term-by-term with

Lt[tαn](s) = Γ(1 + αn)s−(1+αn) (121)
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to obtain

f̂ (s) =
+∞

∑
n=0

aα,nΓ(1 + αn)s−(1+αn). (122)

From Equation (120), we identify the corresponding fractional delay function

dfα(t; τ) =
+∞

∑
n=0

aα,n(t− nτ)αnΘ
(

t
τ
− n

)
, (123)

and again, we take the Laplace transform term-by-term and use

Lt

[
(t− nτ)αnΘ

(
t
τ
− n

)]
(s) = Γ(1 + αn)e−snτs−(1+αn) (124)

to write

Lt[dfα(t; τ)](s) =
+∞

∑
n=0

aα,nΓ(1 + αn)e−snτs−(1+αn) (125)

= e
sτ
α

+∞

∑
n=0

aα,nΓ(1 + αn)(se
sτ
α )−(1+αn) (126)

= e
sτ
α f̂ (se

sτ
α ) (127)

= d̂fα(s; τ). (128)

The second result follows in a similar manner. Starting with

dfα(λt; λτ) =
+∞

∑
n=0

aα,nλαn(t− nτ)αnΘ
(

t
τ
− n

)
(129)

and proceeding as above, we have

Lt[dfα(λt; λτ)](s) =
+∞

∑
n=0

aα,nλαnΓ(1 + αn)e−snτs−(1+αn) (130)

=
1
λ

e
sτ
α

+∞

∑
n=0

aα,nΓ(1 + αn)
( s

λ
e

sτ
α

)−(1+αn)
(131)

=
1
λ

e
s
λ

λτ
α

+∞

∑
n=0

aα,nΓ(1 + αn)
( s

λ
e

s
λ

λτ
α

)−(1+αn)
(132)

=
1
λ

d̂fα

( s
λ

; λτ
)

. (133)

The next example demonstrates how the previous theorem can be used to determine
the Laplace transform of a fractional delay function.

Example 5. The Le Roy-type function [22] can be modified to yield the fractional power series

F(γ)
α,β (t) =

+∞

∑
n=0

tαn

[Γ(β + αn)]γ
, 0 < α < 1, β, γ > 0, (134)

which has Laplace transform

Lt[F
(γ)
α,β (t)](s) = s−1

+∞

∑
n=0

Γ(1 + αn)
[Γ(β + αn)]γ

s−αn. (135)
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It then follows from Theorem 2 that the corresponding delay Le Roy-type function,

dF(γ)
α,β (t; τ) =

+∞

∑
n=0

(t− nτ)αn

[Γ(β + αn)]γ
Θ
(

t
τ
− n

)
, 0 < α < 1, β, γ > 0, (136)

has the Laplace transform

Lt[dF(γ)
α,β (t; τ)](s) = e

sτ
α (se

sτ
α )−1

+∞

∑
n=0

Γ(1 + αn)
[Γ(β + αn)]γ

(se
sτ
α )−αn (137)

= s−1
+∞

∑
n=0

Γ(1 + αn)
[Γ(β + αn)]γ

s−αne−snτ . (138)

Thus, in this example, we have

d̂fα(s; τ) = s−1
+∞

∑
n=0

Γ(1 + αn)
[Γ(β + αn)]γ

s−αne−snτ . (139)

It then follows from Equation (133) with λ = 2 that

Lt[dF(γ)
α,β (2t; 2τ)](s) =

1
2

d̂fα

( s
2

; 2τ
)

(140)

= s−1
+∞

∑
n=0

Γ(1 + αn)
[Γ(β + αn)]γ

( s
2

)−αn
e−snτ . (141)

Note that our notation for the delay Le Roy-type function follows the notation used
for general fractional delay functions stated in Definition 10.

In Table 1, we present a summary list of some fractional delay functions and their
Laplace transforms that can be obtained via Theorem 2.

4.3. Extension of the Laplace Transform

Throughout this section, we restrict the time domain of the Laplace transform to non-
negative real numbers. However, since delay functions vanish for all negative real numbers
due to the Heaviside function, we can extend the time domain to include all real numbers.
Consequently, we can consider more general integral transforms. For instance, the Laplace
transform considered previously is equivalent to the bilateral Laplace transform, which we
define as

Bt[ f (t)](s) =
∫ +∞

−∞
e−st f (t) dt = ˆ̂f (s), s ∈ C. (142)

If we make the change of variable s = 2πiω with ω ∈ R, then the bilateral Laplace
transform is equivalent to the Fourier transform, which we define as

Ft[ f (t)](ω) =
∫ +∞

−∞
e−2πiωt f (t) dt = f̃ (ω), ω ∈ R. (143)

Hence, if the Laplace transform of a delay function is known, we can use this variable
change to readily obtain its Fourier transform. The next example helps to elucidate this idea.

Example 6. Recall from Equation (108) that the Laplace transform of the delay exponential function
is

Lt[dexp(t; τ)](s) =
1

s− e−sτ
. (144)

It then follows that the Fourier transform of the delay exponential function is

Ft[dexp(t; τ)](ω) = Lt[dexp(t; τ)](2πiω) =
1

2πiω− e−2πiωτ
. (145)
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5. Integer-Order Delay Differential Equations

Here, we exploit the ability of standard delay functions to solve linear integer-order de-
lay differential equations. As a preliminary to more general results, we first consider exam-
ples of first-order differential equations with delay exponential functions in their solutions.

Example 7. The delay differential equation

du(t)
dt

= u(t− τ), τ > 0, (146)

with initial condition
u(t) = φ(t) for t ≤ 0, (147)

has the solution

u(t) = φ(−τ)dexp(t + τ; τ) +
∫ τ

0
φ′(t′ − τ)dexp(t + τ − t′; τ) dt′. (148)

To show this, we first verify that it is a solution to the equation. From Lemma 1, we have

d
dt

dexp(t + a; τ) = dexp(t + a− τ; τ)

so that, given u(t) in Equation (148), we have

du(t)
dt

= φ(−τ)dexp(t; τ) +
∫ τ

0
φ′(t′ − τ)dexp(t− t′; τ) dt′ = u(t− τ).

It remains to show that the solution, Equation (148), matches the initial condition. First, we
note that

dexp(t; τ) =

{
0 t < 0,
1 0 ≤ t ≤ τ,

(149)

hence, dexp(t+ τ; τ) = 1 for−τ ≤ t ≤ 0 and dexp(t+ τ− t′; τ) = Θ(t+ τ− t′) if 0 ≤ t′ ≤ τ
and −τ ≤ t ≤ 0. Thus, if −τ ≤ t ≤ 0, we can rewrite Equation (148) as

u(t) = φ(−τ) +
∫ τ

0
φ′(t′ − τ)Θ(t + τ − t′) dt′. (150)

Clearly, the integral vanishes if t′ > t + τ, so that

u(t) = φ(−τ) +
∫ t+τ

0
φ′(t′ − τ) dt′ (151)

= φ(t). (152)

In the special case with φ(t) = 1, we recover u(t) = dexp(t + τ; τ). The dynamics of the solution
given by Equation (148) are illustrated in Figure 5 for various delays.

We can readily construct more complicated equations that involve delay functions in
their solutions. This is highlighted by the next example.

Example 8. The delay differential equation

du(t)
dt

= −au(t) + bu(t− τ), a, b ∈ R, τ > 0, (153)

with the initial condition

u(t) =

{
0 t < 0,
1 t = 0,

(154)
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has the solution
u(t) = e−atdexp(beaτt; beaττ). (155)

To show this, let v(t) = eatu(t), so that Equation (153) is consistent with

dv(t)
dt

= beaτv(t− τ), (156)

which has solution dexp(beaτt; beaττ), and the result then follows. The dynamics of the solution
given by Equation (155) are illustrated in Figure 6 for various delays.

0 0.2 0.4 0.6 0.8 1.0

-0.005

-0.004

-0.003

-0.002

-0.000

0

t

u(
t) τ = 0.05

τ = 0.1

τ = 0.2

Figure 5. Plot of the solution, Equation (148), with φ(t) = −t2 for delays τ = 0.05, 0.1, 0.2. The solid
green line is for τ = 0.2 and the dashed blue and red lines are for τ = 0.05 and τ = 0.1, respectively.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

t

u(
t) τ = 0.5

τ = 1.0

τ = 2.0

Figure 6. Plot of the solution, Equation (155), with a = 1.0 and b = 1.0 for delays τ = 0.5, 1.0, 2.0.
The solid green line is for τ = 2.0 and the dashed blue and red lines are for τ = 0.5 and τ = 1.0,
respectively.

The following theorem shows the more general utility of delay functions in represent-
ing solutions to delay differential equations.

Theorem 3. If f (x) permits a power series representation, Equation (4), with the jth derivative

dj

dxj f (x) = g(x), (157)

then
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dj

dxj df(λx; λσ) = λjdg(λ(x− jσ); λσ) +
j−1

∑
k=0

k!akλk

σj−k δ(j−1−k)
( x

σ
− k
)

,
x
σ
∈ R, λ ∈ C,

(158)
where df(x; σ) is the corresponding delay function for f (x), and dg(x; σ) is the corresponding
delay function for g(x).

Proof. Starting with the power series

f (x) =
+∞

∑
n=0

anxn (159)

and differentiating j times, we arrive at

dj

dxj f (x) =
+∞

∑
n=0

an+j(n + 1)jxn. (160)

Hence, we now have

g(x) =
+∞

∑
n=0

an+j(n + 1)jxn. (161)

From Equation (159), we identify the corresponding delay function

df(x; σ) =
+∞

∑
n=0

an(x− nσ)nΘ
( x

σ
− n

)
(162)

and then

df(λx; λσ) =
+∞

∑
n=0

anλn(x− nσ)nΘ
( x

σ
− n

)
. (163)

Hence, differentiating Equation (163) j times, we obtain

dj

dxj df(λx; λσ) =
+∞

∑
n=0

an+jλ
n+j(n + 1)j(x− (n + j)σ)nΘ

( x
σ
− n− j

)
(164)

+
j−1

∑
k=0

k!akλk

σj−k δ(j−1−k)
( x

σ
− k
)

.

From Equation (161), we identify the corresponding delay function

dg(x; σ) =
+∞

∑
n=0

an+j(n + 1)j(x− nσ)nΘ
( x

σ
− n

)
(165)

and then

λjdg(λ(x− jσ); λσ) =
+∞

∑
n=0

an+jλ
n+j(n + 1)j(x− (n + j)σ)nΘ

( x
σ
− n− j

)
, (166)

which matches the first sum on the right-hand side of Equation (164).

Example 9. Consider the logarithmic function f (x) = log(1 + x) with derivative g(x) = 1
1+x .

Starting with the Taylor series for f (x)

log(1 + x) =
+∞

∑
n=1

(−1)n−1 xn

n
, |x| < 1, (167)
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we identify the corresponding delay function

df(x; σ) =
+∞

∑
n=1

(−1)n−1 (x− nσ)n

n
Θ
( x

σ
− n

)
, |x| < 1. (168)

The Taylor series for g(x) is

1
1 + x

=
+∞

∑
n=0

(−1)nxn, |x| < 1, (169)

with the corresponding delay function

dg(x; σ) =
+∞

∑
n=0

(−1)n(x− nσ)nΘ
( x

σ
− n

)
, |x| < 1. (170)

From Theorem 3, we have

d
dx

df(x; σ) = dg(x− σ; σ) +
1
σ

δ
( x

σ

)
(171)

=
+∞

∑
n=0

(−1)n (x− σ− nσ)n

n
Θ
(

x− σ

σ
− n

)
+

1
σ

δ
( x

σ

)
, |x| < 1. (172)

Corollary 5. If dy(x; σ) is a delay function with

dy(x; σ) =
+∞

∑
n=0

an(x− nσ)nΘ
( x

σ
− n

)
,

x
σ
∈ R, (173)

then
d

dx
dy( f (x); σ) = f ′(x)dz( f (x)− σ; σ), if

f (x)
σ
∈ R\{0}, (174)

where dz(x; σ) is a delay function

dz(x; σ) =
+∞

∑
n=0

an+1(n + 1)(x− nσ)nΘ
( x

σ
− n

)
,

x
σ
∈ R. (175)

Proof. This follows from an application of the chain rule and Theorem 3 with the identification

d
dx

dy(x; σ) = dz(x− σ; σ). (176)

Example 10. Consider dy(x; σ) = dexp(−x;−σ), then an = (−1)n

n! from which it follows that
an+1(n + 1) = −an and dz(x; σ) = −dexp(−x;−σ). Theorem 3 in this case yields

d
dx

dexp(− f (x);−σ) = − f ′(x)(dexp(σ− f (x);−σ)). (177)

Note that in the case of f (x) = x, we have

d
dx

dexp(−x;−σ) = −dexp(σ− x;−σ), (178)

and in the case of f (x) = x2

2 , we have

d
dx

dexp
(
− x2

2
;−σ

)
= −x

(
dexp

(
σ− x2

2
;−σ

))
. (179)
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It is worth comparing these results with the non-delay counterparts. We note that exp(−x) is the
solution to the differential equation

dy(x)
dx

= −y(x) (180)

and from Equation (178), dexp(−x;−σ) is the solution to the delay differential equation

dy(x)
dx

= −y(x− σ). (181)

We also note that exp
(
− x2

2

)
is the solution to the differential equation

dy(x)
dx

= −xy(x) (182)

but from Equation (179), dexp
(
− x2

2 ;−σ
)

is not the solution to the delay differential equation

dy(x)
dx

= −xy(x− σ). (183)

In the next example, we demonstrate the utility of Theorem 3 in solving first-order
delay differential equations.

Example 11. The delay differential equation

d f (x)
dx

+ f (x− σ) =
1
σ

δ
( x

σ

)
,

x
σ
∈ R, (184)

has a solution dexp(−x;−σ). This is easy to establish via the direct substitution of Definition 3
into the above equation with λ = −1. Alternatively, note that d f (x)

dx = f (x) has a solution
f (x) = exp(x), and by using Theorem 3 with g(x) = exp(x) and a0 = 1, we can write

d
dx

dexp(λx; λσ) = λdexp(λ(x− σ); λσ) +
1
σ

δ
( x

σ

)
. (185)

If λ = −1 this identifies dexp(−x;−σ) as a solution to the delay differential equation, Equation (184).
The solution can also be represented as a linear combination of Lambert W functions [10,23], and it
can be generalized to include more general initial conditions [12] and systems of equations [11,12].

Using Theorem 3, we can solve higher-order delay differential equations, which we
consider in the following example.

Example 12. The delay differential equation

d2 f (x)
dx2 + f (x− 2σ) =

1
σ2 δ(1)

( x
σ

)
,

x
σ
∈ R, (186)

has a solution dcos(x; σ). This is easy to establish via direct substitution of Definition 4 into the

above equation. Alternatively, note that d2 f (x)
dx2 = − f (x) has a solution f (x) = cos(x), and by

using Theorem 3 with g(x) = − cos(x), a0 = 1, and a1 = 0, we can write

d2

dx2 dcos(λx; λσ) = −λ2dcos(λ(x− 2σ); λσ) +
1
σ2 δ(1)

( x
σ

)
. (187)
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If λ = 1, this identifies dcos(x; σ) as a solution to the delay differential equation, Equation (186).

We observe that f (x) = sin(x) is also a solution of d2 f (x)
dx2 = − f (x) and by using Theorem 3 with

g(x) = − sin(x), a0 = 0, and a1 = 1, we can write

d2

dx2 dsin(λx; λσ) = −λ2dsin(λ(x− 2σ); λσ) +
λ

σ
δ
( x

σ
− 1
)

. (188)

Interestingly, if λ = 1, this identifies dsin(x; σ) as a solution of a separate delay differential equation

d2 f (x)
dx2 + f (x− 2σ) =

1
σ

δ
( x

σ
− 1
)

,
x
σ
∈ R. (189)

The use of delay sine and cosine functions to represent solutions of systems of second-order differential
delay equations with Cauchy initial conditions was explored in [13].

Corollary 6. If x 6= kσ with k ∈ N and k < j, then Equation (158) reduces to

dj

dxj df(λx; λσ) = λjdg(λ(x− jσ); λσ),
x
σ
∈ R, λ ∈ C. (190)

Proof. From Equation (158), we observe that the sum on the right-hand side vanishes for
all x ∈ R, except x = kσ with k ∈ N and k < j.

The next example highlights how delay function series expansions can solve specific
linear delay differential equations.

Example 13. Consider the delay differential equation

d2y(x)
dx2 − dy(x− σ)

dx
+ y(x− 2σ) = 0,

x
σ
∈ R. (191)

If x 6= kσ for k = 0, 1, we can use Corollary 6 to seek a delay function series expansion solution to
the form

y(x) =
+∞

∑
n=0

an(x− nσ)nΘ
( x

σ
− n

)
(192)

by substituting this into the equation. It is straightforward to show that

y(x− 2σ) =
+∞

∑
n=0

an(x− (n + 2)σ)nΘ
( x

σ
− n− 2

)
(193)

and
d2y(x)

dx2 =
+∞

∑
n=0

an+2(n + 1)(n + 2)(x− (n + 2)σ)nΘ
( x

σ
− n− 2

)
. (194)

We also have

y(x− σ) =
+∞

∑
n=0

an(x− (n + 1)σ)nΘ
( x

σ
− n− 1

)
(195)

and then
dy(x− σ)

dx
=

+∞

∑
n=0

an+1(n + 1)(x− (n + 2)σ)nΘ
( x

σ
− n− 2

)
. (196)

We now substitute the delay series expansions from Equations (193), (194), and (196) into
Equation (191) to arrive at

+∞

∑
n=0

(an+2(n + 1)(n + 2)− an+1(n + 1) + an)(x− (n + 2)σ)nΘ
( x

σ
− 2− n

)
= 0. (197)
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Thus, we require
an+2(n + 1)(n + 2)− an+1(n + 1) + an = 0. (198)

If we choose initial conditions that are consistent with a0 = 1 and a1 = 1, then the recurrence
relation can be solved in closed form, yielding

an =
1

3n!

(
3 cos

(nπ

3

)
+
√

3 sin
(nπ

3

))
. (199)

Finally, we have the solution

y(x) =
+∞

∑
n=0

1
3n!

(
3 cos

(nπ

3

)
+
√

3 sin
(nπ

3

))
(x− nσ)nΘ

( x
σ
− n

)
. (200)

We can generalize the example above by imposing an arbitrary initial condition.

Example 14. The delay differential equation

d2y(x)
dx2 − dy(x− σ)

dx
+ y(x− 2σ) = 0,

x
σ
∈ R, (201)

with initial condition
y(x) = φ(x) for x ≤ 0, (202)

has the solution

y(x) = φ(−σ)yp(x + σ) +
∫ σ

0
φ′(x′ − σ)yp(x + σ− x′) dx′ (203)

where yp(x) is the particular solution to the equation with the initial condition y(x) = Θ(x) for
x ≤ 0 given by Equation (200), provided that x 6= kσ for k = 0, 1. To show that this is a solution,
let yp(x) = yc(x) + ys(x), where yc(x) and ys(x) are defined as

yc(x) =
+∞

∑
n=0

1
n!

cos
(nπ

3

)
(x− nσ)nΘ

( x
σ
− n

)
(204)

and

ys(x) =
+∞

∑
n=0

1
n!

1√
3

sin
(nπ

3

)
(x− nσ)nΘ

( x
σ
− n

)
(205)

respectively. It is straightforward to show that

dyp(x)
dx

= yc(x− σ)− ys(x− σ) (206)

and
d2yp(x)

dx2 = −2ys(x− 2σ) (207)

so that, given y(x) in Equation (203), we have

d2y(x)
dx2 − dy(x− σ)

dx
= −φ(−σ)(yc(x− σ) + ys(x− σ)) (208)

−
∫ σ

0
φ′(x′ − σ)(yc(x− σ− x′) + ys(x− σ− x′)) dx′

= −φ(−σ)yp(x− σ)−
∫ σ

0
φ′(x′ − σ)yp(x− σ− x′) dx′ (209)

= −y(x− 2σ). (210)
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Next, we verify that the solution, Equation (203), matches the initial condition. We note that yp(x),
like dexp(x; σ), satisfies the properties

yp(x) =

{
0 x < 0,
1 0 ≤ x ≤ σ,

(211)

hence yp(x) = Θ(x) for −σ ≤ x ≤ σ. Therefore, if −σ ≤ x ≤ 0, we see that

y(x) = φ(−σ) +
∫ σ

0
φ′(x′ − σ)Θ(x + σ− x′) dx′ (212)

= φ(−σ) +
∫ x+σ

0
φ′(x′ − σ) dx′ (213)

= φ(x). (214)

The particular solution y(x) = yp(x) is recovered when φ(x) = Θ(x) for x ≤ 0.

Interestingly, the previous two examples are special cases of a more general theorem.

Theorem 4. The mth-order linear delay differential equation of the form

cm
dm

dxm y(x) + cm−1
dm−1

dxm−1 y(x− σ) + cm−2
dm−2

dxm−2 y(x− 2σ) + · · ·+ c0y(x−mσ) = 0 (215)

where cj ∈ R, for all j = 0, 1, . . . , m has a delay series solution to the form

y(x) =
+∞

∑
n=0

an(x− nσ)nΘ
( x

σ
− n

)
,

x
σ
∈ R, (216)

provided that x 6= kσ, for all k = 0, 1, . . . , m− 1.

Proof. Substituting Equation (216) into Equation (215) yields

+∞

∑
n=0

m

∑
j=0

cjan+j(n + 1)j(x− (n + m)σ)nΘ
( x

σ
−m− n

)
. (217)

This requires
m

∑
j=0

cjan+j(n + 1)j = 0, (218)

which defines a linear homogeneous mth-order recurrence relation with polynomial coeffi-
cients to solve for the sequence, an. The initial terms of the sequence, a0, a1, . . . , am−1, are
defined by the initial conditions for Equation (215).

6. Fractional-Order Delay Differential Equations

We now demonstrate the ability of fractional delay functions to solve various linear
fractional-order delay differential equations. Although we focus on differential equations
that involve the Caputo fractional derivative, it is possible to consider equations with
alternative fractional derivatives. For readers interested in the history of fractional calculus,
we refer them to the preface in the classic text on fractional differential equations by
Podlubny [24].

Example 15. For 0 < α < 1, the fractional-order delay differential equation

CDα
t u(t) = −u(t− τ), τ > 0, (219)
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with initial condition

u(t) =

{
0 t < 0,
1 t = 0,

(220)

has the solution
u(t) = dE−α (−t;−τ) (221)

where CDα
t is a Caputo fractional derivative of order α [25],

CDα
t u(t) =

1
Γ(1− α)

∫ t

0

u′(t′)
(t− t′)α

dt′. (222)

To show this, we use Laplace transform methods, starting with the Laplace transform of the Caputo
derivative

Lt[
CDα

t u(t)](s) = sαû(s)− sα−1u(0). (223)

Consistent with the requirement, u(t− τ) = 0 if t < τ, we introduce a Heaviside function on the
right-hand side of the equation and take the Laplace transform using

Lt[u(t− τ)Θ(t− τ)](s) = e−sτ û(s). (224)

The Laplace transform of Equation (219) then gives

sαû(s)− sα−1u(0) = −e−sτ û(s), (225)

which we can solve for û(s) with u(0) = 1 to obtain

û(s) =
1

s + e−sτs1−α
. (226)

Recall from Table 1 that this is the Laplace transform of dE−α (−t;−τ). To show this, we can take
the Laplace transform term-by-term in the definition of dE−α (−t;−τ) with

Lt

[
(t− nτ)αnΘ

(
t
τ
− n

)]
(s) = Γ(1 + αn)e−snτs−(1+αn) (227)

and then sum over n using the series expansion 1
1+x = ∑+∞

n=0(−1)nxn. The solution to this example
was essentially given in [26] but using different notations.

We can increase the complexity of the previous example through the addition of a
function of time, f (t), on the right-hand side of the equation.

Example 16. For 0 < α < 1, the fractional-order delay differential equation

CDα
t u(t) = −u(t− τ) + f (t), τ > 0, (228)

with initial condition

u(t) =

{
0 t < 0,
1 t = 0,

(229)

has the solution

u(t) = dE−α (−t;−τ) +
∫ t

0
dE−α,α,α−1(−(t− t′);−τ) f (t′) dt′. (230)

To show this, we can take a Laplace transform of the equation and solve for û(s). We require the
Laplace transform results

Lt
[
dE−α (−t;−τ)

]
(s) =

1
s + e−sτs1−α

(231)
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and
Lt

[
dE−α,α,α−1(−t;−τ)

]
(s) =

1
sα + e−sτ

, (232)

which can be obtained from Table 1, together with the convolution rule for Laplace transforms to
carry out the inverse Laplace transforms.

We can further generalize Example 15 by imposing an arbitrary initial condition.

Example 17. For 0 < α < 1, the fractional-order delay differential equation

CDα
t u(t) = u(t− τ), τ > 0, (233)

with initial condition
u(t) = φ(t) for t ≤ 0, (234)

has the solution

u(t) = φ(−τ)dE+
α (t + τ; τ) +

∫ τ

0
φ′(t′ − τ)dE+

α (t + τ − t′; τ) dt′. (235)

The study of fractional-order delay differential equations is a recent and rapidly
growing field [14–16,26–31]. It is anticipated that special delay functions will facilitate the
representation of solutions for these types of problems, more generally, and enable more
direct comparisons with their non-delay counterparts.

7. Generalized Power Series Delay Functions

In the above, we developed definitions of delay functions based on power series
expansions and fractional power series expansions. Clearly, it is possible to broaden
this class of functions in many ways. Our primary focus above has been to define delay
functions that could prove useful for finding solutions to delay differential equations.
In the following, we consider delay functions based on an infinite series of powers of a
delayed function. We refer to this class of functions as generalized power series delay
functions. Our goal here has not been to be exhaustive in the identification of delay
functions that can be used in solving delay differential equations, but to provide one of
many possible generalizations.

Definition 13. A generalized power series delay function of a real-valued function h(x) with delay
parameter σ is defined as

df[h(x); µ](x; σ) =
+∞

∑
n=0

an(µh(x− nσ))nΘ
( x

σ
− n

)
,

x
σ

, µ ∈ R. (236)

Example 18. If µ = −1, an = 1
Γ(αn+1) and h(x) = xα for 0 < α < 1, then df[xα;−1](x; σ) =

dE−α (−x;−σ). In the case that µ = 1, we would instead find that df[xα; 1](x; σ) = dE+
α (x; σ).

In previous sections, we showed that delay functions based on standard power series,
and delay functions based on fractional power series, provided solutions to autonomous
delay differential equations and autonomous fractional delay differential equations. In
the following, we will show that we can use delay functions based on generalized power
series, Equation (13), to provide solutions to certain delay differential equations with
periodic coefficients.

Theorem 5. The delay differential equation

dy(x)
dx

= p(x)y(x− σ) +
1
σ

δ
( x

σ

)
,

x
σ
∈ R, (237)
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where p(x) = p(x− σ) is continuous and periodic with period σ has a delay functional solution

y(x) =
+∞

∑
n=0

1
n!
(q(x− nσ))nΘ

( x
σ
− n

)
, (238)

where
q(x) =

∫ x

0
p(s) ds. (239)

Proof. Differentiating Equation (238) yields

dy(x)
dx

=
+∞

∑
n=0

1
n!

np(x− nσ)(q(x− nσ))n−1Θ
( x

σ
− n

)
(240)

+
+∞

∑
n=0

1
n!
(q(x− nσ))n 1

σ
δ
( x

σ
− n

)
=

+∞

∑
n=1

1
(n− 1)!

p(x− nσ)(q(x− nσ))n−1Θ
( x

σ
− n

)
+

1
σ

δ
( x

σ

)
(241)

=
+∞

∑
n=0

1
n!

p(x− σ− nσ)(q(x− σ− nσ))nΘ
(

x− σ

σ
− n

)
+

1
σ

δ
( x

σ

)
, (242)

but since p(x− σ− nσ) = p(x), this becomes

dy(x)
dx

= p(x)
+∞

∑
n=0

1
n!
(q(x− σ− nσ))nΘ

(
x− σ

σ
− n

)
+

1
σ

δ
( x

σ

)
(243)

= p(x)y(x− σ) +
1
σ

δ
( x

σ

)
. (244)

In the corollary below, we show that if the periodic function p(x) = p(x− σ) has a
mean of zero, then the infinite sum solution, Equation (238), for Equation (237), can be
simplified to a closed-form solution.

Corollary 7. If p(x) is a periodic function with period σ and a mean of zero, then the delay
differential equation, Equation (5), has a closed-form solution

y(x) =
Γ(1 + b x

σ c, q(x))
Γ(1 + b x

σ c)
eq(x),

x
σ
∈ R, (245)

where q(x), defined by Equation (239), is periodic with period σ, and

Γ(b, c) =
∫ +∞

c
xb−1e−x dx (246)

denotes the upper incomplete gamma function.

Proof. We begin by showing that if p(x) is periodic with period σ and has a mean of zero,
then q(x), defined by Equation (239), is periodic with period σ. Note that if p(x) is periodic
with period σ, then from Equation (239), we can write

q(x) =
∫ x

0
p(s + σ) ds (247)

=
∫ x+σ

σ
p(r) dr. (248)
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It then follows that

q(x− σ) =
∫ x

σ
p(r) dr (249)

=
∫ x

0
p(r) dr−

∫ σ

0
p(r) dr (250)

= q(x)−
∫ σ

0
p(r) dr. (251)

But if p(x) is periodic with period σ and has a mean of zero, then∫ σ

0
p(r) dr = 0 (252)

so that q(x) = q(x− σ) is periodic with period σ, and we can replace q(x− nσ) with q(x)
in the solution to the delay differential equation from Theorem 5 to obtain

y(x) =
+∞

∑
n=0

1
n!
(q(x))nΘ

( x
σ
− n

)
(253)

or equivalently

y(x) =
b x

σ c

∑
n=0

1
n!
(q(x))n, (254)

which simplifies to give Equation (245) since

k

∑
n=0

xn

n!
=

Γ(1 + k, x)
Γ(1 + k)

ex. (255)

Note that the above result is simple to establish using Laplace transform methods.

We demonstrate the utility of the previous theorem and corollary in the following final
example.

Example 19. The delay differential equation

dy(x)
dx

= cos
(

2πx
σ

)
y(x− σ) +

1
σ

δ
( x

σ

)
,

x
σ
∈ R, (256)

has the solution

y(x) =
+∞

∑
n=0

σn

n!(2π)n sinn
(

2πx
σ

)
Θ
( x

σ
− n

)
, (257)

which simplifies to the closed-form solution

y(x) =
Γ(1 + b x

σ c,
σ

2π sin
( 2πx

σ

)
)

Γ(1 + b x
σ c)

e
σ

2π sin( 2πx
σ ). (258)

The dynamics of the solution given by Equation (258) are illustrated in Figure 7 for various delays.
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Figure 7. Plot of the solution, Equation (258), for delays σ = 0.5, 1.0, 2.0. The solid green line is for
σ = 2.0 and the dashed blue and red lines are for σ = 0.5 and σ = 1.0, respectively.

8. Summary

In the above, we provided a systematic approach to delay functions, defined as
truncated power series or truncated fractional power series, characterized by a delay
parameter σ, where the variable in the nth term of the series is delayed by nσ. Here, we
concentrated on the properties of the functions over real variables. We provided their
Laplace transform properties and demonstrated how the delay functions could be used
to represent solutions of autonomous linear delay differential equations and autonomous
linear delay fractional differential equations. Starting with the series expansion solution
of an autonomous linear differential equation, we identified a corresponding delay series
expansion as a solution of a corresponding autonomous linear delay differential equation.
We then showed how general delay series expansions could be employed as trial solutions to
construct solutions for arbitrary delay linear differential equations with constant coefficients.
Finally, we considered more general delay functions based on truncated series expansions
with delayed arguments in powers of general functions, h(x), rather than powers of x or
powers of xα.

This systematic approach to delay functions that we provide here should make them
more accessible to a broader mathematics community, and bring further attention to
important results that have already been made [11–16,26]. More generally, we hope that
this publication will simplify modeling with delay differential equations and inspire others
to extend research on novel delay functions and their properties.
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