
Citation: Wang, M.; Wu, P.; Luo, Q.

Construction of Software Supply

Chain Threat Portrait Based on Chain

Perspective. Mathematics 2023, 11,

4856. https://doi.org/10.3390/

math11234856

Academic Editor: Shaomin Wu

Received: 13 October 2023

Revised: 28 November 2023

Accepted: 29 November 2023

Published: 2 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Construction of Software Supply Chain Threat Portrait Based
on Chain Perspective
Maoyang Wang 1, Peng Wu 2,* and Qin Luo 1

1 School of Computer Science, Southwest Petroleum University, Chengdu 610500, China;
202221000497@stu.swpu.edu.cn (M.W.); luoqin@swpu.edu.cn (Q.L.)

2 School of Information and Engineering, Sichuan Tourism University, Chengdu 610100, China
* Correspondence: 0001524@sctu.edu.cn

Abstract: With the rapid growth of the software industry, the software supply chain (SSC) has become
the most intricate system in the complete software life cycle, and the security threat situation is becom-
ing increasingly severe. For the description of the SSC, the relevant research mainly focuses on the
perspective of developers, lacking a comprehensive understanding of the SSC. This paper proposes a
chain portrait framework of the SSC based on a resource perspective, which comprehensively depicts
the threat model and threat surface indicator system of the SSC. The portrait model includes an SSC
threat model and an SSC threat indicator matrix. The threat model has 3 levels and 32 dimensions
and is based on a generative artificial intelligence model. The threat indicator matrix is constructed
using the Attack Net model comprising 14-dimensional attack strategies and 113-dimensional attack
techniques. The proposed portrait model’s effectiveness is verified through existing SSC security
events, domain experts, and event visualization based on security analysis models.

Keywords: software supply chain; software supply chain threat model; attack technique matrix;
software supply chain portrait

MSC: 68M25

1. Introduction

With the development of the software industry, the Software Supply Chain (SSC) has
become increasingly complex. The SSC is a series of processes that begin with the selection
and acquisition of software components from third parties through development, distribu-
tion, and utilization, it is susceptible to substantial risk due to its comprehensive coverage
of the software lifecycle. Software Supply Chain Attacks (SSCAs) refer to an attack against
anything on the SSC that the end target depends on. Due to low cost and high payoff poten-
tial, SSCAs have become popular with attackers and the preferred tool for nation-state APT
attacks. Notably, the SolarWinds event [1] impacted more than 18,000 customers, including
government agencies and critical vendors. The CCleaner incident [2] had a significant
impact on millions of users, as malicious codes were involved. Furthermore, SSCAs are
currently exhibiting a noteworthy trend of rapid growth. For instance, ReversingLabs [3]
reported a staggering 289% increase in attacks on npm and PyPI libraries over the past four
years. In 2022, nearly 7000 malicious packages were discovered on npm, representing a
surge of over 9000% from 2020 and a 40% increase from 2021. Similarly, the number of
malicious PyPI packages grew by over 18,000% compared to 2020. Additionally, according
to Gartner’s [4] predictions, by 2025, 45% of organizations will have experienced SSCAs.

Supply chain threats have become a significant area of research, with scholars propos-
ing multiple strategies from management, detection, and countermeasures viewpoints.
However, one of the most efficient methods to tackle this challenge is by accurately and
comprehensively defining the SSC threats surface. Zhenfei et al. [5] abstracted the SSC as a
consolidated system comprising three key phases: development, delivery, and utilization.

Mathematics 2023, 11, 4856. https://doi.org/10.3390/math11234856 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11234856
https://doi.org/10.3390/math11234856
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11234856
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11234856?type=check_update&version=2

Mathematics 2023, 11, 4856 2 of 26

Du et al. [6] defined the SSC as a chain that spans the entire software lifecycle, including
software development, inheritance deployment, upgrade, repair, and final distribution.
Most of the aforementioned research is abstracted from the perspective of the software
lifecycle or the developer’s viewpoint, focusing more on the traditional models of software
development, maintenance, and delivery. However, such abstractions do not provide a
complete description of the supply chain, and they overlook the fact that the SSC, with the
addition of ’open source’ components and diversified software delivery methods, is not
merely a single model from the traditional development perspective. With the widespread
adoption of technologies such as cloud services, open-source middleware, and containers,
the SSC has become diverse and complex, with new third-party participants at each stage.
Therefore, there is a need for a deeper understanding of the current state of the SSC, identi-
fication of entry points, a comprehensive grasp of attackers’ objectives and methods, and
based on this, the construction of an SSC threat portrait that encompasses more critical
phases and provides a detailed description of attacker tactics.

This paper proposes a method to build an SSC threat portrait model based on the
chain perspective, mainly including the software supply chain model(SSCM) and software
supply chain indicator matrix(SSCIM). The analysis is primarily based on SSC events using
the ChatGPT [7], complemented by human experiences to deeply explore the common
characteristics of the SSC itself and the attacks. Based on this analysis, a three-layered model
for SSC is developed, taking a chain-based perspective. Following this, an SSCA indicator
matrix is created, using guidance from the Attack Net [8] and MITER ATT&CK [9] attack
models. Finally, the effectiveness of the threat portrait model was verified through numerous
events and expert assessments, and some events were excerpted for visual display.

The novelty of this paper is threefold:

• An analytic framework for a comprehensive analysis of the SSC portrait is proposed.
The framework comprises three core stages: event collection, event analysis, and
model construction, alongside seven specific processes. It introduces an innovative,
whole-process analytical methodology for constructing the SSC threat portrait.

• We propose an innovative method of event analysis that combines a generative artifi-
cial intelligence model, using artificial intelligence and human experience, to deeply
mine key nodes and chains in SSC events.

• The overall model and micro-level attack indicators offer a comprehensive and accu-
rate depiction of the SSC threat surface. The model comprehensively characterizes
the supply chain from a macro and chain-oriented perspective with 3 levels and
31 dimensions. This broadens the research perspective and accurately captures the
interconnectedness and interdependency within the entire supply chain. The at-
tack indicators, guided by attack techniques, present a detailed description with
14 tactical and 113 technical dimensions, accurately describing attack behavior in the
supply chain.

The above-mentioned research accurately analyzes the supply chain and its potential
threats, providing research value and innovation.

2. Related Work

The SSCAs have been occurring regularly, with instances such as SolarWinds [1] and
Log4j [10] having major consequences. This has made SSCAs a focus of research, with
relevant academics diving into themes such as the supply chain threat situation, attack
detection, and defense.

2.1. Software Supply Chain Threat Surface

Researchers have presented several threats from diverse angles in response to potential
threat surfaces inside SSC. Zhou et al. [5] highlighted two important components of SSC
threats: employing deception and tampering to contaminate software in the supply chain
and exploiting contaminated software to obtain access to target environments, potentially
leading to data breaches. Torres-Arias et al. [11] and Peterson et al. [12] investigated new

Mathematics 2023, 11, 4856 3 of 26

threats in the context of open-source SSC. They highlighted threats such as unintended or
malicious vulnerability introductions in open-source components, the inclusion of harmful
logic into open-source components, and the chance of supplier trust credentials being stolen.
Ji et al. [13] offered a thorough and comprehensive assessment of SSC threat models from
an open-source viewpoint, as well as in-depth talks regarding attack pathways and their
consequences. Benthall, S. et al. [14] connected public vulnerability databases with open-
source project version control data to evaluate SSC threat risks using publicly available data.
Pfretzschner B et al. [15] examined weaknesses in Node.js and four related threat surfaces,
suggesting a method to detect dependency-based Node.js attacks. Gokkaya, B. et al. [16]
studied typical supply chains to identify the latest trends in SSCAs, emphasizing vulnera-
bilities connected with third-party components and open-source software supply chains
while proposing novel mitigation techniques. Liu, C. et al. [17] presented a knowledge
graph-based dependency resolution approach that parses dependency connections into
dependency trees and performs large-scale studies into vulnerabilities and security danger
surfaces inside these dependency trees. Zimmermann, M. et al. [18] investigated security
threats surfaces within the npm ecosystem by systematically analyzing dependency rela-
tionships, maintainers, and publicly reported security concerns across software packages.

To address security vulnerabilities in open-source software packages, scholars have conducted
an extensive analysis of numerous packages to identify potential threats. Marc Ohm et al. [19]
offered a dataset of open-source software packages with a focus on the SSC. They manually
analyzed and collected 174 malware packages, furthering the work of the open-source
and research communities in detecting and preventing attacks in the SSC. In a study of
10,000 JavaScript npm packages, Nusrat Zahan et al. [20] analyzed metadata to identify
six signals of security vulnerabilities in the SSC that can predict high-risk packages for
supply chain attacks. Dey, T. et al. [21] examined how software dependency networks
impact JavaScript package downloads and concluded that changes in downloads are
closely related to the characteristics and number of dependent packages. In response
to the possible threats caused by open-source collaboration, scholars have studied open-
source communities and open-source libraries. Gonzalez et al. [22] conducted malicious
submission attacks on GitHub and pointed out that there are malicious submissions or
malicious deletion operations in open-source projects. The purpose of these operations is
to inject malicious code into the project or cause damage. Duan Ruian et al. [23] proposed a
comparative framework for package manager security assessment to qualitatively evaluate
the functionality and security features of language package managers. Wei Tang et al. [24]
proposed LibDX, a fully automatic system that can overcome compilation diversity among
binaries for detecting reused libraries in binaries and is platform-independent.

2.2. Software Supply Chain Attack and Threat Detection

Regarding SSCA techniques and threat intelligence research, researchers have summa-
rized a variety of effective methods. Ladisa, P. et al. [25] proposed a classification method
for open-source supply chain attacks, covering 107 attack vectors in the form of an attack
tree. Bos et al. [26] discussed and summarized SSCAs in package language managers.
Reed, M. et al. [27] and MITER [28] studied the overall view of SSCAs and summarized
the framework and attack modes of attacks. Buchicchio et al. [29] studied SSCAs in Java
language, proposed a new type of supply chain attack and new vulnerabilities, and pro-
posed preventive measures. Neil, L. et al. [30] mine threat intelligence about open-source
projects and libraries from reported bugs and issues on public code repositories, track the
library and project dependencies of installed software on client computers, and display
them through a security knowledge graph. Neupane, S. et al. [31] studied a dataset of
more than 1200 package obfuscation attacks, strictly defined the obfuscation mechanism
of 13 types of SSC package obfuscation attacks, proposed an attack detector, verified and
evaluated it on the npm package set. Zahan, N. [32] studied software security frameworks
and attack vectors and identified and evaluated security indicators that can be used to
detect risky components in dependencies.

Mathematics 2023, 11, 4856 4 of 26

For SSC threat detection, researchers have proposed different detection methods.
Marc Ohm et al. [33] proposed Buildwatch, a software and third-party dependency de-
tection framework based on dynamic analysis of attack cases to detect possible threats
caused by third-party dependencies in the SSC. Wu Zhenhua et al. [34] summarized
the research status of program reverse analysis technology in SSC pollution detection
problems, proposed a pollution classification model, and proposed a reliable incremen-
tal software automation installation method. They also proposed a method to detect
software bundling based on software installation information and machine learning tech-
niques. Duc Ly Vu et al. [35] analyzed 2666 PyPI packages and proposed using source code
repositories such as Github to detect malicious code injection from third-party packages.
Wang [36] summarized the conditions for effectively preventing attacks, confirmed the
feasibility of detecting certain SSCAs, and proposed an attack detection method based on
information flow.

3. The Framework of Software Supply Chain Threat Portrait Model
3.1. Software Supply Chain Threat Portrait Model Design Framework

This paper presents a framework model for conducting a threat analysis of SSC, which
comprises three layers: event collection layer, event analysis layer, and model construction
layer. The architecture of the model is illustrated in Figure 1. The event collection layer
is responsible for collecting detailed descriptions and technical analysis texts of SSCA
incidents, while the event analysis layer assesses the overall SSC and attack technical
details. On the basis of the first two layers and relevant theory, a model and an attack
indicator matrix are established, and then the SSC threat portrait is constructed.

Event Collection
Layer

literature
resources

related reports

threat reports

vulnerability
reports

datasets

analysis blogs

report text

attack objects

attack path

threat propagation
methods

attack phases

attack techniques

source code level

installation
package level

runtime
environment level

Attack Net model theory

ATT&CK framework

14-dimensional
attack strategies

Event Analysis Layer

Iterative Prompt
Development

......

Integrated

Analysis

commonality

Attack Details

Model Construction Layer

Software Supply Chain Model

guide

 Attack Indicator Matrix

phase 1

PromptPrompt

OutputsOutputs
A

CD BA> > >

RMRM

CD BA> > >

PromptPrompt

PPOPPO

OutputOutput

RMRM

 rkk

PromptPrompt

We give treats We give treats
and punishments and punishments

to teachto teach

SFTSFT

ChatGPT

prompt engineering
Your task is to analyze attack event analysis text and generate a summary
 of key information. The main content of the summary is the attack proce
ss.
You need to do the following:
1. Extract the following text separated by three backticks. The focus of ext
raction is the attack process. Content irrelevant to the attack process nee
ds to be removed to form a summary of the attack process.
2. Analyze the abstract within the context of the software supply chain an
d identify the following in the abstract
 -Attack object
 -Attack process
 -Methods of distribution or dissemination
3. The answer should be in JSON format, with the keys "attack object", "a
ttack process", and "distribution/propagation method". If the information
 is not present, "Unknown" is used as the value.
Review text:```<Event Text>```

attack phases

attack techniques

phase 2

Expert analysisExpert analysis

attack objects

attack path

dependencies

risk node

upstream and
downstream chains

attack phases

attack behavior

113-dimensional
attack techniques

OutputsOutputs
B

OutputsOutputs
C

OutputsOutputs
D

Figure 1. SSC threat portrait model design framework.

3.2. Event Collection Layer

Event analysis, verification, and threat analysis models are built on the basis of SSCA
events. This paper uses vocabulary related to SSC and SSCA events as the subject words for
event collection, crawls related websites using the scrapy and selenium frameworks based
on Python language, and combines a linkage-based approach with content evaluation as
the search strategy. The linkage-based approach starts from links that are highly related
to the subject words, expanding the collection scope through closely related links, such
as friendly links and reference links on the pages. In this process, the collection scope is
mainly limited to links that are strongly related to cybersecurity and SSC. The strategy

Mathematics 2023, 11, 4856 5 of 26

based on content evaluation starts from the relevance between the content of the link page
and the subject words, considers the similarity of the title, text, and topic, and selects pages
strongly related to the keywords as collection results. In this process, the content collected
is mainly page content closely related to SSCAs.

3.3. Event Analysis Layer

This layer identifies potential risk objects and attack routes, as well as downstream and
upstream dependencies in the SSC. It considers factors like attack targets, attack processes,
and methods of threat propagation. Its focus is on initiating from the attack phases and
techniques with an attack-oriented perspective to elucidate attack indicators in SSCAs.
This prepares for building subsequent threat portrait models.

Large Language Models (LLMS) such as ChatGPT are rapidly evolving and have been
attempted to be applied to cybersecurity threat analysis. Purba et al. [37] proposed a text
mining methodology and improved it based on ChatGPT to analyze actionable cyber threat
intelligence from Twitter streams. Wang et al. [38] used ChatGPT to extract objects and
attributes from textual data in the threat intelligence domain and perform data filtering and
mapping to reconstruct threat intelligence using semantic characteristics of events, which
improves the efficiency aggregation and automated analysis level of threat intelligence.
Perrina et al. [39] proposed a system AGIR incorporating ChatGPT to automate the genera-
tion of comprehensive intelligence reports using two different natural language generation
methods to extract key information from threat reports. Fayyazi et al. [40] used LLMs
such as ChatGPT to analyze ambiguous cyberattack description texts and mapped them to
MITRE ATT&CK tactics. In addition, LLMs have been applied to intrusion detection [41],
program analysis [42], code analysis [43], and assisting threat intelligence analysis with
natural language processing (NLP) algorithms [44–46]. Recent studies indicate that LLMs
perform well in diverse downstream tasks without parameter tuning, even requiring only a
few examples as instructions. He et al. [47] proposed an in-context learning framework and
introduced formatting demonstrations to extract information from text, with the framework
performing much better than previous pre-trained methods on all datasets. Wei et al. [48]
conducted zero-shot information extraction via LLMs, such as ChatGPT, and the results
show that ChatGPT achieves impressive performance and even surpasses some full-shot
models on several datasets.

This paper utilizes ChatGPT [7] to extract the key information of the attack from
the text of the event description and uses zero-shot learning based on in-context learn-
ing (ICL) to construct the prompt templates. Next, the expert experience is utilized to
confirm and filter the answers of ChatGPT and summarize the key information, nodes,
and relationship chains regarding the construction of the SSCM and SSCIM. To ensure
that ChatGPT generates answers that meet specific task requirements, it is essential to
follow these strategies: use delimiters, structure the output, model self-checks to verify
that conditions are met, provide a few example prompts, specify the task steps, and ask
the model to prioritize autonomous problem-solving strategies before reaching any conclu-
sions. This paper sets up two different prompt texts through multiple prompt iterations.
Additionally, the ‘Review text’ represents the analysis text of a certain attack event, as
shown in Figures 2 and 3.

Through manual analysis and the use of the ChatGPT language model, the key in-
formation, nodes, and relationship chains regarding the construction of the SSCM and
SSCIM were summarized. Tables 1 and 2 below show excerpts of some typical incident
analysis cases.

Mathematics 2023, 11, 4856 6 of 26

Table 1. Overall analysis of events for building SSCM.

Event
Risk

Attack Objects Attack Path Upstream and Downstream Chains

XcodeGhost [49]
Software code

Software installation package

Attackers implant
malicious code into the

development tool
XcodeGhost and spread it
maliciously through cloud

services and
resource sharing.

Software code → Development tool

Software installation package
→ resource sharing, cloud services

Event-Streams [50] Software code

Malicious maintainers
insert malicious code into

third-party
component code

1. For EventStreams:
Software code → Developers
2. Affected downstream code:
software code → third-party

components → third-party open
source library

Overall Analysis of SSC - ChatGPT Prompt Text

Your task is to analyze attack event analysis text and generate a summary of key
information. The main content of the summary is the attack process.
You need to do the following:
1. Extract the following text separated by three backticks. The focus of extraction is
the attack process. Content irrelevant to the attack process needs to be removed to form
a summary of the attack process.
2. Analyze the abstract within the context of the software supply chain and identify the
following in the abstract:
 -Attack object
 -Attack process
 -Methods of distribution or dissemination
3. The answer should be in JSON format, with the keys "attack object", "attack process",
and "distribution/propagation method". If the information is not present, "Unknown" is
used as the value.

Review text:```<Event Text>```

Figure 2. Overall analysis of events for the SSCM construction.

3.4. Model Construction Layer

The SSC threat portrait model consists of two parts: a Software Supply Chain Model
(SSCM) constructed from an overall perspective and a Software Supply Chain Indicator
Matrix (SSCIM) constructed from an attack perspective.

The Software Supply Chain Model (SSCM) is a part of the threat portrait proposed in
this paper. The SSCM depicts the SSC from a macro perspective, encompassing the depen-
dency chains of four different aspects of the software: the Source Code, the Components,
the Runtime Environment, and the Installation Package. At the same time, the nodes in the
model can not only serve as upstream traceability nodes for software in the supply chain but
also serve as possible attack penetration points. Based on the characteristics of the upstream
and downstream dependency chains of the complex SSC, a three-layer model is constructed
from the perspective of the chain. From the core to the outermost layer, the model can be
viewed as the traceability process of the supply chain from downstream to upstream.

Based on the above characteristics, this paper defines SSCM as a quintuple consisting of
Source Code, Installation Package, Runtime Environment, Components, and Attack Techniques:

M = T(A, I, C, E, S) = A(I)× A(C)× A(E)× A(S) (1)

Mathematics 2023, 11, 4856 7 of 26

Table 2. Attack detail analysis for constructing SSCIM.

Events Attack Phases Attack Behavior

XcodeGhost

Implant malicious modules Develop a malicious version of the development tool Xcode

Malicious propagation Phishing techniques trick developers into downloading
unofficial versions

Execute malicious commands Use powerful interfaces and runtime backdoors in the system to issue
malicious commands

Evade defense measures Install certificates on target systems through social engineering and
forced authentication

Control target systems Use pseudo-protocol combined with malicious remote control modules
to control the target system

Capture sensitive information Collect sensitive information such as network information and
credentials from controlled systems

Event-Streams

Implant malicious modules open-source repository maintainers maliciously submit components
containing malicious code

Trigger malicious code execution Exploit runtime backdoors and trick users into triggering the malicious
code execution

Establish long-term control Exploiting backdoors in code

Obtain Higher Privileges Plant malicious dependencies into the repository of
high-privilege users

Obtain Legal Access Exploit the compromised credentials

Detailed Analysis of SSCAs - ChatGPT Prompt Text

Your task is to analyze the text of the attack incident report and generate a summary of key information, focusing on attack procedures
and techniques.
You need to do the following:
1. Extract the following text separated by three backticks. The extraction focuses on the attack process and the specific attack
techniques used by the attacker. Remove any information that does not relate directly to the attack process and techniques, and form a
summary of the attack process and attack technology.
2. Using the software supply chain as the background, analyze the summary content and identify the following elements in the
summary:
 - Attack process
3. Analyze the obtained attack process. If it contains a series of sub-attack processes, please analyze the sub-attack processes and the
attack techniques contained in them one by one, and rewrite these processes into the following format:
 1 - Attack Phase: ...
 Attack techniques: ...
 2 - Attack Phase: ...
 Attack techniques: ...
 ...
 N - Attack phase: ...
 Attack techniques: ...
Do not directly use the attack process explicitly provided in the article until the problem is solved. Make sure you speak clearly and
that you can solve the problem yourself.
Find answers in concise sentences.
4. Your answer is in JSON format, with the serial number, "Attack phase" and "Attack techniques" as key values. If the information is
not present, "Unknown" is used as the value.

Review text: ```<Event Text>```

Figure 3. Analysis of attack details for the SSCIM construction.

The mathematical notation used in this chapter is shown in Table 3.

Table 3. Definition of mathematical notation in SSCM model.

Mathematical Notation Definition

C Components level
S Source Code level
E Runtime Environment level
I Installation Package level

M Represents the final model obtained
A(x) Represents the attack techniques present on x

T(y1, y2, . . . , yn) Represents threats present on the yi

Mathematics 2023, 11, 4856 8 of 26

The Software Supply Chain Indicator Matrix (SSCIM) is an additional component of
the threat portrait proposed in the paper. It offers a comprehensive depiction of the SSC
from an attack perspective. In terms of the construction of SSCIM, based on the network
attack model Attack Net [8], the different stages, behaviors, and processes of SSCAs are
analyzed. At the same time, referring to the architecture foundation of MITRE ATT&CK [9]
and the open framework OSC&R [51], the attacker’s attack techniques and behaviors are
taken as the focus, and an attack indicator matrix is further refined and constructed in the
form of indicator matrix to describe the attack behaviors and techniques comprehensively
and systematically. The attack indicator matrix focuses on the characteristics of SSCAs, the
tactics correspond to the attack phase, and several technologies under the tactics correspond
to the possible attack behaviors. Several technologies under each tactic are connected to
form a complete attack technology chain.

Taking XcodeGhost event as an example, first of all, in the stages of “malicious prop-
agation” and “Implant malicious modules”, the attackers adopted the attack behaviors
of “phishing” and “developing malicious versions of software” to pave the way for the
subsequent stages of attacks. Secondly, in the “execute malicious commands” and “evade
defense measures” stages, attackers use “utilize system interfaces” and “forced authenti-
cation” attack behaviors to evade defense measures. Then in the “control target systems”
stage, “use pseudo-protocol technology” is used to control the target system. Ultimately,
the “capture sensitive information” phase shows the attacker’s ultimate goal. This series of
attack stages and behaviors forms a clear attack path and reveals the specific details of the
attack process. As shown in Figure 4, “◦” represents the attack stage, and “—” represents
the attack behavior.

Shell on Target
Host

Login on Host

Knowledge of
Password

Brute-force
Guess Password

Read Access to
/etc/passwd

Accout with
Weak Passwd

Physical Access
to Machine

Remote Login
Enabled

Use Remote
Login

Use
Console

Access to Host

Phishing

Malicious Propagation

Develop Malicious
Versions of Xcode

Implant malicious
modules

Evade Defense
Measures

Forced
Authentication

Utilize System
Interfaces

Execute Malicious
Commands

Use Pseudo-Protocol
Technology

Control Target
Systems

Collect Data such
as Credentials

Capture Sensitive
Information

Attack Net Model Analysis of XcodeGhost
Attack Events

Attack Stage

Attack Behavior

Figure 4. Attack Net model and application in event cases.

4. Software Supply Chain Model

The software supply chain model defined in this paper is an open-source SSC formed
by developers and tools, third-party components, software delivery methods, running
processes, and other nodes in the dependence relationship of the supply chain, and it is
also a network of infiltration points that may have infiltration risks in the supply chain.
As shown in Figure 5, this paper summarizes the open-source SSC into three different
levels, namely the inner layer, the middle layer, and the outer layer. The further inward
the hierarchy is, the stronger the connection between the nodes and the software itself;
conversely, the further outward the hierarchy is, the more the nodes within it tend toward
the upstream part of the chain. The following will introduce the SSCM in hierarchical order.

Mathematics 2023, 11, 4856 9 of 26

Software Components

Code

Runtime
Environment

Installation
Package

Software
Bundling

Delivery
Method

Updates
by Users

Traditional
Runtime

Environment

Containers
(Docker etc.)

Script

Library File

Configuration
File

Component
Source Code

Open Source
License

Software
Source Code Development

Tools

Developer

Third-party
Commercial

Library

Third-party Open
Source Libraries

Mirror Repository

Open Source
CommunityImage Content

Dependency
Dynamic Build

Dependency

Execution
Configuration

Dependency

Update Program

Update Server

Application
Store

Resource
Sharing

Official
Website

Cloud
Service

Official
Download Server

Developer
Promotion

Malware
Integration

Bundling software for
promotional purposes

The Inner Layer

The Middle Layer

The Outer Layer

introduction path

maintenance

code
development

software
update
channel

release
third-party
components

introducing
 third-party
components

Figure 5. Software supply chain model.

• The Inner Layer

The innermost layer contains the four layers most closely related to the software
itself, which are the code level, component level, installation package level, and runtime
environment level. These are also different levels at which security threats may exist.

• The Middle Layer

The nodes in the second layer are derived from the nodes in the preceding layer.
To begin with, the “Code” node extends the “Software Source Code” node at the code
level. Software code is often authored by developers utilizing development tools and
subsequently upheld by said developers. Furthermore, the scope of the component level
can be broadened to encompass various nodes such as “Component Source Code”, “Script”,
“Library File”, “Configuration File”, and “Open-Source License”. These nodes represent
different facets of the component, indicating that components not only consist of the associ-
ated source code but also rely on script files for specific functionalities. In addition, library
files are a collection of precompiled methods that can be referenced and reused by other
programs as another form of component. Simultaneously, there exist interdependencies
among components and configuration files. The utilization of configuration files allows for
the segregation of parameters from component code, hence enhancing the configurability
and flexibility of these components.

Finally, for open-source components, the open-source license clearly stipulates how
others can use, modify, and distribute the component, ensuring its reasonable and legal
use and dissemination. Thirdly, the installation package acquisition layer can be extended
to the “Software Bundling”, “Delivery Method”, and “Updates by Users” nodes. That is,
users can obtain software installation packages from the above three nodes. Fourthly, the
“Runtime Environment” can be extended to “Traditional Runtime Environment” and “Con-
tainer (Docker etc.)” running modes. In other words, when users try to run the software,
they can use traditional local operations or cloud-native Docker containers.

• The Outer Layer

The nodes of the third layer are all traced upstream from the nodes of the second layer.
For the outer nodes that extend from the "Code" node: “Developers” collaborate on

the development of software source code, utilizing “Development Tools” and maintaining
the source code. Developers can also compile and generate third-party components by
using development tools and release them to “third-party libraries”, or import third-party
components into the development environment or software source code from the “Third-

Mathematics 2023, 11, 4856 10 of 26

party Open-Source Library”, “Third-party Commercial Library”, “Mirror repository”, or
“Open-Source Community” to assist in efficient and convenient development work.

In the process of tracing back from the inner code node to this point, the attacker can
use social engineering, steal the developer’s private data, and other ways to attack and
contaminate the developer’s development environment and tools; or developers introduce
defective or compromised third-party components into the development environment. This
leads to the risk of defects or built-in backdoors in the developed software or components.
Since developers are all trustworthy developers or reputable development companies, it
is difficult to review malicious code from the source code level, such malicious code is
difficult to detect in the short term and can be hidden for a long time.

For the outer layer nodes extended from the “Script” and other five nodes in the middle
layer, the “Script” and “Library File” can be introduced into the software by the “Third-party
Open-Source Library”, “Third-party Commercial Library”, “Mirror Repository”, or “Open-
Source Community” nodes located in the outer layer, the security threats potentially exist
in these outer layer nodes. Therefore, elements such as libraries, configuration files, and
component source code introduced through these external resources may carry malicious
components, introducing potential threats into downstream software products. It is worth
noting that most of the current open-source libraries have security vulnerabilities related to
open-source licenses, which may lead to legal risks.

For the outer-layer nodes extending from nodes such as “Software Bundling”, “Deliv-
ery Method”, and “Updates by Users”: On the one hand, users can obtain packages through
different ways, such as downloading packages through official channels such as “Applica-
tion store”, “Official Website”, or “Official Download Server” nodes. However, the attacker
can attack the official way to contaminate the package or perform obfuscation attacks and
impersonation to achieve malicious replacement and dissemination. In addition, “cloud
service” and “resource sharing” nodes are also popular ways for users to obtain software
packages, such as non-official cloud services like torrent files and cloud drives. These
unofficial delivery routes do not follow a set of security regulations and review standards,
that is the source of the software package is unknown and has not undergone security
checks. An important area of concern is packages modified by unknown third parties, such
as “hacked versions”, “green versions”, and “in-app purchase versions”, which are favored
by attackers for embedding malicious code and malicious programs.

On the other hand, the middle-layer node of “Software Bundling” refers to software
installation packages or compressed files that are bundled with third-party packages or
malware. Bundling can be integrating malicious programs into normal software packages,
such as hiding malicious programs in green software, that is, “Malware Integration” node.
In addition, some developers may bundle their software with other packages due to pro-
motion needs and to reduce marketing costs, which is called “Developer Promotion” node.
Such bundled software installs silently in the background, without even an installation
prompt. This can easily result in concealed malicious programs, leading attackers to launch
attacks on the user’s system.

Finally, the normal installation package update channel for users is to obtain it from
the official update server or update program, that is, the “update server” and “update
program” nodes. For this method of obtaining software packages, attackers can achieve
malicious implantation or malicious replacement of software packages by attacking the
software update server, update program, and update process.

For the runtime environment: On the one hand, users can run the software in the tra-
ditional local runtime environment. Threats may exist in system vulnerabilities, backdoors,
library vulnerabilities, or configuration vulnerabilities in the local operating environment.
On the other hand, the software can be run directly through cloud-native environments
such as docker and other containers. There are three possible dependencies when running
a container. First, image content dependency, that is, container images are built on a cen-
tralized repository and image-sharing mechanism. Users can upload container images
created by themselves and download container images shared by other users; therefore,

Mathematics 2023, 11, 4856 11 of 26

there are complex dependencies between images. The dependencies between containers
in containerized deployment are complex, and images are often reused, interdependent,
and form new chains. Therefore, attackers can infiltrate the entire container cluster by
tampering with or inserting malicious code into an image at some node in the complex
chain, and the potential risk of third-party components introduced by Docker images dur-
ing the development process is multiplied through the container image dependency chain,
causing a serious threat situation. The second is performing configuration dependencies,
where a container image might be based on other images and inherit some configuration
information. The downstream images inherit the insecure configuration from the upstream
through dependencies. The third is dynamic build dependencies, that is, in order to update
the application or deploy a new application in the container, a new image is often generated
according to the predefined build instructions through the provided build tool. Such a
dynamic build dependency method can improve the efficiency of application deployment.
Attackers can exploit this by implanting malicious code into packages to attack containers.
It is also possible to fake dependencies and introduce malicious dependencies into the
container at build time.

5. Software Supply Chain Attack Indicator Matrix

The indicator matrix proposed in this paper is described in the form of a combination
of tactics and techniques. The techniques in the matrix cover the widest range of attack
vectors, including third-party libraries, components, and vulnerabilities that often threaten
the SSC, helping to understand potential threats in the supply chain and formulate security
strategies. There are 14 different tactical dimensions in the attack indicator matrix and
113 technical indicators under the tactical dimension, as shown in Tables 4 and 5. Table 4
shows the first 7 tactical dimensions, and Table 5 shows the last 7 tactical dimensions. Since
the same attack techniques may appear in different tactical dimensions, there will be a
small number of repeated technical indicators in the matrix.

5.1. Reconnaissance

“Reconnaissance” refers to the first steps a hacker takes within the SSC. The attacker
needs to collect valuable and usable information about the target first, so as to carry out
more accurate and effective attacks in the subsequent process, so as to effectively promote
the attack process and minimize the risk of detection.

Scan Used Open-Source Dependencies: During the reconnaissance phase, attackers can
scan and identify open-source dependencies present in the target software, such as third-
party open-source libraries, frameworks, and other components introduced in the software,
from which attackers can discover potential vulnerabilities and penetration points.

5.2. Resource Development

“Resource Development” is when an attacker establishes some resources for future
attacks, such as creating, purchasing, or stealing resources that can be used in targeted
attacks. These resources include infrastructure, accounts, and capabilities. Attackers can
use these resources to support subsequent attack operations.

Contributing Malicious Code to Open-Source Repository: The upstream open-source
repository is used to manage and store open-source project code. In an open-source
community, multiple contributors work together to improve and maintain open-source
projects through community contributions. Attackers may maliciously submit code that
hides malicious components or backdoors during the improvement and maintenance
process. Due to people’s trust in open-source repositories, subsequent risks are difficult
to detect, and the code may be integrated into more downstream projects and software,
causing widespread adverse effects.

Mathematics 2023, 11, 4856 12 of 26

Table 4. The First 7 Tactical Dimensions of SSCIM.

Reconnaissance Resource Development Initial Access Execution Persistence Privilege Escalation Defense Evasion

Scan Used Open-Source
Dependencies

Contributing Malicious Code
to Open-Source Repository

Code Repository
Contamination Package Manager Threats Backdoor in Code

Implant Malicious
Dependencies in

High-Privilege User
Repository

Saas Sprawl

Scan Code Repository Malicious Behavior by
Open-Source Maintainers

Development Environment
Threats

Executing Malicious
Components/Extensions Implant in Zombie Instance

Malicious Components
Introduced in High-Privilege

User Environments
Configuration Error

Scan Public Container
Images

Malicious Substitution of
Legitimate Items Development Tool Threats IDE Malicious Build Injection Deploy Keys Exploiting Software

Vulnerabilities Development Tool Threats

Investigate Supply Chain
Relationships Develop Malicious Project Vulnerabilities in Third-Party

Components/Extensions
Exploiting Software

Vulnerabilities Browser Extensions Manipulate Access Token Exploiting Vulnerabilities

Phishing for Information Malicious Acquisition Repojacking Runtime Backdoor Manipulate Access Token Abusing Privilege Escalation
Control Mechanisms

Impair Defense Mechanisms
or Components

Active Scanning Hacking the Update Server Combosquatting SQL Injection Implanting Container Images Exploiting Valid Accounts Manipulate Access Token

Scan Open Information
Sources Hacking the Official Website Typosquatting Command Execution Abuse Task Scheduling Exploiting Valid Accounts

Collect Target Host
Information Steal Accounts Dependency Confusion Cross-Site Scripting External Remote Services Abusing Privilege Escalation

Control Mechanisms

Collect Target Identity
Information

Create and Cultivate
Account Brandjacking User Execution Account Manipulation Indicator Removal

Shadow IT API Exploitation Establish Accounts Subvert Trust Controls

Exposed Public Artifacts or
Information Deploy Container Alternate Authentication

Material Theft

CI/CD Threats Abuse of Container
Management Commands

Obfuscate Files or
Information

Malicious Module Injection

Exploiting Trusted
Third-Party Relationships

Exploiting Application
Vulnerabilities and Errors

Phishing

Exploiting Valid Accounts

Drive-by Compromise

External Remote Services

Mathematics 2023, 11, 4856 13 of 26

Table 5. The Last 7 Tactical Dimensions of SSCIM.

Credential Access Discovery Lateral Movement Collection Command and Control Exfiltration Impact

Steal Third-Party
Software Tokens

Discover Dependent
Code Repository

Push Implants Across
Repositories

Information from
Code Repository Remote Access Software Exfiltration to

Code Repositories
Implant

Malicious Module

Brute Force Discovering
System Information

Exploiting
Remote Services

Information from
Cloud Storage Ingress Tool Transfer Exfiltration to Cloud

Storage Data Manipulation

Man-in-the-Middle
Attack (MITM) Account Discovery Exploiting

Valid Accounts Information from System Exploitation of
Pseudo-Protocol Weebhook Data Destruction

Forced Authentication Permission Groups
Discovery Internal Phishing Exfiltration Over

Alternative Protocol Resource Hijacking

Exploiting
Vulnerabilities

Password
Policy Discovery

Alternate Authentication
Material Theft

Credential Dump

Steal or Forge
Credentials and

Certificates

Steal Session Cookies

Leak Insecurely Stored
Credentials

Input Capture

Mathematics 2023, 11, 4856 14 of 26

5.3. Initial Access

“Initial Access” refers to the technique in which attackers obtain attack entry points
through various methods and establish a foothold in the target environment. An attack
entry point obtained through an initial compromise could allow the attacker to conduct
deeper penetration, such as obtaining valid account information.

Vulnerabilities in Third-party Components or Extensions: Dependencies such as third-
party components and libraries introduced by projects and software may contain certain
security vulnerabilities. Attackers can gain system permissions, access sensitive data, and
destroy system stability by finding and exploiting known vulnerabilities or developing
0-day vulnerabilities. Because the use of these third-party dependencies is so widespread
and based on developer trust in popular third-party components, it is often not possible to
fully control the security of third-party components or extensions.

5.4. Execution

The “Execution” strategy is the most widely used. Attackers will choose the “Execu-
tion” strategy when using malware, APT, etc. to attack. In this tactic, attacker-controlled
malicious code is run on a local or remote system, often in combination with other tech-
niques, such as using a remote access tool to execute a PowerShell script.

Package Manager Threats: A package manager is a tool or system used to manage
software packages. You can install packages using commands in your package manager.
Attackers attack based on the characteristics of the package manager and then use the
package manager to execute malicious commands.

5.5. Persistence

“Persistence” is one of the most focused techniques for attackers. Through persistence
control, attackers hope to achieve persistent access to the target and minimize the time
to access the target. The attacker can maintain an existing connection even if the user
reboots or changes credentials; even if the malware on the endpoint is discovered or
removed, there is a high probability that it will reappear. In addition to the possibility that
the vulnerability has not yet been patched, it could also be that the attacker has already
established persistence here or elsewhere on the network.

Backdoor in Code: The attacker inserts malicious code or functionality into the soft-
ware’s code repository to maintain access and control of the system after initial access has
been removed or blocked. The attacker can obtain access to a code repository by exploit-
ing a vulnerability or stealing credentials, and then inserting malicious code segments.
These malicious code segments are designed to perform specific malicious activities or
provide persistent access and control of the system. Attackers can hide within the system
and continue performing malicious actions without being detected or blocked.

5.6. Privilege Escalation

“Privilege Escalation” is a technique used by attackers to obtain higher-level privi-
leges on a system or network because, during the intrusion process, some functions and
techniques require high privileges. Common methods are to exploit system weaknesses,
vulnerabilities, repositories, misconfigurations, etc.

Implant Malicious Dependencies in High-Privilege User Repository: In this technique,
the attacker injects malicious code into the dependencies of legitimate open-source libraries
or packages in a privileged user repository. In this way, the attacker can gain access to the
permissions, privileged resources, or data associated with the privileged user’s repository
and execute arbitrary code.

5.7. Defense Evasion

“Defense Evasion” refers to the techniques used by attackers to avoid detection by
defense systems when attacking targets. Some techniques that can trick antivirus products into

Mathematics 2023, 11, 4856 15 of 26

not successfully detecting an intrusion. Techniques an attacker can employ include exploiting
vulnerability tool threats, weakening defense mechanisms, or exploiting misconfigurations.

Development Tool Threats: Developer tools are used to perform tasks related to
software development, including execution, development, and debugging. These tools
can usually be signed using legitimate certificates. Attackers can use compromised trusted
tools to evade or bypass security defenses to carry out attacks and hide their activities.

6. Event Verification and Visualization

Under the guidance of the SSC threat portrait proposed above, this paper conducts a
series of specific analyses and verifications. The validation answers three main research
questions, demonstrating validity and practicality in multiple aspects.

RQ1: Does the above model conform to the characteristics of SSC events? To address
this question, this paper applies the proposed SSCM and SSCIM to specific event analysis
and demonstrates it through different types of typical events to ensure coverage of diverse
attack scenarios.

RQ2: Are the above threat models and indicators recognized? Regarding the ques-
tion of recognition, this paper uses expert questionnaire evaluation to conduct a multi-
dimensional inspection of all aspects of the model and indicators.

RQ3: How to represent arbitrary SSCA events more intuitively based on the above
models and indicators? To address this question, this paper uses the analytical results of
threat portrait to describe events and presents them in a clear graphical manner to achieve
the goal of intuitive representation.

6.1. RQ1: Event Verification

In each event, a comprehensive analysis of key nodes is first performed using the
proposed SSCM to verify the different nodes and dependency chains of the supply chain.
Secondly, the SSCIM is used to analyze the attack stages and techniques of the incident to
verify the different dimensions of the attack threat, so as to comprehensively prove that the
proposed portrait model conforms to the characteristics of the supply chain events.

In the dataset construction section, this paper reviews the SSC and collects specific
attacks, covering scientific research literature, datasets, news reports, threat reports, vulner-
ability reports, and analysis blogs. The scientific literature resources are mainly databases
such as Google Scholar [52], IEEE [53], ScienceDirect [54]; The main sources of datasets
include Backstabber’s Knife dataset [19], IQTLabs dataset [55] and CNCF dataset [56];
Sources of texts, including blog posts and reports, comprise online security information
websites such as Freebuf [57] and SecWiki [58], dependable vulnerability databases such
as CNVD [59] and NVD [60], current reports published by security vendor labs such as
Star Map Lab [61] of Qi An Xin, various online cybersecurity discussion forums, blogs, as
well as articles on public accounts. Additionally, supplementary information related to
the SSC was considered from search engine results. Commonly searched terms include
“software supply chain”, “supply chain”, “software supply chain attack”, “supply chain
attack”, “open-source software supply chain” and “open-source supply chain”. For indi-
vidual events, the name of the event is used as the search term. The dataset records a total
of 277 SSCAs from 2003 to 2023, corresponding to a total of 1520 incident texts.

The number of SSCAs in the dataset has shown a growing trend in the past decade.
In 2003, only 3 events were recorded, accounting for about 1% of the total, while since
2017, an average of 32 attack events have occurred every year. Among all the collected
events, 90 attacks or poisons were aimed at package managers such as npm and PyPI,
accounting for about 32.5%. Secondly, the number of attacks on the way to obtain software
installation packages reached 89, accounting for about 32.1%. Such attacks usually included
intrusion, poisoning, or malicious replacement of installation packages on official websites,
application stores, update servers, and other ways to obtain software installation packages.
In addition, 81 attacks targeted all aspects of the development process of software and
components, accounting for about 29.2%. The frequent attack targets included developers,

Mathematics 2023, 11, 4856 16 of 26

development tools, build processes, dependent components, and source code, and there
were also malicious developers or maintainers. In addition, 26 events occurred at the level
of open-source collaboration, accounting for 9.4%, among which malicious contributions
and malicious commits occurred frequently in the open-source community. Finally, there
were 24 SSCA events caused by vulnerabilities, accounting for 8.7%.

6.1.1. Codecov Attack Event

The SSCM is used to analyze Codecov events [62]. Codecov’s bash uploader script
was modified by the attacker, causing users to send sensitive information to a third-party
server when using Codecov to upload test data. That is, starting from the core “Software”
node, the inner “Code” node is traced outward to the middle “Sofware Source Code”, and
then the “Sofware Source Code” node is traced outward to the outer “Development Tool”
node, and a dependency chain is formed.

By analyzing this event using the SSCIM, the attack chain can be obtained as the
Initial Access, Execution, Privilege Escalation, Credential Access, Discovery, Collection and
Exfiltration. In the Initial Access, the attacker used the method of “Exploiting Applica-
tion Vulnerabilities and Errors” to launch intrusion activities through Codecov’s incorrect
Docker file. During the Execution, the attacker used “Command Exploitation” combined
with “IDE Malicious Build Injection” to execute the implanted malicious bash uploader
script. In the Privilege Escalation, attacker used “Operational Access Token” combined
with malicious scripts to steal customers’ tokens, keys, and other credentials, and use these
credentials to escalate privilege. During the Credential Access, attackers used “Expos-
ing Insecurely Stored Credentials” and "Stealing or Forging Credentials and Certificates”
to steal any credentials, tokens, keys, or authentication certificates passed from the cus-
tomer’s computer. In the Discovery, attacker used “System Information Discovery” to
collect “Information From the System” and used “Data from the Code Repository” to obtain
environment variables and some configuration information in the script and git remote
information in the code repository.

The remaining event verifications selected in this section are shown in Tables 6 and 7 below:

Table 6. SSCM Event Verification.

Event Dependency Chain

XcodeGhost [49]
Software → Code → Development Tools

Software → Installation Package → Resource Sharing,Cloud Service

Event-Streams [50]
1. For EventStreams itself: Software → Code → Developer

2. For affected downstream software: Software → Components →
Component Source Code → Third-Party Open-Source Library

PHP Backdoor [63] Software → Installation Package → Updates by Users → Update Server
Driver Talent [64] Software → Installation Package → Updates by Users → Update Server
SolarWinds [65] Software → Installation Package → Official Website

Log4j [10] For affected downstream software: Software → Components →
Component Source Code → Third-Party Open-Source Library

6.1.2. Output Analysis

This paper aims to validate the SSC portrait model using the SSCA event dataset, which
comprises 277 occurrences and related 1520 texts. This paper uses statistics and analyzes
the output results of the model, focusing on four significant threat surfaces: Installation
Package, Code, Runtime Environment, and Components. The model demonstrates a
notable level of accuracy on all four threat surfaces, achieving 87.76% and 84.75% accuracy
at the component threat surface and code threat surface, respectively. Additionally, the
component level exhibits a low false positive rate of 12.24%. This can be attributed to the

Mathematics 2023, 11, 4856 17 of 26

availability of a larger number of events and corresponding texts for both types of attacks,
as shown in Figure 6.

Table 7. SSCIM Event Verification.

Event Tactic Technique

XcodeGhost [49]

Resource Development Develop Malicious Project
Initial Access Phishing

Execution API Exploitation, Runtime Backdoor
Defense Evasion Subvert Trust Control

Credential Access Forced Authentication, MITM, Input Capture
Collection Information from System

Command and Control Exploitation of Pseudo-Protocol
Impact Implant Malicious Module

Event-Streams [50]

Resource Development Contributing Malicious Code to Open-Source Repository
Initial Access Malicious Module Injection

Execution User Execution, Runtime Backdoor
Persistence Backdoor in Code

Privilege Escalation Implant Malicious Dependencies in High-Privilege User Repository
Credential Access Leak Insecurely Stored Credentials

PHP Backdoor [63]

Resource Development Develop Malicious project, Create and Cultivate Account, Hacking the
Update Server

Initial Access Malicious Module Injection
Execution Runtime Backdoor

Persistence Backdoor in Code

SolarWinds [65]

Reconnaissance Collect Target Identity Information
Resource Development Malicious Acquisition, Develop Malicious Project

Initial Access
Exploiting Application Vulnerabilities and Errors, External Remote
Services, Exploiting Trusted Third-Party Relationships, Exploiting

Valid Accounts
Execution Command Execution, IDE Malicious Build Injection

Persistence Account Manipulation, External Remote Services, Abuse
Task Scheduling

Defense Evasion Obfuscate Files or Information,Impair Defense Mechanisms or
Components,Indicator Removal

Credential Access Leak Insecurely Stored Credentials, Steal or Forge Credentials and
Certificates, Credential Dump, Steal Session Cookies

Discovery Account Discovery, Permission Groups Discovery, Discovering
System Information

Lateral Movement Exploiting Remote Services, Alternate Authentication Material theft
Collection Information from Code Repository, Information from System

Log4j [10]

Reconnaissance Active Scanning
Resource Development Malicious Acquisition, Develop Malicious Project

Initial Access
Code Repository Contamination, Development Environment Threats,
Vulnerabilities in Third-Party Components/Extensions, Development

Tool Threats, Exploiting Application Vulnerabilities and Errors
Execution Package Manager Threats, Exploiting Software Vulnerabilities

Privilege Escalation Exploiting Software Vulnerabilities
Defense Evasion Exploiting Vulnerabilities

Mathematics 2023, 11, 4856 18 of 26

Table 7. Cont.

Event Tactic Technique

Driver Talent [64]

Credential Access Exploiting Vulnerabilities

Reconnaissance Collect Target Identity Information, Collect Target Host Information,
Scan Open Information Sources

Resource Development Malicious Acquisition, Hacking the Update Server
Initial Access Exploiting Valid Accounts

Execution User Execution
Defense Evasion Exploiting Valid Accounts, Indicator Removal

Credential Access Brute Force, Credential Dump
Lateral Movement Exploiting Valid Accounts, Exploiting Remote Services

Collection Information from System
Impact Data Manipulation

84.75%
87.76%

80.56%

71.43%

15.25%
12.24%

19.44%

28.57%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Code Components Installation

Package

Runtime

Environment

P
er

ce
n
ta

g
e

The Results of the SSC Portrait Model’s Output on Datasets

Accuracy False Positve

Figure 6. The Results of the SSC Portrait Model’s Output on Datasets.

In contrast, the number of attacks on the operational environment threat surface was
low. It accounted for only 8.58% of the total number of threats in the entire incident. The
component threat surface accounted for the largest percentage, at 36.03%. The Code threat
surface and the Installation Package threat surface were second only to the Component’s
percentage, with the former accounting for a larger percentage, as shown in Figure 7.

This paper focuses on the “Attack Object” part of the model’s output and identifies
the top 10 attack objects with the highest incidence. These represent the high-frequency
attack objects of the SSCAs, as shown in Figure 8. Among the observed attack objects, those
identified as “Components” are the most frequent, accounting for 20.75% of the total. These
were followed by objects related to “Code Libraries”, which constituted 17.86% of the items
analyzed. Additionally, objects associated with “Installation Packages” appeared with a
relatively high frequency, representing 14.46% of the total.

Mathematics 2023, 11, 4856 19 of 26

36.03%

28.92%

26.47%

8.58%

Output Percentage on Dataset

Components Code Installation

Package

Runtime

Environment

Figure 7. Output percentage on four levels.

20.75%

17.86%

14.46%

7.99%
7.31%

6.29%

4.42%
3.23%

2.55% 2.21%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

P
er

ce
n

ta
g

e

Attack Objects

The Top 10 most frequent attack objects

Figure 8. The Top 10 most frequent attack objects.

Overall, our SSC portrait model performs well in a large number of event validations,
these remarkable results not only highlight the effectiveness and usefulness of the portrait
model but also suggest its potential to effectively, comprehensively, and accurately depict
the SSC.

6.2. RQ2: Questionnaire Assessment

The validity of the SSC threat portrait is confirmed through a questionnaire in this
paper. The questionnaire assesses eight dimensions of evaluation for the SSCM and SSCIM,
including understandability, structural acceptance, correctness, name acceptance, position
acceptance, comprehensiveness, effectiveness, and usefulness. The purpose is to verify
the validity of the SSC threat portrait from different perspectives, as shown in Table 8.

Mathematics 2023, 11, 4856 20 of 26

Among the 40 questionnaires, more than 72.5% of respondents agreed with all dimensions
of the model and indicator matrix, and the average score of each dimension exceeded
7.5 points (out of 10 points), as shown in Table 9. Over 77.5% of respondents agreed that the
SSCM and SSCIM were easy to understand, with an average rating of at least 7.9. Addition-
ally, more than 80% of respondents had a positive attitude toward structural acceptance,
with an average rating of more than 7.75. Over 82.5% of respondents agreed that the
nodes were accurate at all levels, with ratings centered around 7 or 8. The comprehensive
assessment of all nodes about their naming and categorization yielded favorable results,
with an approval rate of more than 80%. With over 72.5% of the participants, the majority
agreed with the comprehensiveness. Meanwhile, an examination of the questionnaires
revealed the need to augment the degree of comprehensive coverage to encompass a wider
range of elements. In regards to effectiveness and utility, participants rated the model and
matrix as useful resources for comprehending, proficiently analyzing, and protecting the
SSC’s attack surface. This evaluation was endorsed by more than 82.5% of respondents,
with an average score exceeding 8 points. This confirms the SSC threat portrait model’s
credibility to a certain extent.

Table 8. SSC Threat Portrait Evaluation Perspective.

Assessment Dimensions Sample Questions of SSCM Sample Questions of SSCIM

Understandability Is it easy to understand the various levels and
nodes of the assessment model?

How easily understandable is the content of this
technical matrix?

Naming Acceptance How well do you agree with the names of
different levels and nodes of the model?

How do you agree with the naming of different
tactics and techniques?

Structural Acceptance What are your thoughts on the overall structure
of this model?

What are your thoughts on the overall structure
of this technology matrix?

Position Acceptance Evaluate the accuracy of each node position?
Evaluate the accuracy of the tactical phases to

which techniques are assigned in the
technique matrix?

Correctness Evaluate the correctness of node settings at each
layer of the model?

How accurate are the sub-techniques within
the matrix?

Comprehensiveness How comprehensive is the model’s coverage of
attack points in the SSCAs?

Evaluate this technique matrix’s coverage of
SSCA techniques?

Effectiveness How effective is the node chain formed by the
model for analyzing a specific SSCA event?

Evaluate whether this matrix effectively analyzes
the techniques used by attackers for a specific

SSC incident?

Usefulness
Is this model useful for understanding, analyzing,

and defending against the attack surface of
the SSC?

Evaluate the usefulness of this matrix for
analyzing and defending against SSCAs?

6.3. RQ3: Visualization

• Visualization of Event-Streams Events

Event-Stream events [50] mainly exploit people’s trust in open-source community
code maintainers, as shown in Figure 9. First, for the Event-Stream source code itself, the
threat penetration point is traced from the internal “Code” node to the external “Developer”
node. Then move to the “Third-Party Open-Source Library” at the same level through the
“Publish Third-Party Components” node. Second, for the affected downstream code, the
threat can be traced from the inner “Code” node to the middle “Third-Party Component”
node, and the “Third-Party Component” node can be traced to the “Third-Party Open-
Source Library” node through the “Introduction of Third-Party Components From the
Open-Source Market or Commercial Library”.

Mathematics 2023, 11, 4856 21 of 26

Table 9. Questionnaire Data Statistics.

Dimensions
SSCM SSCIM

Mean Median Acceptance
Percentage * Mean Median Acceptance

Percentage *

Understandability 8.03 8.00 77.50% 7.90 8.00 80.00%
Naming

Acceptance 7.93 8.00 80.00% 7.85 8.00 85.00%

Structural
Acceptance 7.75 8.00 80.00% 7.98 8.00 82.50%

Position
Acceptance 7.83 8.00 85.00% 8.13 8.00 87.50%

Correctness 7.90 8.00 82.50% 7.93 8.00 87.50%
Comprehensiveness 7.50 7.00 72.50% 7.58 7.50 77.50%

Effectiveness 8.28 8.00 85.00% 8.03 8.00 82.50%
Usefulness 8.20 9.00 85.00% 8.25 9.00 85.00%

* A numerical value equal to or exceeding 7 indicates a heightened level of recognition of the specific dimension
as perceived by the survey participants.

Release Third-party
Components

Introduction
Path

The Outer Layer

The Middle Layer

The Inner Layer

Maintenance

Code
Development

Figure 9. Visualization of EventStream event model analysis.

Analyze the techniques and tactics that may be included in Event-Stream events based
on the SSCIM. The attack chain is shown in Figure 10, which is Resource Development,
Initial Access, Execution, Persistence, Privilege Escalation, and Credential Access.

• Visualization of XcodeGhost attack event

The XcodeGhost attack [49] occurred at the software code level in the SSCM. As shown
in Figure 11, the penetration point is traced from the internal “Code” node to the ex-
ternal “Development Tool” node, that is, the attacker used the malicious attack on the
upstream development tool Xcode to cause the risk of all downstream software developed
with it. In terms of transmission channels, the developer in this incident chose to obtain
the Xcode installation package from unofficial channels such as cloud disk links, cloud
services, and other resource sharing; that is, the penetration point can be traced from
the “Installation Package” node inside the SSCM to the external “Resource Sharing” and
“Cloud Service“ nodes.

Mathematics 2023, 11, 4856 22 of 26

Leak Insecurely Stored
Credentials

Implant Malicious Dependencies in
High-Privilege User Repository

Backdoor in code

Runtime Backdoor

User
Execution

Contribute Malicious Code to
Open Source Repository

Malicious Module
Injection

Tactic Technique

Figure 10. Visualization of EventStream attack indicator analysis.

Developer

Maintenance

Code
Development

The Inner Layer

The Middle Layer

The Outer Layer

Figure 11. Visualization of XcodeGhost model analysis.

The attacker’s attack chain in the SSCIM is resource development, initial intrusion,
execution, persistent control, defense evasion, obtaining legal credential access, collection,
command control, and harm, as shown in Figure 12.

Mathematics 2023, 11, 4856 23 of 26

Develop
malicious project

Phishing

API
Exploitation

Runtime
Backdoor Subvert Trust

Control
Forced

Authentication

MITM

Exploitation of
Pseudo-Protocol

Input Capture

Information
from System

Implant Malicious
Module

Tactic

Technique

Figure 12. Visualization of XcodeGhost attack indicator analysis.

7. Conclusions

The SSC has become increasingly complex with the development of technology, and
it is urgent to have an in-depth understanding of the SSC and attackers’ attack methods.
In the face of increasingly complex upstream and downstream dependencies in the supply
chain, the traditional development, distribution, and usage models appear to be rough in
describing the supply chain, and the portrait needs to be improved. Based on the existing
SSC models and events, this paper uses the LLM ChatGPT [7] and artificial experience to
mine the common characteristics of the supply chain from event analysis, and proposes
a chain perspective model that includes more key links. Based on Attack Net [8] and
the framework of MITRE ATT&CK [9], the attack indicator matrix is further constructed
to describe the techniques and tactics used by attackers in the entire SSC attack chain.
At the same time, the effectiveness of the proposed threat portrait is verified and visualized
through a large number of events and expert experience evaluation. The complete indicator
matrix has been open-sourced on Github [66]. The above work helps to understand the
possible supply chain attack risk and determine the defense strategy.

Author Contributions: Conceptualization, all authors; methodology, M.W.; validation, M.W.; investi-
gation, M.W.; resources, P.W. and Q.L.; writing—original draft preparation, M.W.; writing—review
and editing, M.W.; visualization, M.W.; supervision, P.W. and Q.L.; project administration, P.W.
and Q.L.; funding acquisition, Q.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant 61902328; and in part by the Key R&D projects of Sichuan Science and technology plan
(2022YFG0323); and in part by the Key R&D projects of Chengdu Science and technology plan
(2022-YF05-00451-SN).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2023, 11, 4856 24 of 26

References
1. Peisert, S.; Schneier, B.; Okhravi, H.; Massacci, F.; Benzel, T.; Landwehr, C.; Mannan, M.; Mirkovic, J.; Prakash, A.; Michael, J.B.

Perspectives on the SolarWinds incident. IEEE Secur. Priv. 2021, 19, 7–13. [CrossRef]
2. In-Depth Aanalysis of the Supply Chain Attack Case of CCleaner Backdoor Code-Compilation Environment Pollution. Avail-

able online: https://ti.qianxin.com/blog/articles/in-depth-analysis-of-ccleaner-malware/ (accessed on 15 March 2023).
3. The State of Software Supply Chain Security. Available online: https://www.reversinglabs.com/resources/the-state-of-softwar

e-supply-chain-security (accessed on 15 March 2023).
4. How Software Engineering Leaders Can Mitigate Software Supply Chain Security Risks. Available online: https://www.gartner.

com/en/documents/4003625 (accessed on 1 March 2023).
5. Zhenfei, Z. Research on Pollution Mechanism and Defense of Software Supply Chain. Master’s Thesis, Beijing University of Posts

and Telecommunications, Bejing, China, 2018.
6. Du, S.; Lu, T.; Zhao, L.; Xu, B.; Guo, X.; Yang, H. Towards an analysis of software supply chain risk management. In Proceedings

of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 23–25 October 2013; Volume 1.
7. Introducing ChatGPT. Available online: https://openai.com/blog/chatgpt (accessed on 1 May 2023).
8. Steffan, J.; Schumacher, M. Collaborative attack modeling. In Proceedings of the 2002 ACM Symposium on Applied Computing,

Madrid, Spain, 11–14 March 2002; pp. 253–259.
9. ATT&CK Matrix. Available online: https://attack.mitre.org (accessed on 1 March 2023).
10. Technical Advisory: Zero-Day Critical vulnerability in Log4j2 Exploited in the Wild. Available online: https://www.bitdefender.

com/blog/businessinsights/technical-advisory-zero-day-critical-vulnerability-in-log4j2-exploited-in-the-wild/ (accessed on
1 March 2023).

11. Torres-Arias, S.; Afzali, H.; Kuppusamy, T.K.; Curtmola, R.; Cappos, J. in-toto: Providing farm-to-table guarantees for bits and
bytes. In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019;
pp. 1393–1410.

12. Software Supply Chain Attacks. Available online: https://www.whitesourcesoftware.com/resources/blog/software-supply-c
hain-attacks/ (accessed on 1 March 2023).

13. Ji, S.; Wang, Q.; Chen, A.; Zhao, B.; Ye, T.; Zhang, X.; Wu, J.; Li, Y.; Yin, J.; Wu, T. Review of open source software supply chain
security research. J. Softw. 2022, 34, 1330–1364.

14. Benthall, S. Assessing software supply chain risk using public data. In Proceedings of the 2017 IEEE 28th Annual Software
Technology Conference (STC), Gaithersburg, MD, USA, 25–28 September 2017; pp. 1–5.

15. Pfretzschner, B.; ben Othmane, L. Identification of dependency-based attacks on node.js. In Proceedings of the 12th International
Conference on Availability, Reliability and Security, Reggio Calabria, Italy, 29 August–1 September 2017; pp. 1–6.

16. Gokkaya, B.; Aniello, L.; Halak, B. Software supply chain: Review of attacks, risk assessment strategies and security controls.
arXiv 2023, arXiv:2305.14157.

17. Liu, C.; Chen, S.; Fan, L.; Chen, B.; Liu, Y.; Peng, X. Demystifying the vulnerability propagation and its evolution via dependency
trees in the npm ecosystem. In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA,
21–29 May 2022; pp. 672–684.

18. Zimmermann, M.; Staicu, C.A.; Tenny, C.; Pradel, M. Small world with high risks: A study of security threats in the npm ecosystem.
In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019;
pp. 995–1010.

19. Ohm, M.; Plate, H.; Sykosch, A.; Meier, M. Backstabber’s knife collection: A review of open source software supply chain attacks.
In Proceedings of the Detection of Intrusions and Malware, and Vulnerability Assessment: 17th International Conference, DIMVA
2020, (Proceedings 17), Lisbon, Portugal, 24–26 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 23–43.

20. Zahan, N.; Zimmermann, T.; Godefroid, P.; Murphy, B.; Maddila, C.; Williams, L. What are weak links in the npm supply
chain? In Proceedings of the 44th International Conference on Software Engineering: Software Engineering in Practice,
Pittsburgh, PA, USA, 25–27 May 2022; pp. 331–340.

21. Dey, T.; Mockus, A. Are software dependency supply chain metrics useful in predicting change of popularity of npm pack-
ages? In Proceedings of the 14th International Conference on Predictive Models and Data Analytics in Software Engineering,
Oulu, Finland, 10 October 2018; pp. 66–69.

22. Gonzalez, D.; Zimmermann, T.; Godefroid, P.; Schäfer, M. Anomalicious: Automated detection of anomalous and potentially
malicious commits on github. In Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), Madrid, Spain, 25–28 May 2021; pp. 258–267.

23. Duan, R.; Alrawi, O.; Kasturi, R.P.; Elder, R.; Saltaformaggio, B.; Lee, W. Towards measuring supply chain attacks on package
managers for interpreted languages. arXiv 2020, arXiv:2002.01139.

24. Tang, W.; Luo, P.; Fu, J.; Zhang, D. Libdx: A cross-platform and accurate system to detect third-party libraries in binary code.
In Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER),
London, ON, Canada, 14–21 February 2020; pp. 104–115.

25. Ladisa, P.; Plate, H.; Martinez, M.; Barais, O. Sok: Taxonomy of attacks on open-source software supply chains. In Proceedings of
the 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–25 May 2023; pp. 1509–1526.

26. Bos, A.M. A Review of Attacks Against Language-Based Package Managers. arXiv 2023, arXiv:2302.08959.

http://doi.org/10.1109/MSEC.2021.3051235
https://ti.qianxin.com/blog/articles/in-depth-analysis-of-ccleaner-malware/
https://www.reversinglabs.com/resources/the-state-of-software-supply-chain-security
https://www.reversinglabs.com/resources/the-state-of-software-supply-chain-security
https://www.gartner.com/en/documents/4003625
https://www.gartner.com/en/documents/4003625
https://openai.com/blog/chatgpt
https://attack.mitre.org
https://www.bitdefender.com/blog/businessinsights/technical-advisory-zero-day-critical-vulnerability-in-log4j2-exploited-in-the-wild/
https://www.bitdefender.com/blog/businessinsights/technical-advisory-zero-day-critical-vulnerability-in-log4j2-exploited-in-the-wild/
https://www.whitesourcesoftware.com/resources/blog/software-supply-chain-attacks/
https://www.whitesourcesoftware.com/resources/blog/software-supply-chain-attacks/

Mathematics 2023, 11, 4856 25 of 26

27. Reed, M.; Miller, J.F.; Popick, P. Supply Chain Attack Patterns: Framework and Catalog; Office of the Deputy Assistant Secretary of
Defense for Systems Engineering: Washington, DC, USA, 2014; Volume 2.

28. Supply Chain Attack Framework and Attack Patterns. Available online: https://www.mitre.org/sites/default/files/publication
s/supply-chain-attack-framework-14-0228.pdf (accessed on 1 March 2023).

29. Buchicchio, E.; Grilli, L.; Capobianco, E.; Cipriano, S.; Antonini, D. Invisible supply chain attacks based on trojan source. Computer
2022, 55, 18–25. [CrossRef]

30. Neil, L.; Mittal, S.; Joshi, A. Mining threat intelligence about open-source projects and libraries from code repository issues and
bug reports. In Proceedings of the 2018 IEEE International Conference on Intelligence and Security Informatics (ISI), Miami, FL,
USA, 9–11 November 2018; pp. 7–12.

31. Neupane, S.; Holmes, G.; Wyss, E.; Davidson, D.; De Carli, L. Beyond Typosquatting: An In-depth Look at Package Confusion.
In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA, 9–11 August 2023; pp. 3439–3456.

32. Zahan, N. Software Supply Chain Risk Assessment Framework. In Proceedings of the 2023 IEEE/ACM 45th International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion), Melbourne, Australia, 14–20 May 2023;
pp. 251–255.

33. Ohm, M.; Sykosch, A.; Meier, M. Towards detection of software supply chain attacks by forensic artifacts. In Proceedings of the
15th International Conference on Availability, Reliability and Security, Virtual, 25–28 August 2020; pp. 1–6.

34. Zhenhua, W. Research on Pollution Detection Technology of Software Supply Chain. Master’s Thesis, The Information Engineer-
ing University, Henan, China, 2019.

35. Vu, D.L.; Pashchenko, I.; Massacci, F.; Plate, H.; Sabetta, A. Towards using source code repositories to identify software supply
chain attacks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual,
9–13 November 2020; pp. 2093–2095.

36. Wang, X. On the feasibility of detecting software supply chain attacks. In Proceedings of the MILCOM 2021-2021 IEEE Military
Communications Conference (MILCOM), San Diego, CA, USA, 29 November 2021–2 December 2021; pp. 458–463.

37. Purba, M.D.; Chu, B. Extracting Actionable Cyber Threat Intelligence from Twitter Stream. In Proceedings of the 2023 IEEE
International Conference on Intelligence and Security Informatics (ISI), Charlotte, NC, USA, 2–3 October 2023; pp. 1–6.

38. Wang, P.; Dai, G.; Zhai, L. Event-Based Threat Intelligence Ontology Model. In Proceedings of the International Conference on
Science of Cyber Security, Shanghai, China, 13–15 August 2023; pp. 261–282.

39. Perrina, F.; Marchiori, F.; Conti, M.; Verde, N.V. AGIR: Automating Cyber Threat Intelligence Reporting with Natural Language
Generation. arXiv 2023, arXiv:2310.02655.

40. Fayyazi, R.; Yang, S.J. On the Uses of Large Language Models to Interpret Ambiguous Cyberattack Descriptions. arXiv 2023,
arXiv:2306.14062.

41. Ali, T.; Kostakos, P. HuntGPT: Integrating Machine Learning-Based Anomaly Detection and Explainable AI with Large Language
Models (LLMs). arXiv 2023, arXiv:2309.16021.

42. Sun, Y.; Wu, D.; Xue, Y.; Liu, H.; Wang, H.; Xu, Z.; Xie, X.; Liu, Y. When GPT Meets Program Analysis: Towards Intelligent
Detection of Smart Contract Logic Vulnerabilities in GPTScan. arXiv 2023, arXiv:2308.03314.

43. Wang, Z.; Zhang, L.; Cao, C.; Liu, P. The Effectiveness of Large Language Models (Chatgpt and Codebert) for Security-Oriented
Code Analysis. SSRN 2023, SSRN:4567887. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4567887
(accessed on 7 November 2023).

44. Setianto, F.; Tsani, E.; Sadiq, F.; Domalis, G.; Tsakalidis, D.; Kostakos, P. GPT-2C: A parser for honeypot logs using large pre-trained
language models. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining, Virtual, 8–11 November 2021; pp. 649–653.

45. Le, V.H.; Zhang, H. Log Parsing with Prompt-based Few-shot Learning. arXiv 2023, arXiv:2302.07435.
46. Ranade, P.; Piplai, A.; Joshi, A.; Finin, T. Cybert: Contextualized embeddings for the cybersecurity domain. In Proceedings of the

2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 3334–3342.
47. He, J.; Wang, L.; Hu, Y.; Liu, N.; Liu, H.; Xu, X.; Shen, H.T. ICL-D3IE: In-context learning with diverse demonstrations updating

for document information extraction. arXiv 2023, arXiv:2303.05063.
48. Wei, X.; Cui, X.; Cheng, N.; Wang, X.; Zhang, X.; Huang, S.; Xie, P.; Xu, J.; Chen, Y.; Zhang, M.; et al. Zero-shot information

extraction via chatting with chatgpt. arXiv 2023, arXiv:2302.10205.
49. XcodeGhost. Available online: https://en.wikipedia.org/w/index.php?title=XcodeGhost&oldid=1022461786 (accessed on

15 March 2023).
50. I Don’t Know What to Say. Available online: https://github.com/dominictarr/event-stream/issues/116 (accessed on 1 March 2023).
51. A New Open Framework For Releasing Secure Products. Available online: https://pbom.dev/#overview (accessed on

1 May 2023).
52. Goggle Scolar. Available online: https://scholar.google.com/ (accessed on 2 March 2023).
53. IEEE. Available online: https://ieeexplore.ieee.org/ (accessed on 2 March 2023).
54. Sciencedirect. Available online: https://www.sciencedirect.com (accessed on 2 March 2023).
55. Software Supply Chain Compromises. Available online: https://github.com/in-toto/supply-chain-compromises (accessed on

15 March 2023).

https://www.mitre.org/sites/default/files/publications/supply-chain-attack-framework-14-0228.pdf
https://www.mitre.org/sites/default/files/publications/supply-chain-attack-framework-14-0228.pdf
http://dx.doi.org/10.1109/MC.2022.3190801
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4567887
https://en.wikipedia.org/w/index.php?title=XcodeGhost&oldid=1022461786
https://github.com/dominictarr/event-stream/issues/116
https://pbom.dev/#overview
https://scholar.google.com/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com
https://github.com/in-toto/supply-chain-compromises

Mathematics 2023, 11, 4856 26 of 26

56. Catalog of Supply Chain Compromises. Available online: https://github.com/cncf/tag-security/tree/main/supply-chain-sec
urity (accessed on 15 March 2023).

57. FreeBuf. Available online: https://www.freebuf.com (accessed on 15 March 2023).
58. SecWiki. Available online: https://secwiki.org/w/Main_Page (accessed on 15 March 2023).
59. CNVD. Available online: https://www.cnvd.org.cn (accessed on 15 March 2023).
60. NVD. Available online: https://nvd.nist.gov (accessed on 15 March 2023).
61. Star Map Lab. Available online: https://tianwen.qianxin.com/blog/ (accessed on 15 March 2023).
62. Post-Mortem/Root Cause Analysis. Available online: https://about.codecov.io/apr-2021-post-mortem/ (accessed on

2 March 2023).
63. Hackers Backdoor PHP Source Code after Breaching Internal Git Server. Available online: https://arstechnica.com/gadgets/

2021/03/hackers-backdoor-php-source-code-after-breaching-internal-git-server/ (accessed on 15 April 2023).
64. “Driver Talent” Trojan Detailed Analysis Report Infected 100,000 Computers to Mine Monero in 2 h. Available online:

https://s.tencent.com/research/report/610.html (accessed on 15 March 2023).
65. Martínez, J.; Durán, J.M. Software supply chain attacks, a threat to global cybersecurity: SolarWinds’ case study. Int. J. Saf. Secur.

Eng. 2021, 11, 537–545. [CrossRef]
66. Supply-Chain-Attack. Available online: https://github.com/kcrio/supply-chain-attack (accessed on 30 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/cncf/tag-security/tree/main/supply-chain-security
https://github.com/cncf/tag-security/tree/main/supply-chain-security
https://www.freebuf.com
https://secwiki.org/w/Main_Page
https://www.cnvd.org.cn
https://nvd.nist.gov
https://tianwen.qianxin.com/blog/
https://about.codecov.io/apr-2021-post-mortem/
https://arstechnica.com/gadgets/2021/03/hackers-backdoor-php-source-code-after-breaching-internal-git-server/
https://arstechnica.com/gadgets/2021/03/hackers-backdoor-php-source-code-after-breaching-internal-git-server/
https://s.tencent.com/research/report/610.html
https://s.tencent.com/research/report/610.html
http://dx.doi.org/10.18280/ijsse.110505
https://github.com/kcrio/supply-chain-attack

	Introduction
	Related Work
	Software Supply Chain Threat Surface
	Software Supply Chain Attack and Threat Detection

	The Framework of Software Supply Chain Threat Portrait Model
	Software Supply Chain Threat Portrait Model Design Framework
	Event Collection Layer
	Event Analysis Layer
	Model Construction Layer

	Software Supply Chain Model
	Software Supply Chain Attack Indicator Matrix
	Reconnaissance
	Resource Development
	Initial Access
	Execution
	Persistence
	Privilege Escalation
	Defense Evasion

	Event Verification and Visualization
	RQ1: Event Verification
	Codecov Attack Event
	Output Analysis

	RQ2: Questionnaire Assessment
	RQ3: Visualization

	Conclusions
	References

