
Citation: Liu, X.; Kong, J.; Peng, L.;

Luo, D.; Xu, G.; Chen, X.; Liu, X. A

Secure Multi-Party Computation

Protocol for Graph Editing Distance

against Malicious Attacks.

Mathematics 2023, 11, 4847.

https://doi.org/10.3390/

math11234847

Academic Editor: Shaomin Wu

Received: 28 October 2023

Revised: 17 November 2023

Accepted: 29 November 2023

Published: 1 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Secure Multi-Party Computation Protocol for Graph Editing
Distance against Malicious Attacks
Xin Liu 1,2, Jianwei Kong 1, Lu Peng 3, Dan Luo 4,*, Gang Xu 5, Xiubo Chen 2 and Xiaomeng Liu 1

1 School of Information Engineering, Inner Mongolia University of Science and Technology,
Baotou 014010, China; lx2001lx@imust.edu.cn (X.L.); 2022022346@stu.imust.edu.cn (J.K.);
2021023305@stu.imust.edu.cn (X.L.)

2 State Key Laboratory of Network and Switching Technology, Beijing University of Posts
and Telecommunications, Beijing 100876, China; xb_chen@bupt.edu.cn

3 Beijing Institute of Computer Technology and Applications, Beijing 100039, China; jialk@bupt.edu.cn
4 Department of Computer Science, Tianjin Renai University, Tianjin 301636, China
5 School of Information Science and Technology, North China University of Technology, Beijing 100144, China;

gx@ncut.edu.cn
* Correspondence: rdjeans@gmail.com; Tel.: +86-136-1996-1021

Abstract: The secure computation of the graph structure is an important element in the field of
secure calculation of graphs, which is important in querying data in graphs, since there are no
algorithms for the graph edit distance problem that can resist attacks by malicious adversaries. In
this paper, for the problem of secure computation of similarity edit distance of graphs, firstly, the
encoding method applicable to the Paillier encryption algorithm is proposed, and the XOR operation
scheme is proposed according to the Paillier homomorphic encryption algorithm. Then, the security
algorithm under the semi-honest model is designed, which adopts the new encoding method and the
XOR operation scheme. Finally, for the malicious behaviors that may be implemented by malicious
participants in the semi-honest algorithm, using the hash function, a algorithm for secure computation
of graph editing distance under the malicious model is designed, and the security of the algorithm is
proved, and the computational complexity and the communication complexity of the algorithm are
analyzed, which is more efficient compared with the existing schemes, and has practical value. The
algorithm designed in this paper fills the research gap in the existing literature on the problem of
graph edit distance and contributes to solving the problem.

Keywords: secure multi-party computation; graph editing distance; XOR; hash function;
malicious model

MSC: 14-06

1. Introduction

The rapid growth of the Web not only made it easy for participants to jointly perform
information search and computation, but also poses a great challenge to participants’ data
security, which can easily lead to data privacy leakage if not properly protected [1,2]. Using
secure multi-party computation, which can fully utilize the data while protecting their
privacy, has become a powerful tool for privacy protection [3–6], which makes secure
multi-party computation gain more and more attention. Secure multi-party computation
(MPC) is an important branch of cryptography [7], which aims to solve the problem of
cooperative computing between a group of malicious parties on the premise of protecting
private data. In the whole process of the implementation of the MPC algorithms, data
calculation can be completed without relying on any third party, and the participants can
only obtain the calculation results and cannot obtain the private data of other participants.

Graph theory is a scientific modeling and data analysis tool that is the most effective
model for studying the interconnections and interactions between things [8]. Graphs can

Mathematics 2023, 11, 4847. https://doi.org/10.3390/math11234847 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11234847
https://doi.org/10.3390/math11234847
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11234847
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11234847?type=check_update&version=2

Mathematics 2023, 11, 4847 2 of 17

visually represent the connection between things, and make the messy information orderly,
intuitive, and clear, so almost everything can be expressed by graphs. Secure multi-party
computation for graph theory focuses on the secure computation of graph intersection
and union [9–13], the secure query of subgraphs [14–18], the secure query of graph edit
distances [19–24], and the secure query of graph paths [25–27].

A dynamic graph is a chart in which data changes over time or on a time axis, and these
changes are displayed in real time through animation or interaction [28]. Dynamic graphs
are often used to show trends, patterns, correlations, or other data characteristics over time.
The graph editing distance (GED) can be used as a measure of similarity between two
graphs. The GED between two graphs can be defined as GED(GA, GB). If the two graphs
are the same, the editing distance is 0; if the editing distance between the two graphs is
large, the two graphs are less similar. The GED refers to the minimum number of operations
required to convert one graph into another by adding, deleting, and replacing edges and
vertices, but considering that the replacement operations in graphs involve both edges and
vertices, which are more tedious, only deletion and addition operations are considered in
this paper. Reference [10] designed a new encoding method that represents the vertices in a
graph in a special matrix, and combined it with the Lifted-ElGamal threshold cryptosystem
to design an MPC algorithm of graph intersection and union sets. Reference [21] applied the
method of an adjacency matrix and angle vectors to transform the graph into an adjacency
matrix, and used the equality of corresponding interior angles and proportionality of
corresponding edges as well as hash functions to confidentially determine graph similarity.
Reference [22] proposed a new similarity measure using a depth-first search combined
with Levenshtein distance to transform graph matching into a string matching problem,
and designed a graph similarity editing distance algorithm. Reference [23] computes the
approximate GED and mentions the determination of a fault-tolerant graph matching
scheme. Reference [26] studied the MPC problem of shortest paths in graphs.

In this paper, for the problem of secure computation of graph editing distance, we
propose a coding method applicable to the Paillier encryption algorithm, which is simpler
and more efficient. At the same time, this is for the problem that the algorithm under
the semi-honest model cannot resist the attack of a malicious adversary, and there are
problems such as privacy leakage, even possible errors of judgement, etc. We design a
algorithm for graph editing distance under the malicious model that can resist the attack of
a malicious adversary.

The contributions are as follows:

(1) First, an encoding method applicable to the Paillier encryption algorithm is proposed,
which is simpler and more efficient.

(2) Using the Paillier additive homomorphism and XOR homomorphism, the Paillier
encryption scheme used to realize the secure XOR operation scheme is proposed
to facilitate the problem of confidential calculation of the graph editing distance
for research.

(3) An MPC algorithm of graph editing distance under the semi-honest model is designed,
and analyzed for correctness using the coding methods and XOR operation schemes,
and the algorithm has been analyzed for correctness.

(4) With the help of hash functions, an MPC algorithm for GED that can resist malicious
attacks is designed for the malicious behaviors that may be committed by malicious
participants. The security of the algorithm is demonstrated using the real/ideal model
paradigm, and the efficiency of the algorithm is verified with the efficiency analysis
and experimental simulations.

The rest of the paper is organized as follows: Section 2 introduces some basic tools
needed to construct secure algorithms, edit distance encoding rules, and security definitions
of algorithms; Section 3 constructs edit distance secure algorithms for graphs under semi-
honesty and analyzes their correctness; Section 4 constructs edit distance secure MPC
algorithms for graphs under malicious models and analyzes and proves the security of the

Mathematics 2023, 11, 4847 3 of 17

algorithms under malicious models; Section 5 analyzes the performance of the algorithms
and presents their engineering applications; Section 6 summarizes the paper.

2. Related Work
2.1. Paillier Cryptosystem

The Paillier encryption system is a public key cryptosystem with the additive homo-
morphism and semantic security [29]. The description is as follows:

(1) Key generation: Set the security parameter k to generate large prime numbers p, q,
satisfying gcd(pq, (p− 1)(q− 1)) = 1. Calculate N = pq, λ = lcm(p− 1, q− 1),
where lcm denotes the least common multiple. Choose g ∈ Z∗N randomly to satisfy
gcd

(
L
(

gλmodN2), N
)
= 1, where L(x) = x−1

N . The public key is (g, N) and the
private key is λ.

(2) Encryption process: An arbitrary plaintext message m ∈ ZN, and arbitrarily chosen
random number r ∈ Z∗N, computed to obtain the ciphertext C = E(m) = gmrNmodN2.

(3) Decryption process: For the ciphertext C ∈ Z∗N2 , calculate m =
L(cλmodN2)
L(gλmodN2)

modN.

Additive homomorphism: For any plaintext m1, m2 ∈ ZN and any r1, r2 ∈ Z∗N , corre-
sponding to two ciphertexts c1 = E(m1, r1) and c2 = E(m2, r2), they satisfy
c1 · c2 = E(m1, r1) · E(m2, r2)= gm1+m2(r1 · r2)

NmodN2 = E(m1 + m2)modN2.
In addition, the Paillier additive homomorphism can implement the XOR operation

between binary numbers.

Theorem 1. The Paillier encryption algorithm allows for the implementation of an XOR operation

on binary numbers: E(a⊕ b) = E(a•b + a•b) = E(a)bE(a)b = E(b)
a
E(b)a.

Suppose a, b is a binary string, i.e., a = a1a2 . . . an, b = b1b2 . . . bn. If the elements of the
corresponding positions of a, b are XOR by position, and the summation operation is carried
out for each bit ci = ai ⊕ bi(i ∈ [1, n]) of the resulting binary string c = c1c2 . . . cn, the result

n
∑

i=1
ci represents the number of different elements in the corresponding positions of a, b. The

above process can be expressed as E(
n
∑

i=1
ai ⊕ bi) =

n
∏
i=1

E(ai)
bi E(ai)

bi (or
n
∏
i=1

E(bi)
ai E(bi)

ai).

2.2. Hash Function

The hash function h = H(M) can take the data M of different lengths as input and
produce a fixed-length hash value [30]. For larger sets of inputs, M1, M2, . . . , Mn are
processed separately using the hash function, and the resulting output result h1, h2, . . . , hn
has uniformly distributed, seemingly random values for each element. If one or several
bits of the data M are changed, a different hash value will be generated.

The hash function can be used for message authentication, a way to verify the integrity
of a message. It ensures that the data received by the receiver do match the data sent by the
sender and that there are no unauthorized modifications, insertions, deletions, and replay.

2.3. Coding Rules

Let an undirected complete graph G = (V, E) have a vertex set V = {v1, v2, . . . , vm}
and edge set E = (e1, e2, · · · em). The subgraph G0 can be encoded by a m×m matrix M0
where the elements Mij are the following values:

Mij =

{
1, an edge exists between vi, vj(if i = j, means the existence of vertex v i);
0, no edge exists between vertices vi, vj(if i = j, means vertex v i does not exist).

G0 is an undirected graph, and it is easy to know that M0 is symmetric about the
diagonal. The diagonal and following elements of M0 are taken out by rows and arranged

Mathematics 2023, 11, 4847 4 of 17

sequentially, which can form a one-dimensional array X = (x1, x2, . . . , xk), k = m(m+1)
2 .

M0 is shown as follows:

M0 =



1 1 · · · 0 1
1 1 · · · 1 0
...

...
. . .

...
...

0 1 · · · . . .
...

1 0 · · · · · · 1


Alice and Bob generate matrices MA and MB of size m×m, respectively, according to

the encoding method, and the elements of the diagonal and below are taken out by rows
and arranged sequentially to form the arrays A = (a1, a2, . . . , ak) and B = (b1, b2, . . . , bk).
To calculate the editing distance between two graphs, it is only necessary to calculate the
number of unequal elements in the corresponding positions in the array A, B. The Paillier
encryption algorithm is used to realize the secure XOR operation, and the basic idea is as
described in Theorem 1. A, B is expanded to A∗ =

(
a∗1 , a∗2 , . . . , a∗2k

)
= (a1, . . . ak, a1, . . . , ak)

and B∗ =
(
b∗1 , b∗2 , . . . , b∗2k

)
=
(

b1, . . . , bk, b1, . . . bk

)
, respectively. Alice encrypts A∗ and

sends it to Bob, who selects the ciphertext at the corresponding position according to
the element with value ‘1’ in B∗, and multiplies the selected ciphertext to obtain a new
ciphertext to Alice, who decrypts it and obtains the result, which is the graph GA and the
editing distance of GB.

Example 1. Suppose the full set of vertices is V = (v1, v2, . . . , v5), Alice has subgraph GA, and
Bob has subgraph GB, as shown in Figures 1 and 2:

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 19

The hash function can be used for message authentication, a way to verify the integ-
rity of a message. It ensures that the data received by the receiver do match the data sent
by the sender and that there are no unauthorized modifications, insertions, deletions, and
replay.

2.3. Coding Rules

Let an undirected complete graph (,)G V E= have a vertex set 1 2{ , ,..., }mV v v v= and
edge set ()1 2, , mE e e e=  . The subgraph 0G can be encoded by a m m× matrix 0M
where the elements ijM are the following values:





i j i
ij

i j i

1, an edge exists between

0, no edge exists between vertices

v ,v (if i=j, means the existence of vertex v);
M =

v ,v (if i=j, means vertex v does not exist).

0G is an undirected graph, and it is easy to know that 0M is symmetric about the
diagonal. The diagonal and following elements of 0M are taken out by rows and ar-

ranged sequentially, which can form a one-dimensional array 1 2
(1)

2(, ,...,), k
m mX x x x k += = .

0M is shown as follows:

0

1
1 1

0

1 0 1
1

1
1 0

0

1

M

 
 
 
 =
 
 
  




 


  
 
 

Alice and Bob generate matrices AM and BM of size m m× , respectively, accord-
ing to the encoding method, and the elements of the diagonal and below are taken out by
rows and arranged sequentially to form the arrays ()1 2, , , kA a a a=  and ()1 2, , , kB b b b=  . To
calculate the editing distance between two graphs, it is only necessary to calculate the
number of unequal elements in the corresponding positions in the array ,A B . The Paillier
encryption algorithm is used to realize the secure XOR operation, and the basic idea is as

described in Theorem 1. ,A B is expanded to () ()* * * *
1 2 2 1 1, , , , , , ,k k kA a a a a a a a= =  

 and
() ()* * * *

1 2 2 1 1, , , , , , ,k k kB b b b b b b b= =  
, respectively. Alice encrypts *A and sends it to Bob, who

selects the ciphertext at the corresponding position according to the element with value
‘1′ in *B , and multiplies the selected ciphertext to obtain a new ciphertext to Alice, who

decrypts it and obtains the result, which is the graph AG and the editing distance of BG

.

Example 1. Suppose the full set of vertices is ()1 2 5, , ,V v v v=  , Alice has subgraph AG , and Bob
has subgraph BG , as shown in Figures 1 and 2:

Figure 1. Alice’s subgraph AG .
Figure 1. Alice’s subgraph GA.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 19

Figure 2. Bob’s subgraph BG .

According to the encoding method, the matrix AM , BM is generated.
1 0 0 1

1 0 1
0 0

0

1
1 1
0 1 1
0 0 0 0
1 1 0 0 1

AM

 
 
 
 =
 
 
 
 

 ，

1 1 0 1
1 0 1

1 0
0

1
1 1
1 1 1
0 0 1 1
1 1 0 0 1

BM

 
 
 
 =
 
 
 
 

Alice and Bob form arrays of diagonals and the following elements of matrices AM
and BM , respectively:

()1,1,1,0,1,1,0,0,0,0,1,1,0,0,1A = , ()1,1,1,1,1,1,0,0,1,1,1,1,0,0,1B = .

Alice will then transform A into *A , i.e.,
()* 1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,0A = , and Bob transforms B into *B , i.e.,
()* 1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0B = .

Alice encrypts the array *A using the Paillier algorithm and ()*E A
 is sent to Bob,

who selects the ciphertext () ()* 1,1,1, 0,1,1, 0, 0,1,1,1,1,1,1,1iE a = from ()*E A
 at the correspond-

ing position according to the element
*
ib with *B value ‘1′ and computes ()*

*

i
ib

C E a= ∏ .

Alice decrypts C to obtain () 12c D C= = , i.e., the edit distance of graph , A BG G is 12. This
is graphically represented as follows. As shown in Figure 3.

Figure 2. Bob’s subgraph GB.

Mathematics 2023, 11, 4847 5 of 17

According to the encoding method, the matrix MA, MB is generated.

MA =


1 1 0 0 1
1 1 1 0 1
0 1 1 0 0
0 0 0 0 0
1 1 0 0 1

 , MB =


1 1 1 0 1
1 1 1 0 1
1 1 1 1 0
0 0 1 1 0
1 1 0 0 1


Alice and Bob form arrays of diagonals and the following elements of matrices MA

and MB, respectively:

A = (1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1), B = (1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1).

Alice will then transform A into A∗, i.e.,
A∗ = (1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0), and Bob transforms
B into B∗, i.e., B∗ = (1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0).

Alice encrypts the array A∗ using the Paillier algorithm and E(A∗) is sent to Bob,
who selects the ciphertext E

(
a∗i
)
= (1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1) from E(A∗) at the

corresponding position according to the element b∗i with B∗ value ‘1′ and computes
C = ∏b∗i

E
(
a∗i
)
. Alice decrypts C to obtain c = D(C) = 12, i.e., the edit distance of

graph GA, GB is 12. This is graphically represented as follows. As shown in Figure 3.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 19

Figure 2. Bob’s subgraph BG .

According to the encoding method, the matrix AM , BM is generated.
1 0 0 1

1 0 1
0 0

0

1
1 1
0 1 1
0 0 0 0
1 1 0 0 1

AM

 
 
 
 =
 
 
 
 

 ，

1 1 0 1
1 0 1

1 0
0

1
1 1
1 1 1
0 0 1 1
1 1 0 0 1

BM

 
 
 
 =
 
 
 
 

Alice and Bob form arrays of diagonals and the following elements of matrices AM
and BM , respectively:

()1,1,1,0,1,1,0,0,0,0,1,1,0,0,1A = , ()1,1,1,1,1,1,0,0,1,1,1,1,0,0,1B = .

Alice will then transform A into *A , i.e.,
()* 1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,0,0,0,1,0,0,1,1,1,1,0,0,1,1,0A = , and Bob transforms B into *B , i.e.,
()* 1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0B = .

Alice encrypts the array *A using the Paillier algorithm and ()*E A
 is sent to Bob,

who selects the ciphertext () ()* 1,1,1, 0,1,1, 0, 0,1,1,1,1,1,1,1iE a = from ()*E A
 at the correspond-

ing position according to the element
*
ib with *B value ‘1′ and computes ()*

*

i
ib

C E a= ∏ .

Alice decrypts C to obtain () 12c D C= = , i.e., the edit distance of graph , A BG G is 12. This
is graphically represented as follows. As shown in Figure 3.

Figure 3. Graphics conversion process.

2.4. Security under the Malicious Model

The malicious model [31] is a pervasive model for secure multi-party computation, but
it is difficult to design because it can prevent or detect malicious behaviors. To prove that a
Algorithm is secure under the malicious model, it must be shown that it meets the security
definition under the malicious model, i.e., a Algorithm is secure if the real Algorithm can
reach the same level of security as the ideal Algorithm.

Ideal Algorithm: P1 and P2 have private data x and y, respectively, and P1 and P2
want to jointly compute the function f (x, y) = (f1(x, y), f2(x, y)). The computation process
requires a trusted third party (TTP), and finally both parties obtain the results f1(x, y) and
f2(x, y), respectively. The concrete implementation process is as follows:

(1) P1 and P2 send x and y to TTP, respectively. If Pi(i = 1, 2) is honest, the correct data
are sent to TTP. If Pi is malicious, it may send false input x′ or y′ based on the private

Mathematics 2023, 11, 4847 6 of 17

data, or it may refuse to execute the Algorithm. However, such cases will affect the
computation results, and should not be considered.

(2) If TTP receives x, y and calculates f (x, y), send f1(x, y) to P1 and send f2(x, y) to P2.

In the ideal model Algorithm, P1 and P2 do not obtain any information from each
other except for obtaining fi(x, y)(i = 1, 2). The ideal Algorithm is the safest. If the
Algorithm designed under the malicious model can also achieve the same security as the
ideal Algorithm, the real algorithm can be considered as secure. In addition, the malicious
model requires at least one of the parties to be honest, and there does not exist a algorithm
that is secure even if all participants are malicious adversaries.

Under the ideal model, participants have auxiliary information z. The process of cal-
culating strategy B jointly with F(x, y) is denoted as IDEALF,B(z)(x, y). Choose a random
number r, let IDEALF,B(z)(x, y) = γ(x, y, z, r), where γ(x, y, z, r) is defined as follows:

(1) If P1 is honest, there is

γ(x, y, z, r) = (f1(x, y′), B2(y, z, r, f2(x, y′))), (1)

among them, y′ = B2(y, z, r).
(2) If P2 is honest, there is

γ(x, y, z, r) =
{

(B1(x, z, r, f1(x′, y),⊥),⊥), if B1(x, z, r, f1(x′, y)) = ⊥
(B1(x, z, r, f1(x′, y)), f2(x′, y)), otherwise

. (2)

In both Formulas (1) and (2), there is x′ = B1(x, z, r).

Definition 1. Security of MPC Algorithms under the malicious model.

Let F: {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a probability polynomial time function.
The output sequence messages are generated by A1(y, z) and interaction in the process
A2(y, z) of REAL

Π,
¯
A(z)

(x, y) executing algorithm with strategy A in the case of auxiliary

input z;
¯
A = (A1, A2) denotes the probabilistic polynomial time algorithm constructed

in the real model algorithm. The privacy information owned by both parties are x and y,
respectively.

If for any acceptable strategy
¯
A = (A1, A2) in the real model, an acceptable strategy

¯
B = (B1, B2) in the ideal model can be found that satisfies{

IDEAL
F,

¯
B(z)

(x, y)
}

x,y,z

c≡
{

REAL
Π,

¯
A(z)

(x, y)
}

x,y,z
, (3)

then the algorithm Π securely computes the function F.

3. Secure Computation Algorithm for Graph Editing Distances
under the Semi-Honest Model

Problem description: An undirected complete graph G = (V, E) is formed by the

vertex set V = {v1, v2, . . . , vm} and the edge set E =

{
l1, l2, . . . , l m(m−1)

2

}
. Clearly, G has

m(m−1)
2 edges. Alice has a subgraph GA of G, and Bob has a subgraph GB of G. Both parties

want to query the editing distance between GA and GB confidentially without revealing
their respective subgraphs.

The solution idea: Alice and Bob generate the one-dimensional arrays
A = (a1, a2, . . . , ak) and B = (b1, b2, . . . , bk) corresponding to the subgraph GA, GB, re-
spectively, according to the encoding method, and the problem of computing the editing
distance of GA, GB is transformed into a secure computation of the number of different
elements at the corresponding position of A, B. If ai 6= bi, it means that the edges or vertices

Mathematics 2023, 11, 4847 7 of 17

represented by ai and bi exist only in the graph of one of the parties and need to be removed
from this graph (or, alternatively, added to the graph of the other party).

3.1. Specific Algorithm

See Algorithm 1.

Algorithm 1 The MPC Algorithm of graphs editing distance under the semi-honest model

Input: Alice has the graph GA and Bob has the graph GB.
Output: Graphs editing distance GED(GA, GB).
Algorithm start:

(1) Alice generates the Paillier cryptosystem public key g, private key λ and sends g to Bob.
(2) Alice encodes GA into matrix MA according to the encoding method, takes out the elements

of MA diagonally, arranges them in rows to get a one-dimensional array A = (a1, a2, . . . , ak), then
expands A into A∗ = (a1

∗, a2
∗, . . . , a2k

∗) = (a1, a2, . . . , ak, a1, a2, . . . , ak) and encrypts E(A∗), and
sends E(A∗) to Bob.

(3) Bob encodes GB into matrix MB according to the encoding method, takes out the elements
diagonal to MB, arranges them in order by rows to obtain a one-dimensional array
B = (b1, b2, . . . , bk), and then expands B into
B∗ = (b1

∗, b2
∗, . . . , b2k

∗) = (b1, b2, . . . , bk, b1, b2, . . . , bk).
(4) Bob selects the ciphertext E

(
a∗i
)

from E(A∗) at the corresponding position according to the
element b∗i in B∗ with value ‘1’, calculates C = ∏b∗i

E
(
a∗i
)
, and then sends C to Alice.

(5) Alice decrypt C, which is the editing distance GED(GA, GB) of the graph GA and GB, and
Alice outputs GED(GA, GB).
End.

3.2. Correctness Analysis

(1) Alice expands A into A∗ = (a1
∗, a2

∗, . . . , a2k
∗) = (a1, a2, . . . , ak, a1, a2, . . . , ak), where

ai = 0, ai = 1, using the XOR operation; similarly, Bob generates
B∗ = (b1

∗, b2
∗, . . . , b2k

∗) = (b1, b2, . . . , bk, b1, b2, . . . , bk).
(2) Bob computes C = ∑b∗i =1 E

(
a∗i
)

and sends it to Alice, who decrypts it to obtain the
number of elements with value ‘1’ among the elements selected by Bob, i.e., the editing
distance of GA and GB.

Algorithm 1 under the semi-honest model is secure because the participants are able
to follow the rules to execute the algorithm. However, in real life, it is necessary to design
MPC algorithms under the malicious model as there may be some malicious behaviors of
the participants.

4. Secure Computation Algorithm for Graphs’ Editing Distances
under the Malicious Model

Designing an MPC algorithm under the malicious model usually involves designing
countermeasures based on the malicious behaviors that the malicious participant in the
semi-honest model algorithm might carry out, so that the malicious participant cannot
carry them out or can be detected in the malicious model algorithm.

The following are possible malicious acts committed by a participant in Algorithm 1
(shown in Figure 4):

(1) In Algorithm 1, Alice has g and λ, while Bob only has g, and the final result is only
decrypted unilaterally by Alice, which is unfair. It is also possible for Alice to tell
Bob the wrong result. The countermeasure to solve this situation is that both parties
can decrypt.

(2) In step (4) of Algorithm 1, Bob may provide a false ciphertext to Alice, and the solution
is to use a hash function to avoid the situation.

(3) In step (5) of Algorithm 1, Alice told Bob the wrong result after decryption, causing
him to draw the wrong conclusion. The solution is to request equal status and generate
their respective public and private keys at the same time, and in the algorithm, Alice

Mathematics 2023, 11, 4847 8 of 17

and Bob decrypt the computation results separately to obtain the editing distance of
the graphs, and finally both parties compute the correct result.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 19

Figure 4. Malicious behavior in Algorithm 1.

4.1. Specific Algorithm

To observe the encryption and decryption activities of the algorithm, we analyze the
encoding and decoding of the algorithm. We refer to the public keys of the communicating

parties as APK and BPK , the private keys as Ask and Bsk , and the roles of the recipients
as Alice and Bob, respectively.

(1)
*()pkE A (APK , Bob): Alice encodes AG as AM , takes the elements below the diagonal

and arranges them in rows to obtain a one-dimensional array 1 2(, ,...,)kA a a a= , and then
expands it to

* * * *
1 2 2 1 2 1 2(, ,...,) (, ,..., , , ,...,)k k kA a a a a a a a a a= = according to the XOR operation

and sends it to Bob.

(2)
*()pkE B (BPK , Alice): Bob encodes BG as BM , takes the elements below the diagonal

and arranges them in rows to obtain a one-dimensional array 1 2(, , ,)kB b b b=  , and then
sends it to Alice as

* * * *
1 2 2 1 2 1 2(, ,...,) (, ,..., , , ,...,)k k kB b b b b b b b b b= = based on the XOR operation

expansion.

(3) ()
Ask BD C (Ask , Bob): Alice decodes BC to obtain bC and sends bC to Bob for verifi-

cation.

(4) ()
Bsk AD C (Bsk , Alice): Bob decodes AC to obtain aC and sends aC to Alice for verifi-

cation.

4.2. Correctness Analysis

(1) In step (2), Alice and Bob use their public keys to encrypt
* *, A B item by item to ob-

tain
*()

ApkE A and
*()

BpkE B , respectively, and then publish the ciphertext to the other
party, which is secure because the other party does not have its own private key.

(2) In step (5), Alice and Bob decrypt bC , aC using their own aλ and bλ , respectively,
and send them to each other.

(3) After each side receives the message from the other, Alice computes /A a aG C r= and
sends it to Bob, Bob computes /B b bG C r= and sends it to Alice, and both parties ob-

tain their respective ciphertexts, i.e., * 1
*()

Bai
pk ibE

=
∏ and * 1

*()
Ai

pk ib
aE

=∏ .

Figure 4. Malicious behavior in Algorithm 1.

4.1. Specific Algorithm

To observe the encryption and decryption activities of the algorithm, we analyze the
encoding and decoding of the algorithm. We refer to the public keys of the communicating
parties as PKA and PKB, the private keys as skA and skB, and the roles of the recipients as
Alice and Bob, respectively.

(1) Epk(A∗) (PKA, Bob): Alice encodes GA as MA, takes the elements below the diagonal
and arranges them in rows to obtain a one-dimensional array A = (a1, a2, . . . , ak), and
then expands it to A∗ = (a1

∗, a2
∗, . . . , a2k

∗) = (a1, a2, . . . , ak, a1, a2, . . . , ak) according
to the XOR operation and sends it to Bob.

(2) Epk(B∗) (PKB, Alice): Bob encodes GB as MB, takes the elements below the diagonal
and arranges them in rows to obtain a one-dimensional array B = (b1, b2, . . . , bk), and
then sends it to Alice as B∗ = (b1

∗, b2
∗, . . . , b2k

∗) = (b1, b2, . . . , bk, b1, b2, . . . , bk) based
on the XOR operation expansion.

(3) DskA(CB) (skA, Bob): Alice decodes CB to obtain Cb and sends Cb to Bob for verification.
(4) DskB(CA) (skB, Alice): Bob decodes CA to obtain Ca and sends Ca to Alice for verification.

4.2. Correctness Analysis

(1) In step (2), Alice and Bob use their public keys to encrypt A∗, B∗ item by item to
obtain EpkA(A∗) and EpkB(B∗), respectively, and then publish the ciphertext to the
other party, which is secure because the other party does not have its own private key.

(2) In step (5), Alice and Bob decrypt Cb, Ca using their own λa and λb, respectively, and
send them to each other.

(3) After each side receives the message from the other, Alice computes GA = Ca/ra and
sends it to Bob, Bob computes GB = Cb/rb and sends it to Alice, and both parties
obtain their respective ciphertexts, i.e., ∏ai∗=1

EpkB(bi∗) and ∏bi∗=1 EpkA(ai∗).
(4) In step (7), Alice verifies the equation Hash(Cb/GEDB) ? HB, and if it holds, out-

puts the editing distance GEDB(GA, GB) = GB. In step (8), Bob verifies that equation
Hash(Ca/GEDA) ? HA holds, and if it does, outputs the editing distance

Mathematics 2023, 11, 4847 9 of 17

GEDA(GA, GB) = GA. If GEDA(GA, GB) = GEDB(GA, GB), the result is proven
correct.

(5) No secure information is revealed throughout the process, and both parties are able
to arrive at their respective results, avoiding the unfairness associated with one party
telling the other the result.

4.3. Security Analysis

In the algorithm, both parties have exactly the same status and operations, and both
parties have exactly the same security status, so only Alice’s possible malicious behavior and
its impact on the privacy of Bob’s data and the correctness of the algorithm are analyzed.

(1) Alice fills her matrix expansion MA with a one-dimensional array A∗. Alice makes an
incorrect input for the elements in A∗. This is a case of Alice changing her own inputs,
which is not considered because it cannot be avoided in an ideal algorithm.

(2) During the message passing in step (6), Bob leaks the result of CB to Alice, but
since Alice only has the public key but not the private key, Alice cannot obtain any
information about CB.

(3) In step (7), Alice has to prove that GA = Ca/ra is correct using the hash function,
which cannot be spoofed in this step, then after announcing GA, Bob can compute
GEDA(GA, GB) = GA.

(4) Thus, all steps of the algorithm are secure, and we further prove that the algorithm is
secure using the real/ideal model paradigm.

4.4. Security Proof

For MPC algorithms under the malicious model, the real/ideal model paradigm is
widely accepted to be used to prove the security of the algorithms.

Theorem 2. The graphs’ editing distance MPC Algorithm (Algorithm 2) is secure under the
malicious model.

Proof. To prove that Algorithm 2 is secure, it is sufficient to show that the participants

transform the acceptable policy pair
¯
A = (A1, A2) into the corresponding policy pair

¯
B = (B1, B2) in the ideal model algorithm during the execution of Algorithm 2, so that
the output information of A1 and A2 is indistinguishable from that of B1 and B2 when
Algorithm 2 is executed. Since the case of both parties being malicious participants is
considered, it is assumed that one party is honest and the other dishonest. The discussion
is divided into two cases (here, A1, B1 and A2, B2 represent Alice and Bob, respectively). �

Case 1. A1 is honest and A2 is dishonest. A1 executes Algorithm 2 honestly, then
REAL ¯

A
(Cb, Ca) = {F(Cb, A2(Ca)), GED(GA, GB), HA, S}, where the message sequence re-

ceived by zero-knowledge proof A2 is marked as S.

A1 is honest, in which case B1 is determined, and B1 executes the algorithm according
to the algorithm steps. It is necessary to transform the real algorithm adversary A2 into the
ideal algorithm malicious adversary B2. In other words, it is necessary to find an acceptable

strategy for
¯
B = (B1, B2) in the ideal model, so that its output is indistinguishable from the

calculation of REAL ¯
A(Cb ,Ca)

. (Moreover, B2’s decision depends on A2’s act).

Ideally, B1 sends correct W to TTP (allowing TTP to send B2 messages when B1
receives the message). B2 is dishonest, and its message to TTP depends on A2’s strategy. In
summary, we know that B2 sends A2(B) to TTP and TTP sends F(Cb, A2(Ca)) to B2 (B1 will
also obtain this result). B2 has to use F(Cb, A2(Ca)) to obtain an viewB2(Cb, A2(Ca)), which
is indistinguishable from viewA2

(Cb, A2(Ca)) obtained by A2 in the real case and given to
A2 to obtain the output of A2.

Mathematics 2023, 11, 4847 10 of 17

Algorithm 2 The MPC Algorithm of graphs editing distance under the malicious model

Input: Alice has graph GA and Bob has graph GB.
Output: Graphs editing distance GED(GA, GB).
Preparation: Alice and Bob generate their own public keys (ga, Na), (gb, Nb) and private keys
λa, λb respectively. Exchange (ga, Na) and (gb, Nb).
Algorithm start:

(1) Alice follows the encoding method and encodes GA into a matrix MA. She takes the
elements of MA diagonally and below and arranges them in order to obtain a one-dimensional
array A = (a1, a2, . . . , ak). She then expands A into
A∗ = (a1

∗, a2
∗, . . . , a2k

∗) = (a1, a2, . . . , ak, a1, a2, . . . , ak).
Bob operates on GB in the same way to obtain the array
B∗ = (b1

∗, b2
∗, . . . , b2k

∗) = (b1, b2, . . . , bk, b1, b2, . . . , bk).
(2) Alice and Bob use their respective public keys to encrypt A∗, B∗ item by item. Alice gets

EpkA (A∗) = [EpkA (a1), EpkA (a2), . . . , EpkA (ak), EpkA (a1),EpkA (a2), . . . , EpkA (ak)] and Bob gets
EpkB (B∗) = [EpkB (b1), EpkB (b2), . . . , EpkB (bk), EpkB (b1), EpkB (b2), . . . , EpkB (bk)]. Alice and Bob
publish EpkA (A∗), EpkB (B∗) to each other respectively.

(3) Alice selects the random number ra, computes HA = Hash(ra), and refers to the position of
the element of ai

∗ = 1(i ∈ [1, 2k]) in A∗, selects the ciphertext EpkB (bi
∗) in EpkB (B∗) for the

corresponding position to calculate CA =
[
∏ai∗=1 EpkB (bi∗)

]
ra. Alice sends HA and CA to Bob.

(4) Bob selects the random number rb, calculates HB = Hash(rb), and refers to the position of
the elements of bi

∗ = 1(i ∈ [1, 2k]) in B∗, selects the ciphertext EpkA (ai
∗) in the corresponding

position in EpkA (A∗) to calculate CB =
[
∏bi∗=1 EpkA (ai∗)

]
rb. Bob sends HB and CB to Alice.

(5) Alice decrypts CB with her private key to get Cb = DskA (CB). Bob decrypts CA with his
private key to get Ca = DskB (CA). Alice and Bob send Cb and Ca to each other respectively

(6) Alice computes GA = Ca/ra and sends it to Bob. Bob computes GB = Cb/rb and sends it
to Alice.

(7) Alice verifies Hash(Cb/GEDB) ? HB. If the equation holds, it means that Bob is not
spoofing and Alice gets the editing distance GEDB(GA, GB) = GB between the two graphs and
outputs it; otherwise the algorithm is terminated.

(8) Bob verifies Hash(Ca/GEDA) ? HA. If the equation holds, it shows that Alice did not
deceive and Bob gets the editing distance GEDA(GA, GB) = GA between the two graphs and
outputs it; otherwise terminate the algorithm.

(9) If GEDA(GA, GB) = GEDB(GA, GB), prove that the result is correct; otherwise show that
the result is wrong and not accepted.
End.

B2 selecting C′b satisfies F(C′b, A2(Ca)) = F(Cb, A2(Ca)), i.e., Algorithm 2 is executed
with C′b assumed to be the input of A1 with A2. The corresponding sequence of messages
S′ is available during the execution of the algorithm B2. The completion of the algorithm
execution yields

IDEAL ¯
B
(Cb, Ca) =

{
F(Cb, A2(Ca)), GED(GA, GB), HA, S′

}
. (4)

Due to the ideal algorithm using the same encryption as the real algorithm, it is

guaranteed that Cb
c≡ C′b. The hash function proves that k is guaranteed again, so

Hash(Cb/GEDB) ? HB.

Case 2. A2 is honest, A1 is dishonest. Two scenarios exist:

(a) A1 does not disclose the result or ignores TTP (considered as A1 aborting the algorithm), TTP
sends ⊥ to A2. There is

REAL ¯
A
(Cb, Ca) =

{
A1
(
C′b, C′a

)
, GED(GA, GB)S,⊥

}
. (5)

Mathematics 2023, 11, 4847 11 of 17

(b) Conversely, the TTP sends F(A1(Cb), Ca) to A2, there is

REAL ¯
A
(Cb, Ca) =

{
A1(C′b, C′a), GED(GA, GB), S, F(A1(Cb), Ca)

}
, (6)

In the process of zero-knowledge proof, the message sequence received by A1 is
marked as S.

A2 honestly transforms the adversary A1 under the real model into the ideal adver-
sary B1. That is, to prove that A1 is indistinguishable from B1, so find a set of strategy

pairs
¯
B = (B1, B2) under the ideal model such that their output satisfies computational

indistinguishability with REAL ¯
A(Q1,Q2)

.

A1 is dishonest, and B1’s strategy for treating the TTP depends on A1’s behavior, so
the message it would send to TTP is A1(Cb), obtaining F(A1(Cb), Ca) from TTP. Ideally, B1
utilizes F(A1(Cb), Ca) to manage to obtain a viewB1

(A1(Cb), Ca) that satisfies the compu-
tational indistinguishability of viewA1

(A1(Cb), Ca) obtained with A1 in the real algorithm,
and gives it to A1 to obtain an A1 output. Let B1 execute Algorithm 2 with A1 using B′

satisfying F(A1(Cb), C′a) = F(A1(Cb), Ca) as an input value.
During the execution of the algorithm, the corresponding message sequence S′ is

available to B1 and corresponds to the existence of the following two cases above:

(a) Under the ideal model, when B1 informs TTP not to send the result to B2, it is obtained that

IDEAL ¯
B
(Cb, Ca) =

{
A1(C′b, C′a), GED(GA, GB), S′,⊥

}
. (7)

(b) Conversely, it is

IDEAL ¯
B
(Cb, Ca) =

{
A1(C′b, C′a), GED(GA, GB), S′, F(A1(Cb), Ca)

}
. (8)

The outputs of A2 and B2 in the real and ideal algorithms in these two cases are the

same, and the ideal and real algorithms use the same encryption algorithm, so Ca
c≡ C′a,

and the zero-knowledge proof guarantees that Hash(Ca/GEDA) ? HA, then{
IDEAL ¯

B
(Cb, Ca)

}
c≡
{

REAL ¯
A
(Cb, Ca)

}
. (9)

In summary, under the malicious model, Algorithm 2 is secure.

5. Performance Analysis

Through the analysis of computational complexity and communication complexity,
Algorithms 1 and 2 are compared with the existing schemes, and the performance of the
Algorithm is illustrated.

5.1. Computational Complexity

Reference [15] uses a depth-first search code as a canonical tagging system, and on the
basis of this code, a new graph similarity measure algorithm is proposed in combination
with Levenshtein distance (i.e., string editing distance), which has a complexity of n3

modulo exponential operation. Reference [16] designed secure graph isomorphism and
similarity determination algorithms based on hash functions, which measure computational
complexity by comparing the number of hash operations, and it has a complexity of
6h (h is the number of operations to perform one hash operation).

The computational complexity of Algorithm 1 in this paper mainly consists of Alice
encrypting an array of length 2k, which requires 4k modulo exponential operations; Bob
picks the element with the value of ‘1′ at the corresponding position from Alice’s ciphertext
according to his own array and computes it, which requires 1 modulo exponential opera-
tion; and finally, Alice decrypts it once, which requires 2 modulo exponential operations.

Mathematics 2023, 11, 4847 12 of 17

Therefore, Algorithm 1 requires a total of 4k + 3 modulo exponential operations. The
computational complexity of Algorithm 2 consists mainly of Alice and Bob encrypting
an array of length 2k, which requires 8k modulo exponential operations, and using the
hash function to execute the MPC algorithm, which has the computation complexity of 4h.
Therefore, the complexity of Algorithm 2 is 8k + 4h.

5.2. Communication Complexity

Communication complexity is usually measured in terms of communication rounds.
Reference [15] requires six rounds of interaction to complete the computation, Reference [16]
requires four rounds, Algorithm 1 in this paper requires one round of communication, and
Algorithm 2 requires three rounds of communication to complete the computation. Table 1
shows a comparison of the performance.

Table 1. Performance comparison.

Algorithm Computational
Complexity

Communication
Complexity

Anti-Malicious
Adversaries

Reference [15] n3 mode index 6 ×
Reference [16] 6h 5 ×
Algorithm 1 4k + 3 mode index 1 ×
Algorithm 2 8k mode index + 4h 3

√

n is the number of vertices in the graph, h is the number of hash operations performed, k is the number of elements
in the array.

As shown in Table 1, with a small difference in the number of communication rounds,
algorithms 1 and 2 improve efficiency by choosing simple and fast encryption algorithms,
and Algorithm 2 can resist malicious participants’ attacks and has wider applications.

5.3. Experimental Simulation

In order to have a visual comparison of the computational complexity of each algo-
rithm, the algorithms in References [15,16] and Algorithm 2 in this paper are experimentally
simulated. The experimental environment is processor Intel(R) Core(TM) i5-8300 H @
2.30 GHz, 12 GB of RAM, Windows 10 (64-bit) operating system, in PyCharm 2020.3.2
using the Python language. algorithms based on hash functions and using public keys do
not take up a lot of memory. This is because they process one element at a time and are
easily pipelined. It is also possible to run such algorithms on standard PCs on collections
of millions. The algorithm for confidentially computing graph edit distances in this paper
takes up about 2G of memory while running on a PyCharm system, so it is entirely possible
to implement the algorithm on a standard PC.

The algorithms of both References [15,16] use a homomorphic encryption algorithm
when calculating the graphs’ editing distance, so the time used by References [15,16]
and Algorithm 2 is tested through simulated experiments to compare the efficiency by
comparing the time taken for the algorithm to execute. In the experiment, all other things
being equal, the graph GA is transformed into GB by the add and delete operations, for
example, by first randomly generating two undirected graphs with vertex number m. For
the vertex m, the graphs are taken in order 5, 10, . . ., 40, and for each m, 1000 simulations
are tested and the average of the algorithm execution times (ignore preprocessing time
in the algorithm) is counted. Figure 4 shows a comparison of the execution times of
References [15,16] and Algorithm 2 as the number of vertices increases, where the vertical
coordinates indicate the execution time in milliseconds and the horizontal coordinates
indicate the number of different vertices. From Figure 5, it can be seen that Algorithm 2
takes less time than the other algorithms as the number of vertices increases.

In this experiment, all other things being equal, the number of edges l in the graph
takes 4, 6, . , 18 for each l and is tested in 1000 simulation experiments; the average of the
algorithm execution time is counted (ignore preprocessing time in the algorithm). Figure 5

Mathematics 2023, 11, 4847 13 of 17

shows a comparison of the execution times of the algorithms in References [15,16] and
Algorithm 2 of this paper as the number of edges increases, where the vertical coordinates
indicate the time taken (milliseconds) and the horizontal coordinates indicate the different
number of edges. As shown in Figure 6, Algorithm 2 takes less time than the other
algorithms as the number of edges of the graph increases.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 19

Reference [16] 6h 5 ×
Algorithm 1 4 3k + mode index 1 ×
Algorithm 2 8k mode index 4h+ 3 √

n is the number of vertices in the graph, h is the number of hash operations performed, k is
the number of elements in the array.

As shown in Table 1, with a small difference in the number of communication rounds,
algorithms 1 and 2 improve efficiency by choosing simple and fast encryption algorithms,
and Algorithm 2 can resist malicious participants’ attacks and has wider applications.

5.3. Experimental Simulation
In order to have a visual comparison of the computational complexity of each algo-

rithm, the algorithms in References [15,16] and Algorithm 2 in this paper are experimen-
tally simulated. The experimental environment is processor Intel(R) Core(TM) i5-8300 H
@ 2.30 GHz, 12 GB of RAM, Windows 10 (64-bit) operating system, in PyCharm 2020.3.2
using the Python language. algorithms based on hash functions and using public keys do
not take up a lot of memory. This is because they process one element at a time and are
easily pipelined. It is also possible to run such algorithms on standard PCs on collections
of millions. The algorithm for confidentially computing graph edit distances in this paper
takes up about 2G of memory while running on a PyCharm system, so it is entirely possi-
ble to implement the algorithm on a standard PC.

The algorithms of both References [15,16] use a homomorphic encryption algorithm
when calculating the graphs’ editing distance, so the time used by References [15,16] and
Algorithm 2 is tested through simulated experiments to compare the efficiency by com-
paring the time taken for the algorithm to execute. In the experiment, all other things being

equal, the graph AG is transformed into BG by the add and delete operations, for exam-
ple, by first randomly generating two undirected graphs with vertex number m . For the
vertex m , the graphs are taken in order 5, 10, ..., 40, and for each m , 1000 simulations
are tested and the average of the algorithm execution times (ignore preprocessing time in
the algorithm) is counted. Figure 4 shows a comparison of the execution times of Refer-
ences [15,16] and Algorithm 2 as the number of vertices increases, where the vertical co-
ordinates indicate the execution time in milliseconds and the horizontal coordinates indi-
cate the number of different vertices. From Figure 5, it can be seen that Algorithm 2 takes
less time than the other algorithms as the number of vertices increases.

Figure 5. Execution time pattern with increasing number of vertices. (Reference [15]: Wang, S.L.
2022, Reference [16]: Zuo, X.J. 2020).

In this experiment, all other things being equal, the number of edges l in the graph
takes 4, 6, . , 18 for each l and is tested in 1000 simulation experiments; the average of
the algorithm execution time is counted (ignore preprocessing time in the algorithm). Fig-
ure 5 shows a comparison of the execution times of the algorithms in References [15,16]

Figure 5. Execution time pattern with increasing number of vertices. (Reference [15]: Wang, S.L. 2022,
Reference [16]: Zuo, X.J. 2020).

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 19

and Algorithm 2 of this paper as the number of edges increases, where the vertical coor-
dinates indicate the time taken (milliseconds) and the horizontal coordinates indicate the
different number of edges. As shown in Figure 6, Algorithm 2 takes less time than the
other algorithms as the number of edges of the graph increases.

Figure 6. Execution time pattern with increasing number of edges. (Reference [15]: Wang, S.L.
2022, Reference [16]: Zuo, X.J. 2020).

To more fully evaluate the performance of Algorithm 2, communication interaction
experiments are conducted based on the previous experiments. The number of vertices
and edges of the simulated graph is increased to determine the possible delay time in the
execution of Algorithm 2. The delay time affects the efficiency of the algorithm execution,
but it is not considered in the previous experimental evaluation. The relationship between
delay time and the number of graph vertices is shown in Figure 7, and the relationship
with the number of graph edges is shown in Figure 8.

Figure 7. Delay time versus number of vertices.

Figure 8. Delay time versus number of edges.

In order to evaluate the performance of Algorithm 2 more comprehensively, we con-
ducted experiments on processing scales based on the previous experiments. The perfor-

Figure 6. Execution time pattern with increasing number of edges. (Reference [15]: Wang, S.L. 2022,
Reference [16]: Zuo, X.J. 2020).

To more fully evaluate the performance of Algorithm 2, communication interaction
experiments are conducted based on the previous experiments. The number of vertices
and edges of the simulated graph is increased to determine the possible delay time in the
execution of Algorithm 2. The delay time affects the efficiency of the algorithm execution,
but it is not considered in the previous experimental evaluation. The relationship between
delay time and the number of graph vertices is shown in Figure 7, and the relationship
with the number of graph edges is shown in Figure 8.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 19

Figure 7. Delay time versus number of vertices.

Figure 8. Delay time versus number of edges.

In order to evaluate the performance of Algorithm 2 more comprehensively, we
conducted experiments on processing scales based on the previous experiments. The
performance of Algorithm 2 is evaluated more explicitly by looking at the number of
scales comparing the literature and the number of processing graphs of Algorithm 2, while
time remains constant. This is shown in Figure 9.

Figure 9. Scale of the graph versus time. (Reference [15]: Wang, S.L. 2022, Reference [16]: Zuo, X.J.
2020).

We also conducted experiments on detecting attacks with an increased number of
graph sizes to detect how long it takes for the algorithm to detect the operation of a
malicious adversary in the presence of spoofing. The experiments show that the algorithm
is effective in detecting attacks when one party has a malicious attack. The experimental
results are shown in Figure 10.

Figure 7. Delay time versus number of vertices.

In order to evaluate the performance of Algorithm 2 more comprehensively, we
conducted experiments on processing scales based on the previous experiments. The

Mathematics 2023, 11, 4847 14 of 17

performance of Algorithm 2 is evaluated more explicitly by looking at the number of scales
comparing the literature and the number of processing graphs of Algorithm 2, while time
remains constant. This is shown in Figure 9.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 19

Figure 7. Delay time versus number of vertices.

Figure 8. Delay time versus number of edges.

In order to evaluate the performance of Algorithm 2 more comprehensively, we
conducted experiments on processing scales based on the previous experiments. The
performance of Algorithm 2 is evaluated more explicitly by looking at the number of
scales comparing the literature and the number of processing graphs of Algorithm 2, while
time remains constant. This is shown in Figure 9.

Figure 9. Scale of the graph versus time. (Reference [15]: Wang, S.L. 2022, Reference [16]: Zuo, X.J.
2020).

We also conducted experiments on detecting attacks with an increased number of
graph sizes to detect how long it takes for the algorithm to detect the operation of a
malicious adversary in the presence of spoofing. The experiments show that the algorithm
is effective in detecting attacks when one party has a malicious attack. The experimental
results are shown in Figure 10.

Figure 8. Delay time versus number of edges.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 19

mance of Algorithm 2 is evaluated more explicitly by looking at the number of scales com-
paring the literature and the number of processing graphs of Algorithm 2, while time re-
mains constant. This is shown in Figure 9.

Figure 9. Scale of the graph versus time. (Reference [15]: Wang, S.L. 2022, Reference [16]: Zuo, X.J.
2020).

We also conducted experiments on detecting attacks with an increased number of
graph sizes to detect how long it takes for the algorithm to detect the operation of a mali-
cious adversary in the presence of spoofing. The experiments show that the algorithm is
effective in detecting attacks when one party has a malicious attack. The experimental re-
sults are shown in Figure 10.

Figure 10. Detection of attack time.

5.4. Applications
(1) In bioinformatics, gene structure needs to be represented as a graph, and similarity

between two genes can be measured using the graph editing distance. In practice,
most genetic data are more private and solving such detection and query problems
without compromising privacy requires secure computation of graph editing dis-
tances. For example, in association similarity studies concerning disease, crime,
drugs, social aspects, etc., the data involved are highly private, and if the DNA of a
suspect is highly similar to the DNA structure of the evidence information left by the
criminal at the crime scene, then the suspect may be directly related to the criminal,
and thus the similarity of the DNA graph structure needs to be calculated confiden-
tially, and the problem can be abstracted as graph editing distance secure computa-
tion, which can be solved using the method of this paper’s algorithm.

(2) In artificial intelligence, computer vision is a simulation of biological vision using
computers and related equipment. Its main task is to obtain the 3D information about
the corresponding scene by processing the collected pictures or videos. Using com-
puter vision, a search function can be realized with a picture, and similar or identical
pictures can be found quickly. For example, in a game with a terrain map, computer
vision can find similarities between the virtual game and reality.

Figure 9. Scale of the graph versus time. (Reference [15]: Wang, S.L. 2022, Reference [16]: Zuo, X.J. 2020).

We also conducted experiments on detecting attacks with an increased number of
graph sizes to detect how long it takes for the algorithm to detect the operation of a
malicious adversary in the presence of spoofing. The experiments show that the algorithm
is effective in detecting attacks when one party has a malicious attack. The experimental
results are shown in Figure 10.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 19

mance of Algorithm 2 is evaluated more explicitly by looking at the number of scales com-
paring the literature and the number of processing graphs of Algorithm 2, while time re-
mains constant. This is shown in Figure 9.

Figure 9. Scale of the graph versus time. (Reference [15]: Wang, S.L. 2022, Reference [16]: Zuo, X.J.
2020).

We also conducted experiments on detecting attacks with an increased number of
graph sizes to detect how long it takes for the algorithm to detect the operation of a mali-
cious adversary in the presence of spoofing. The experiments show that the algorithm is
effective in detecting attacks when one party has a malicious attack. The experimental re-
sults are shown in Figure 10.

Figure 10. Detection of attack time.

5.4. Applications
(1) In bioinformatics, gene structure needs to be represented as a graph, and similarity

between two genes can be measured using the graph editing distance. In practice,
most genetic data are more private and solving such detection and query problems
without compromising privacy requires secure computation of graph editing dis-
tances. For example, in association similarity studies concerning disease, crime,
drugs, social aspects, etc., the data involved are highly private, and if the DNA of a
suspect is highly similar to the DNA structure of the evidence information left by the
criminal at the crime scene, then the suspect may be directly related to the criminal,
and thus the similarity of the DNA graph structure needs to be calculated confiden-
tially, and the problem can be abstracted as graph editing distance secure computa-
tion, which can be solved using the method of this paper’s algorithm.

(2) In artificial intelligence, computer vision is a simulation of biological vision using
computers and related equipment. Its main task is to obtain the 3D information about
the corresponding scene by processing the collected pictures or videos. Using com-
puter vision, a search function can be realized with a picture, and similar or identical
pictures can be found quickly. For example, in a game with a terrain map, computer
vision can find similarities between the virtual game and reality.

Figure 10. Detection of attack time.

5.4. Applications

(1) In bioinformatics, gene structure needs to be represented as a graph, and similarity
between two genes can be measured using the graph editing distance. In practice,
most genetic data are more private and solving such detection and query problems
without compromising privacy requires secure computation of graph editing distances.
For example, in association similarity studies concerning disease, crime, drugs, social
aspects, etc., the data involved are highly private, and if the DNA of a suspect is
highly similar to the DNA structure of the evidence information left by the criminal at

Mathematics 2023, 11, 4847 15 of 17

the crime scene, then the suspect may be directly related to the criminal, and thus the
similarity of the DNA graph structure needs to be calculated confidentially, and the
problem can be abstracted as graph editing distance secure computation, which can
be solved using the method of this paper’s algorithm.

(2) In artificial intelligence, computer vision is a simulation of biological vision using
computers and related equipment. Its main task is to obtain the 3D information
about the corresponding scene by processing the collected pictures or videos. Using
computer vision, a search function can be realized with a picture, and similar or
identical pictures can be found quickly. For example, in a game with a terrain map,
computer vision can find similarities between the virtual game and reality.

6. Summary Outlook

This paper solves the problem of secure computation of graph edit distance. Firstly,
a new encoding method is proposed, which can transform the correspondence between
vertices and edges in a graph into a matrix, and the Paillier encryption algorithm is
applied to design an MPC algorithm under the semi-honest model. A algorithm for secure
computation of graph editing distances under the malicious model is designed using the
hash function for the attack behaviors that may be implemented by malicious participants
in the semi-honest algorithm. The security of the algorithm is demonstrated using the
real/ideal model paradigm and reduces the computational complexity and communication
complexity compared to existing algorithms, which can be applied to computer vision to
find out similar or identical photos using computer vision implementation of graph search
function. It can also be applied to confidentially calculate the similarity of DNA graph
structures, which is important in relationships related to disease, crime, socialization, and
so on. The application scenarios are wider.

In addition to the above advantages, the algorithm has some limitations, which can
be addressed in future research work. The proposed method is applicable to two parties
for information interaction; therefore, as a future work, the proposed method can be
extended to multiple parties for graph edit distance computation, so that it can have wider
applications in areas such as machine learning. Meanwhile, the graph theory problem
is one of the important problems in secure computational geometry, and there are many
meaningful graph theory problems that deserve further research in the next work, such as
confidential determination of graph isomorphism, confidential computation of the shortest
paths in graphs, and so on.

Author Contributions: Conceptualization, X.L. (Xin Liu) and J.K.; methodology, J.K.; investigation,
X.L. (Xin Liu); writing—original draft preparation, X.L. (Xin Liu) and L.P.; software, D.L. and G.X.;
funding acquisition, X.L. (Xin Liu); validation, X.L. (Xiaomeng Liu) and X.C.; writing—original draft,
J.K.; writing—review and editing, X.L. (Xin Liu), X.L. (Xiaomeng Liu) and X.C. All authors have read
and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China (92046001, 61962009), Inner Mongolia
Natural Science Foundation (2021MS06006), 2023 Inner Mongolia Young Science and Technology
Talents Support Project (NJYT23106), 2022 Basic Scientific Research Project of Direct Universities
of Inner Mongolia (2022-101), 2022 Fund Project of Central Government Guiding Local Science
and Tech-nology Development (2022ZY0024), 2022 Chinese Academy of Sciences “Western Light”
Talent Training Program “Western Young Scholars” Project (22040601), Open Foundation of State
key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecom-
munications) (SKLNST-2023-1-08), 2023 Inner Mongolia Archives Technology Project (2023016), the
14th Five Year Plan of Education and Science of Inner Mongolia (NGJGH2021167), Inner Mongolia
Science and Technology Major Project (2019ZD025), 2022 Inner Mongolia Postgraduate Education and
Teaching Reform Project (JGSZ2022037), Inner Mongolia Postgraduate Scientific Research Innovation
Project(S20231164Z), Research and Application Project of Big Data Privacy Security Computing
System (2023).

Data Availability Statement: The authors approve that data used to support the findings of this
study are included in the article.

Mathematics 2023, 11, 4847 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

N N = pq, Both p and q are large primes
m Plaintext
c Ciphertext
(ga, Na) The public key of Alice’s Paillier encryption system
(gb, Nb) The public key of Bob’s Paillier encryption system
λa The private key of Alice’s Paillier encryption system
λb The private key of Bob’s Paillier encryption system
E() The process of converting encrypted plaintext into ciphertext
D() The process of decrypting ciphertext into plaintext
ri Random numbers
Epk(A) Encrypted calculation with A′s public key
Epk(B) Encrypted calculation with B′s public key
IDEAL ¯

B
(Cb, Ca) The function calculation results of Cb and Ca in the ideal case

REAL ¯
A
(Cb, Ca) The function calculation results of Cb and Ca in the practical case

F() Function calculation results

References
1. Zhao, C.; Zhao, S.N.; Zhao, M.H.; Chen, Z.X.; Gao, C.Z.; Li, H.W.; Tan, Y.A. Secure multi-party computation: Theory, practice and

applications. Inf. Sci. 2019, 476, 357–372. [CrossRef]
2. Knott, B.; Venkataraman, S.; Hannun, A.; Sengupta, S.; Ibrahim, M. Crypten: Secure multi-party computation meets machine

learning. Adv. Neural Inf. Process. Syst. 2021, 34, 4961–4973.
3. Volgushev, N.; Schwarzkopf, M.; Getchell, B.; Varia, M.; Lapets, A.; Bestavros, A. Conclave: Secure multi-party computation on

big data. In Proceedings of the Fourteenth EuroSys Conference, Dresden Germany, 25–28 March 2019.
4. Feng, Q.; He, D.B.; Zeadally, S.; Khan, M.K.; Kumar, N. A survey on privacy protection in blockchain system. J. Netw. Comput.

Appl. 2019, 126, 45–58. [CrossRef]
5. Pang, H.P.; Wang, B.C. Privacy-preserving association rule mining using homomorphic encryption in a multikey environment.

IEEE Syst. J. 2020, 15, 3131–3141. [CrossRef]
6. Dong, C.Y.; Loukide, G. Approximating private set union/intersection cardinality with logarithmic complexity. IEEE Trans. Inf.

Forensics Secur. 2017, 12, 2792–2806. [CrossRef]
7. Goldreich, O. Secure multi-party computation. Manuscript. Prelim. Version 1998, 78, 110.
8. Prathik, A.; Uma, K.; Anuradha, J. An Overview of application of Graph theory. Int. J. ChemTech Res. 2016, 9, 242–248.
9. Dou, J.W.; Liu, X.H.; Zhou, S.F.; Li, S.D. Efficient pooled secure multi-party computing protocols and applications. Chin. J. Comput.

2018, 41, 1844–1860.
10. Wei, Q.; Li, S.D.; Wang, W.L.; Du, R.M. Safe multiparty computation of graph intersections and mergers. J. Cryptologic Res. 2020, 7,

774–788.
11. He, J.; Erfani, S.; Ma, X.; Bailey, J.; Chi, Y.; Hua, X.S. α-IoU: A Family of Power Intersection over Union Losses for Bounding Box

Regression. Adv. Neural Inf. Process. Syst. 2021, 34, 20230–20242.
12. Zhao, X.L.; Jia, Z.L.; Li, S.D. Safe computation of set intersection problems. J. Cryptologic Res. 2022, 9, 294–307.
13. Tang, C.M.; Lin, X.H. Privacy Protection Set Intersection Computing protocol. Netinfo Secur. 2020, 20, 9–15.
14. Gao, A.; Liang, Y.; Xie, X.J.; Wang, Z.S.; Li, J.T. Social network information dissemination methods that support privacy protection.

J. Front. Comput. Sci. Technol. 2021, 15, 233–248.
15. Wang, S.L.; Zheng, Y.F.; Jia, X.H.; Wang, C. OblivGM: Oblivious Attributed Subgraph Matching as a Cloud Service. IEEE Trans.

Inf. Forensics Secur. 2022, 17, 3582–3596. [CrossRef]
16. Zuo, X.J.; Li, L.X.; Peng, H.P.; Luo, S.S.; Yang, Y.X. Privacy-preserving subgraph matching scheme with authentication in social

networks. IEEE Trans. Cloud Comput. 2020, 10, 2038–2049. [CrossRef]
17. Sharmila, G.; Devi, M.K. BTLA-LSDG: Blockchain-Based Triune Layered Architecture for Authenticated Subgraph Query Search

in Large-Scale Dynamic Graphs. IETE J. Res. 2023, 1–24. [CrossRef]
18. Xu, C.; Chen, Q.; Hu, H.B.; Hei, X.J. Authenticating aggregate queries over set-valued data with confidentiality. IEEE Trans.

Knowl. Data Eng. 2017, 30, 630–644. [CrossRef]
19. Bringmann, K.; Gawrychowski, P.; Mozes, S.; Weimann, O. Tree edit distance cannot be computed in strongly subcubic time

(unless APSP can). TALG 2020, 16, 1–22. [CrossRef]
20. Garcia-Hernandez, C.; Fernandez, A.; Serratosa, F. Ligand-based virtual screening using graph edit distance as molecular

similarity measure. J. Chem. Inf. Model. 2019, 59, 1410–1421. [CrossRef]

https://doi.org/10.1016/j.ins.2018.10.024
https://doi.org/10.1016/j.jnca.2018.10.020
https://doi.org/10.1109/JSYST.2020.3001316
https://doi.org/10.1109/TIFS.2017.2721360
https://doi.org/10.1109/TIFS.2022.3210881
https://doi.org/10.1109/TCC.2020.3012999
https://doi.org/10.1080/03772063.2023.2171910
https://doi.org/10.1109/TKDE.2017.2773541
https://doi.org/10.1145/3381878
https://doi.org/10.1021/acs.jcim.8b00820

Mathematics 2023, 11, 4847 17 of 17

21. Li, S.D.; Yang, X.L.; Zuo, X.J.; Zhou, S.F.; Kang, j.; Liu, X. Graphical similarity determination for the protection of private
information. Acta Electron. Sin. 2017, 45, 2184–2189.

22. Blumenthal, D.B.; Gamper, J. On the exact computation of the graph edit distance. Pattern Recogn. Lett. 2020, 134, 46–57. [CrossRef]
23. Yuan, Y.; Lian, X.; Wang, G.R.; Ma, Y.L.; Wang, Y.S. Constrained shortest path query in a large time-dependent graph. Proc. Vldb

Endow. 2019, 12, 1058–1070. [CrossRef]
24. Dey, R.; Balabantaray, R.C.; Mohanty, S.H. Sliding window based off-line handwritten text recognition using edit distance.

Multimed. Tools Appl. 2022, 81, 22761–22788. [CrossRef]
25. Ma, J.C.; Zheng, H.B.; Zhao, J.H.; Chen, X.; Zhai, J.Q.; Zhang, C.H. An islanding detection and prevention method based on path

query of distribution network topology graph. IEEE Trans. Sustain. Energy 2021, 13, 81–90. [CrossRef]
26. Ghosh, E.; Kamara, S.; Tamassia, R. Efficient graph encryption scheme for shortest path queries. In Proceedings of the 2021 ACM

Asia Conference on Computer and Communications Security, Hong Kong, China, 7–11 June 2021.
27. Zhang, M.W.; Chen, Y.; Susilo, W. PPO-CPQ: A privacy-preserving optimization of clinical pathway query for e-healthcare

systems. IEEE Internet Things 2020, 7, 10660–10672. [CrossRef]
28. Zhou, J.; Qin, X.; Ding, Y.; Ma, H. Spatial–Temporal Dynamic Graph Differential Equation Network for Traffic Flow Forecasting.

Mathematics 2023, 11, 2867. [CrossRef]
29. Fang, W.T.; Mohsen, Z.; Chen, Z.Y. Secure and privacy preserving consensus for second-order systems based on paillier encryption.

Syst. Control Lett. 2021, 148, 104869. [CrossRef]
30. Sobti, R.; Geetha, G. Cryptographic hash functions: A review. IJCSI 2012, 9, 461.
31. Kociumaka, T.; Pissis, S.P.; Radoszewski, J. Pattern matching and consensus problems on weighted sequences and profiles. Theor.

Comput. Syst. 2019, 63, 506–542. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.patrec.2018.05.002
https://doi.org/10.14778/3339490.3339491
https://doi.org/10.1007/s11042-021-10988-9
https://doi.org/10.1109/TSTE.2021.3104463
https://doi.org/10.1109/JIOT.2020.3007518
https://doi.org/10.3390/math11132867
https://doi.org/10.1016/j.sysconle.2020.104869
https://doi.org/10.1007/s00224-018-9881-2

	Introduction
	Related Work
	Paillier Cryptosystem
	Hash Function
	Coding Rules
	Security under the Malicious Model

	Secure Computation Algorithm for Graph Editing Distances under the Semi-Honest Model
	Specific Algorithm
	Correctness Analysis

	Secure Computation Algorithm for Graphs’ Editing Distances under the Malicious Model
	Specific Algorithm
	Correctness Analysis
	Security Analysis
	Security Proof

	Performance Analysis
	Computational Complexity
	Communication Complexity
	Experimental Simulation
	Applications

	Summary Outlook
	References

