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Abstract: An important action-planning problem is considered for participants of the pursuit–evasion
game with multiple pursuers and a high-speed evader. The objects of study are mobile robotic systems
and specifically small unmanned aerial vehicles (UAVs). The problem is complicated by the presence
of significant wind loads that affect the trajectory and motion strategies of the players. It is assumed
that UAVs have limited computing resources, which involves the use of computationally fast and real-
time heuristic approaches. A novel and rapidly developing intelligent–geometric theory is applied to
address the discussed problem. To accurately calculate the points of the participant’s rapprochement,
we use a geometric approach based on the construction of circles or spheres of Apollonius. Intelligent
control methods are applied to synthesize complex motion strategies of participants. A method
for quickly predicting the evader’s trajectory is proposed based on a two-layer neural network
containing a new activation function of the “s-parabola” type. We consider a special backpropagation
training scheme for the model under study. A simulation scheme has been developed and tested,
which includes mathematical models of dynamic objects and wind loads. The conducted simulations
on pursuit–evasion games in close to real conditions showed the prospects and expediency of the
presented approach.

Keywords: pursuit–evasion games; intelligent control; geometric control; unmanned aerial vehicle; path
planning; trajectory tracking; trajectory prediction; machine learning; wind disturbances; modeling
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1. Introduction
1.1. Motivation

Problems related to different pursuit–evasion games appeared in the early 1950s
in the framework of game theory [1]. In the general case, the objective of the pursuers
is to apply the behavior and action strategies that minimize the capture time while the
evader tries to avoid being surrounded. Problem statements may be varied depending
on the number of competitors, homogeneity and speed of the players (participants), level
of information availability [2], model of the workspace (graph or geometric), or level
of interaction (cooperative or non-cooperative) [3]. One of the first and most important
applications of the results obtained in this field of science is the closely related theory of
optimal control [4,5]. For the first time, the problem of pursuing a moving object with
another controlled object was formulated as an optimal control problem in a paper [6]. The
strategy of parallel pursuit was introduced in [7] and used to solve simple pursuit problems
under phase constraints on the states of the players. A significant contribution to the
theory of pursuit–evasion games based on the extremal aiming method was made in [8,9].
Paper [10] provides a methodology for designing strategies for players that guarantee
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either capture or evasion of all or some evaders in multi-player pursuit–evasion games
when the players’ dynamics are represented by nonlinear models.

In mobile robotics, pursuit–evasion games are of great practical importance, with
a wide range of applications, including environmental monitoring and surveillance [11].
They play a special role in search-and-rescue missions when the lost dynamic object or
person as an adversarial entity tries to avoid being found [12]. Despite intensive research
and advances in the theory of differential games, due to the active development of robotics
and the increasing complexity of the tasks being solved, new actual challenges arise. One of
them is solving problems under conditions of uncertainty when the external environment is
unknown or unstable [13]. It is also known that modern algorithms dealing with differential
games have a high computational complexity [14], which can cause difficulties in their
implementation in small robotic systems. Often, the search for optimal mathematical
solutions is replaced by the development of rational action strategies for players. For
mobile robots, action strategies are often integrated with trajectory-tracking and obstacle-
avoidance techniques [15]. One of the most challenging problems is to improve decision
making autonomy both for individual mobile robots and their groups. Thus, for the
successful implementation of pursuit–evasion strategies in mobile robotics, a number of
urgent scientific problems need to be addressed.

1.2. Related Works

The main approaches to modeling the outcomes of pursuit–evasion games are based
on cooperative [16] and non-cooperative [17] strategies, each with its own strengths and
limitations. For non-cooperative strategies, the Nash equilibrium is usually taken as the
main principle of optimality. Cooperative strategies impose additional conditions related
to the ability to exchange full or partial information between participants. This approach
poses new issues that involve the appointment of leaders and the decomposition of the team
task [18]. At the same time, the decision-making process in cooperative games typically
will require more time for calculations. Paper [19] proves the noteworthy fact that, in
general, pursuers do not always benefit from cooperating as a team and that acting as
non-cooperative players can lead to a higher probability of catching the evader. A research
hotspot in pursuit–evasion games is to use formation-control strategies in the process of
encircling the evader. Such strategies are aimed at avoiding collisions between pursuers,
reducing the distance between each pursuer and the evader, and keeping the pursuers’
angular distribution [20]. The drawback is that rigid structures, especially when each
agent is assigned to occupy a corresponding point in the formation, may reduce the
efficiency of encirclement. A fundamental and still open question is to assess the advisability
of using centralized (based on the knowledge of the full game state) or decentralized
(based on the local information available to each player) approaches in a particular case.
For certain problem statements, centralized strategies can be more beneficial [21], but in
general, decentralized ones provide flexibility in decision making. In recent years, the self-
organizing control approach has given robotic systems higher autonomy and robustness,
so it is gradually and successfully used in intelligent control systems [22].

The choice of specific robotic systems as objects of study requires consideration of
the corresponding exact mathematical models of their dynamics as well as restrictions
on phase coordinates and control signals. Robotic systems are currently presented in
wide variations, but in this work, the main objects of study are unmanned aerial vehicles
(UAVs) as the convenient ground for testing the theory of differential games. Recently,
there has been a growing trend toward the development of UAVs capable of carrying a
payload and a significant expansion of their functionality [23]. Groups of UAVs that can
operate in unstable environments are often used in firefighting [24], search and rescue [25],
monitoring, and exploration missions [26]. In especially difficult conditions, the flight
mission needs to be carried out with a partial lack of communication with the human
operator or between members of the UAV group [27]. Therefore, one of the main challenges
is to increase the autonomy of UAVs by developing algorithms for automatic trajectory and
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behavior planning [28]. At the same time, it should be noted that the necessary calculations
must be performed in real-time and often under conditions of limited onboard computing
resources. Real-time actions and timely decision making are needed, for example, to solve
dynamic path planning [29], formation control [30], and pursuit–evasion problems. We
note significant research [31] devoted to the collective behavior of robots when interaction
is based on the use of a geometric acute angle test (AAT). Unlike the nearest-neighbor rule,
the proposed approach allows for quickly checking the possibility of interactions with far
neighbors and excludes unnecessary nearest neighbors. This paper proposes a controller
to achieve collision-free coordination. As a result, a group of interacting agents has the
advantages of scalability, effective coverage of areas, and reliability.

Research in the field of pursuit–evasion games involves studying the issue of ade-
quately predicting the trajectory of a player with opposing interests. Current papers focus
on the application of the following architectures: multilayer fully connected networks [32],
recurrent neural networks in the form of long short-term memory (LSTM) [33,34], and
gated recurrent units (GRUs) [35]. We note a comprehensive study on UAV trajectory pre-
diction comparing five machine learning models [36]. Despite the obtained achievements,
modern approaches to motion prediction do not always satisfy the limitations imposed
on the computing power of onboard computers, while increasing autonomy requires the
implementation of basic algorithms directly on board.

We note that one of the promising research areas is the application of game theory
advances for solving trajectory problems in wind load conditions. A novel approach is that
the UAV applies available strategies and tries to minimize the deviation from its reference
pseudo-target that imitates an ideal trajectory of motion [37]. The authors of papers [38,39]
apply the adapted theory of differential games for tracking aircraft trajectories under wind
loads. The reference paths are obtained in an unperturbed environment as solutions to
optimal control problems and tracked in the presence of severe wind disturbances. A
special guide-based control procedure is introduced based on direct aiming to stabilize
reference trajectories under unknown time-varying perturbations.

The objective from the evader’s point of view can be treated as a path-planning
problem in the presence of dynamic obstacles [40], which becomes even more complicated
in an environment with no-fly zones or additional static obstacles. We note that one of
the most common approaches to solving the tasks of obstacle avoidance and pursuit–
evasion is to use the potential fields method [41] and its various modifications [42]. The
essence of the method is to implement the movement of a mobile robot using the forces
of attraction to the target position and repulsion from obstacles. Another similar greedy
strategy is proposed in [43], in which pursuers are attracted by the evader and rejected
by other pursuers at the same time. A detailed review of the existing various general
motion-planning and trajectory-tracking methods for UAVs is not given in the paper since
it goes beyond the scope of this study. It is worth noting that the configuration of the
workspace is of great importance; for example, [44] considers the problem of catching an
evader in a closed convex domain. In the present research, we are dealing with an open,
disturbed environment without additional objects.

So, we can summarize that the main challenges of the pursuit–evasion problem under
study are the following:

1. Integration of both optimal and heuristic algorithms within a single concept to im-
prove decision efficiency under conditions of uncertainty;

2. Creation of a comprehensive approach, including the development of behavioral
strategies, mathematical models of players, and simulation under disturbances;

3. Performing adequate linearization of differential equations describing the dynamics
of UAVs and introducing other simplifications that do not lead to a significant loss of
accuracy of the resulting solutions.
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1.3. Main Contributions

Due to the computational complexity of solving differential games, one of the main
trends is the integration of different approaches to model the most probable outcomes.
Intelligent–geometric theory developed by the authors of the present work to control robotic
systems under conditions of uncertainty is a new and promising area of research [45]. The
basic idea is to combine the advantages of adaptive intelligent and precise geometric
control [46] methods within a single robotic system. It is assumed that an intelligent control
module should be used when the exact solution of the optimization problem cannot be
found within given constraints—for example, under conditions of significant external
uncertainty or in the case when prompt actions are required. Geometric control theory
is aimed at solving the controllability problem, which implies finding a control function
to transfer the initial state of the dynamic system to a prescribed state in finite time [47].
According to the theory, admissible trajectories and reachability sets formed by dynamic
systems are related to the group of geometric transformations. In the present paper, we
expand the study of intelligent–geometric control architecture and test it on the pursuit–
evasion games between robotic systems. To model the outcomes of differential games
within the framework of the geometric approach, we construct Apollonius circles, which
are often used to create barrier boundaries for the evader [48].

To predict the evader’s trajectory, we introduce a training algorithm for a two-layer
fully connected network with an activation function of the “s-parabola” type. The main
advantage of the proposed model is its simple implementation, which corresponds to
modern research in the field of accelerating the work of artificial neural networks (ANNs).
For example, the new “s-parabola” function has an advantage over the sigmoid function in
the speed of ANN training and prediction. Despite the recent achievements, to successfully
implement pursuit–evasion strategies as well as modern path-planning methods in the
onboard system of an aircraft, much more attention should be paid to modeling verisimilar
external conditions, in particular severe windshear. Due to the limited computing resources
of small autonomous aircraft, the problem of constructing intelligent and adaptive control
algorithms remains a relevant issue.

In this research, we take advantage of drawing together intelligent and geometric
control approaches under a unified architecture of a robotic system. We proposed a heuristic
and fast evader’s strategy (which can be interpreted as a collision-avoidance algorithm)
based on a modified potential field method and a geometric principle of Apollonius spheres
construction. Also, the novelty of the study is to examine the goal-directed motion, when
the evader needs not only to avoid the encirclement, but also to reach the target point. A
model experiment of a goal-directed UAV flight under conditions of external disturbances
and the presence of dynamic pursuers is carried out. To match the real conditions of the
problem, the mathematical models of a small aircraft and wind disturbances are used.
In addition, the problem of controlling the motion of a UAV along the given route in a
perturbed environment is discussed and solved in accordance with the strategies that reflect
the behavior of a human-operator and the principle of aiming at an object that imitates the
ideal flight. The considered and studied approaches serve to achieve acceptable control
accuracy by using simple tools that can be implemented in onboard control systems of
small UAVs.

Thus, the authors’ contribution to solving this problem is as follows:

• The article describes the elements of the theory of intelligent–geometric control in
relation to pursuit–evasion problems;

• Some game strategies have been developed for both the pursuer and the evader based
on the solution of optimal problems and the application of heuristic rules;

• A model for predicting the movement of the evader is proposed, which expands the
capabilities of the pursuer;

• Simulation of some game scenarios in a disturbed environment was carried out with
the developed approaches.

• Subsequent sections are organized as follows:
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• Section 2 contains problem statements for both the pursuer and the evader.
• Section 3 presents the architecture of intelligent–geometric control theory (Section 3.1),

solutions to the optimization problem of the closest approach (Sections 3.2 and 3.3), and
heuristic strategies for players (Section 3.4). The problem of predicting the trajectory
of the evader is considered in Section 3.5. The problem of moving along the required
route given by waypoints is briefly described in Section 3.6.

• Section 4 is devoted to testing the proposed solutions. We first considered the planar
case of the pursuit–evasion game in Section 4.1. Section 4.2 then discusses the dynamic
model of an aircraft-type UAV and its linearization. Section 4.3 describes schemes for
modeling the game in a disturbed environment for the spatial case. Simulation using
the developed approach is carried out in Section 4.4.

• The final section, Section 5, contains the main conclusions and prospects for further
research.

2. Problem Statement

When considering differential pursuit–evasion problems with several participants,
there is a wide range of mathematical statements. One of the most practical and urgent
challenges is the problem of one high-speed evader and several non-cooperative pursuers.
In the research, we tried to address the game both in terms of pursuers and an evader. In
the suggested problem statements and their solutions, the general three-dimensional case
is established as a baseline, while the corresponding calculations for the two-dimensional
case can be obtained in a similar way.

2.1. General Pursuit and Evasion Problems

We are dealing with a path-planning problem in which an evader e should lay its route
to a target point g

(
xg, yg, zg

)
through the complex environment with dynamic obstacles

(pursuers) P = {p 1, . . . , pn}, n ≥ 2. The pursuers are intelligent opponents that try to
interfere with the mission and capture the evader. Further in the article, we consider
kinematic (Section 2.2) and dynamic (Section 4.2) models of UAVs as objects of study. Let
us introduce a fixed base coordinate system, where axis YB is directed upward relative to
the terrestrial surface, axis XB is codirected with the projection of the longitudinal evader’s
speed at the initial time instant, and axis ZB is directed to the right. In the base coordinate
system, we track the positions of the participants’ centers of mass. The orientation of each
UAV is determined by the angles of pitch θ, yaw ψ, and roll γ in a coordinate system
fixed to the vehicle and having the origin at the center of mass. It is assumed that axes
X, Y, and Z are parallel to the axes XB, YB, and ZB. For simplicity, the roll angle is discarded
from subsequent calculations. Assume that variables related to an evader and pursuers
are marked with the subscripts e and p, respectively. At time instant t, participants e
and pi perform simple motion with speed ve(t), vp,i(t); angles of pitch θe(t), θp,i(t); and
yaw ψe(t), ψp,i(t). The states of pursuers pi and evader e are described by the following
vectors [45]:

Qp,i(t) =
(
xp,i(t), yp,i(t), zp,i(t), vp,i(t), θp,i(t), ψp,i(t)

)
Qe(t) = (xe(t), ye(t), ze(t), ve(t), θe(t), ψe(t))

(1)

where xp,i(t), yp,i(t), zp,i(t), xe(t), ye(t), ze(t) are coordinates that are assumed to be
known at any arbitrary instant t. It is supposed that the speed of evader e is higher than
the speed of any one of pursuer pi. As a result of wind action, vehicles can periodically
severely deviate from their routes. In this case, UAVs are guided by a set of valid control
strategies and rules, as well as the ability to control speed, pitch, and yaw angles, subject to
the following restrictions:

ve ε [ve,min, ve,max]; θe ε [θe,min, θe,max]; ψe ε [ψe,min, ψe,max] (2)

vp,i ε
[
vp,min, vp,max

]
; θpi ε

[
θp,min, θp,max

]
; ψpi ε

[
ψp,min, ψp,max

]
(3)
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Let pi(t) and e(t), respectively, denote the coordinates of players pi and e. We consider the
geometric model of a UAV as a sphere of radius R to account for the safety margin. We
designate the time when the evader reaches its target by Tg and the time when one of the
pursuers captures the evader by Tc. From the evader’s point of view, the flight to its target
should be safe, so it is assumed that the safety distance is determined as follows:

d(p i(t), e(t)) ≥ 2R, ∀i (4)

Evasion problem. The motion-planning problem for a dynamic object e on the time interval [0, Tg]
under perturbations and constraints (2), (4) is to construct a control function ue(t) = (v e(t), θe(t),
ψe(t)) such that:

d
(
e
(
Tg
)
, g
)
≤ εmin, Tg → min, (5)

where εmin is the minimum desired distance between the evader and its target point g.

The evasion task ends at time Tg, when the meeting of the dynamic object e with its
target happens.

Pursuit problem. For dynamic objects pi, the pursuit problem on the time interval [0, Tc] consists
in synthesizing a control function Up,i(t) = (v p,i(t), θp,i(t), ψp,i(t)) under perturbations and
constraints (3), such that:

∃i, d(e(Tc), pi(Tc)) ≤ R, Tc → min, (6)

where R is the minimum needed distance between the pursuer and the evader.

The pursuit game is won at time Tc when at least one of the pursuers pi approaches
the evader (their coordinates become close enough), which is regarded as its capturing.

2.2. Optimal Convergence Problem

Let us consider the closest approach problem from the pursuer’s point of view on a
local segment when it is needed to come as much closer as possible to the evader, given
its predicted direction of motion. We are dealing with the motion of two aerial vehicles
(pursuer p and evader e) in ideal conditions without disturbances when the evader keeps
its direction. The initial positions e(0), p(0) of players, direction θe, ψe, and speed ve of
the evader are known. As it was proved in [49], until the evader changes its direction,
the optimal pursuer strategy is to move in a straight line with maximum speed. So, it is
supposed that the pursuer’s speed is assigned a value of vp(t) = vp,max; velocity vp of the
pursuer, velocity ve and orientation angles θe, ψe of the evader are constants. Let us assume
that Tc corresponds to the time of maximum convergence.

Optimal Convergence Problem. The problem lies in constructing an optimal control function
up(t) =

(
θp(t), ψp(t)

)
for the transition of system (1) with one pursuer p from the initial state

Qe(0), Qp(0) to the final one Qe(Tc), Qp(Tc) while minimizing the distance between participants.

We introduce values u1(t) = θp(t), u2(t) = ψp(t) and give a mathematical description
of the motion of aerial vehicles in an unperturbed environment. The simplified kinematic
model of the pursuer’s motion is given by [49]:

.
xp = vpcos u1cos u2; xp = xp0 + vpcos u1cos u2·t.

yp = vpsin u1; yp = yp0 + vpsin u1·t
zp = vpcos u1sin u2; zp = zp0 + vpcos u1sin u2·t

(7)

The simplified kinematic model of the evader’s motion is given by
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.
xe = vecos θecos ψe; xe = xe0 + vecos θecos ψe·t.

ye = vesin θe; ye = ye0 + vesin θe·t
ze = vecos θesin ψe; ze = ze0 + vecos θesin ψe·t

(8)

It is supposed that xp0 = xp(0), yp0 = yp(0), zp0 = zp(0), xe0 = xe(0), ye0 = ye(0), ze0 =
ze(0).

Let us introduce the following system:

x = xp − xe; y = yp − ye; z = zp − ze (9)

Thus, we obtain the optimal control problem with restrictions (2) and (3):

f1 =
.
x(t) =

.
xp(t)−

.
xe(t) = vpcos u1cos u2 − vecos θecos ψe

f2 =
.
y(t) =

.
yp(t)−

.
ye(t) = vpsin u1 − vesin θe

f3 =
.
z(t) =

.
zp(t)−

.
ze(t) = vpcos u1sin u2 − vecos θesin ψe

x(0) = xp0 − xe0; y(0) = yp0 − ye0; z(0) = zp0 − ze0∫ Tc
0 f0(t)dt =

∫ Tc
0 d2(p(t), e(t))dt =

∫ Tc
0

(
x2(t) + y2(t) + z2(t)

)
dt→ min

(10)

Problem (10) can be solved using geometric control methods.

3. Materials and Methods

The solution of the formulated problems is based on the results obtained by the
authors in the field of adaptive control of robotic systems, operating in turbulent and
nondeterministic environments. The research relies on modern principles of intelligent,
geometric, and automatic control of dynamic systems.

3.1. Intelligent–Geometric Control Architecture

Geometric control theory studies various approaches to differential geometric methods
in dynamic systems control. The main objective of this relatively new area is to solve
controllability and optimal control problems. The controllability problem resides in finding
system states that are achievable from a given initial one. When all reachable states become
known, it is necessary to find the best path in terms of the transition time, the length of the
permissible trajectory, the energy expended, or the value of some other function. The search
for such paths is the subject of the optimal control problem. The authors of [47] associate
the use of the term “geometric” with the fact that the right side of an ordinary differential
equation is a vector field, and the corresponding dynamic system is a flow generated by
this field. Thus, the controlled system can be interpreted as a family of vector fields. It
should also be noted that admissible trajectories and reachability sets are closely related to
the group of transformations that form the foundations of geometry and are generated by
the dynamic systems under study.

In the present research, the concept of geometric control is considered in a broad
sense and includes the solution of various optimization problems associated with the
path-planning and trajectory-tracking tasks. One of the most important ones is to calculate
the direction of the pursuer for its closest possible approach to the target. If the capture is
possible and the motion of the participants is piecewise linear, then the point of intersection
can be calculated using Apollonius spheres. Another major issue is to follow the earlier
obtained motion path presented by multiple reference points under disturbances and
control restrictions while optimizing time and deviation. Problem statements from the field
of automatic and geometric control complement each other, and at the same time, their
solution requires detailed information about the nonlinear and complex system dynamics.

Increasing the autonomy of devices—for example, to make decisions in the absence of
communication—often involves performing basic calculations on the onboard computer.
The existing exact and approximate methods for solving optimal control problems are
time-consuming, which can cause difficulties in their implementation in onboard com-
puters with limited resources. The environmental instability, dynamic uncertainties, and
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external disturbances that influence the robotic systems can significantly complicate the
decision-making process. Under such conditions, it will be expedient to develop a control
architecture capable of supporting the tradeoff between accuracy and the required speed in
making operational actions by rational combining accurate geometric and fast intelligent
control methods [45]. The proposed three-level hierarchical scheme of intelligent–geometric
control architecture is shown in Figure 1.
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Unlike the intelligent–geometric control scheme presented in [45], Figure 1 more accu-
rately reflects the structure of the system and the interaction between the main modules. In
the general case, the strategic level serves to develop solutions to cooperative problems
for a group of dynamic objects that can partially exchange information and know infor-
mation about the state of the environment and their relative position. The main issues
to be resolved are the distribution of roles and tasks, the choice of global strategies, and
self-organization. As a result, individual tasks and strategies are formed for each object
in a group, which are subsequently transferred to the tactical level. At the same time, in
the present study, we assume that each pursuer acts independently, which makes this
level unnecessary. The tactical level solves specific tasks of each dynamic object associated
with static and dynamic motion planning in a complex, disturbed environment. After
performing calculations, specific control signals are generated, which are later transferred
for processing to the executive level. Each of these levels can rely in its calculations both
on the geometric and intelligent control methods provided by the corresponding modules.
The architecture includes an integrated module (knowledge/database) that contains infor-
mation about the states of the environment and control objects, as well as contains ways to
solve control problems in the form of rules and strategies.

3.2. Calculation of the Intercept Point

Let us consider a case when it is possible to accurately calculate the point of crossing
the trajectory of a pursuer and an evader. Suppose that there is one pursuer p and an evader
e with fixed velocity and direction of motion operating in an unperturbed environment.
The initial coordinates

(
xp0, yp0, zp0

)
, (xe0, ye0, ze0) and the speed vp, ve of the considered

participants are assumed to be known. Additionally, we suppose that angles of pitch θe and
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yaw ψe of the evader are known. It is necessary to find the probable point of intersection
( xT , yT , zT) and the direction of the pursuer’s motion.

The equation of a sphere, which is the locus of the participant’s convergence, is given
as follows [37]: (

xT − dx)2 +
(
yT − dy)2 +

(
zT − dz)2 = R2

dx =
v2

e ·xp0−v2
p ·xe0

v2
e−v2

p
; dy =

v2
e ·yp0−v2

p ·ye0

v2
e−v2

p
; dz =

v2
e ·zp0−v2

p ·ze0

v2
e−v2

p

R =
vp ·ve ·

√
(xp0−xe0)2+(yp0−ye0)2+(zp0−ze0)2

v2
p−v2

e

(11)

Solving Equation (11) gives a pair of points (xT1, yT1, zT1), (xT2, yT2, zT2) that reflect
the outcomes of the games in which an evader moves in opposite directions. Heading
angles θp, ψp of pursuit can be calculated from the following equations:

tan ψp =
z∗ − c
x∗ − a

; tan θp = sin ψp
y∗ − b
z∗ − c

(12)

Here, point (x∗, y∗, z∗) corresponds to the single solution of Equation (11) with a
certain fixed direction of the evader’s motion. Thus, the sphere of Apollonius shows the
points of intersection for the pair of players with fixed velocities at various directions of
motion, which can be used to develop action strategies.

3.3. Solution of the Optimal Convergence Problem

When the pursuer cannot calculate the exact intercept point with the evader (for
example, the pursuer cannot catch up with the evader because of the lower speed), the op-
timization problem (10) arises in calculating the direction for the closest possible approach.
To solve it, we apply the methods of geometric control, specifically Pontryagin’s maximum
principle [50]. Let us introduce the following Hamiltonian:

H = λ0 f0 + λ1 f1 + λ2 f2 + λ3 f3, (13)

where λ1 are functions of time and λ0 is a constant. We assume that λ0 = 1 and have

H = −
(

x2(t) + y2(t) + z2(t)
)
+

λ1
λ2
λ3

vpcos u1cos u2 − vecos θecos ψe
vpsin u1 − vesin θe

vpcos u1sin u2 − vecos θesin ψe

 (14)

According to the conditions for the existence of an extremum of the function H, we obtain:
∂λ1
∂t

∂λ2
∂t

∂λ3
∂t

 =

−
∂H
∂x

− ∂H
∂y

− ∂H
∂z

 =

2x
2y
2z

 =

2
(
xp − xe

)
2
(
yp − ye

)
2
(
zp − ze

)
 (15)

Let us find λ: λ1
λ2
λ3

 =

2x0·t + vpcos u1cos u2·t2 − vecos θecos ψe·t2 + C1
2y0·t + vpsin u1·t2 − vesin θe·t2 + C2

2z0·t + vpcos u1sin u2·t2 − vecos θesin ψe·t2 + C3

 (16)

From the transversality condition, we obtain:λ1(T) = 0
λ2(T) = 0
λ3(T) = 0

;

C1
C2
C3

 =

T
(
2xe0 − 2xp0 + Tvecos θecos ψe − Tvpcos u1cos u2

)
T
(
2ye0 − 2yp0 + Tvesin θe − Tvpsin u1

)
T
(
2ze0 − 2zp0 + Tvecos θesin ψe − Tvpcos u1sin u2

)
 (17)
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To solve the problem, the following relations are used:

∂H
∂u1

∣∣∣∣
t=T

= 0;
∂H
∂u2

∣∣∣∣
t=T

= 0;
∂ f0

∂t

∣∣∣∣
t=T

= 0 (18)

After the necessary simplifications, the following is derived:

T =
(x e0 − xp0

)
f1 + (y e0 − yp0

)
f2 + (z e0 − zp0

)
f3

vp2 + ve2 − 2vp(sin θesin u1 + cos θecos u1cos(ψe−u2))
(19)

tan u1 =
sin u2(y e0 − yp0 + veTsin θe

)
ze0 − zp0 + veTcos θesin ψe

; tan u2 =
ze0 − zp0 + veTcos θesin ψe

xe0 − xp0 + veTcos θecos ψe
(20)

From conditions (19) and (20), we can find flight parameters u1, u2 of the pursuer and the
time T of the closest approach to the target.

3.4. Pursuit and Evasion Strategies

In this section, based on the obtained results, the solution to the pursuit–evasion
problem is addressed both from the point of view of the evader (5) and the pursuer (6). The
present study improves and expands upon the players’ strategies discussed earlier in [37]
and is a natural continuation of the authors’ research in this area. In general, participants of
differential pursuit–evasion games are intelligent opponents with competing interests. The
goal of the player is to assess its environment and calculate reasonable actions in a timely
manner. Inspired by the potential fields method that is applied to the problem of obstacle
avoidance [41] and the geometric approach involving the construction of Apollonius
spheres, we proposed rational motion strategies. Consider the situation when there is one
high-speed evader e and a group P of n dynamic objects pi in the workspace. The states of
all pursuers Qp,i(t) and an evader Qe(t) are assumed to be known at any given moment t.
We note that the initial position of the players and their maximum speed, in many cases,
allow us to evaluate the possible outcome of the game.

3.4.1. Evader’s Strategy

Let di be the distance between objects pi and e, while dg be the distance between target
g and object e. It is reasonable to assume that the farther away a pursuer pi is, the less it
should influence the evader’s motion strategy. We explore two variations of the game, in
the first of which an evader needs to avoid collision with the pursuers and move to a safe
distance, and in the second one, the evader additionally needs to reach the target point
(the pursuers are not aware of the evader’s target point). The sum of vectors Fres for the
abovementioned cases is respectively defined as follows:

Fres =
n

∑
i=1

(
λ

1
di − 2R

)
Fi (21)

Fres =
n

∑
i=1

(
λ

1
di − 2R

)
F

i
+

(
β +

1
dg

)
Fg, (22)

where λ, β are adjustable parameters; Fi, Fg are unit vectors that start from evader’s
location point e and correspondingly coincide with the directions from pi to e and from e to
g, as shown in Figure 2a,b. Relation (21) determines the case when there is no target point
g [37], while relation (22) deals with the goal-directed flight.
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Figure 2. Pursuit of an evader by a group of dynamic objects: (a) The evader’s movement is goal-
directed; (b) There is no target point.

Figure 2 also shows the radii ri of Apollonius spheres for the corresponding pursuers
pi. Below are the rational rules for the goal-directed flight of an evader, which differ from
those proposed in [37] by taking into account the target point of the evader.

1. If there are rays that do not intersect any of the Apollonius spheres, then choose the
closest ray Fesc to the direction Fg;

2. If Fesc exists, then the evader should move in this direction;
3. If the ray Fesc cannot be calculated, then we suggest that the evader should move in

the direction determined by vector Fres (22).

The second option of the game has similar rules but excludes the target point g. Vectors
Fesc and Fres are recalculated every time the state of participants or environment changes.

3.4.2. Pursuer’s Strategy

The objective of the pursuers is to surround the opponent through the creation of a
special barrier formed by the spheres of Apollonius, which prevents its movement. We can
give the following assessment of the possible outcome:

1. If the evader is located in a closed region bounded by the spheres of Apollonius, it
fails to escape;

2. If it is possible to construct a half-line that does not intersect any of the spheres, then
the evader manages to escape;

3. In more complex cases—for instance, when the evader has a target point—to solve
the problem, it is necessary to perform an accurate simulation of the game.

One of the possible rational strategies applicable to all uncoordinated pursuers pi
could be the following:

1. If the evader’s trajectory intersects with the corresponding sphere, then the pursuer
must move to the point of convergence, which is calculated by Formulas (11) and (12);

2. If the evader moves towards the Apollonius sphere but the exact intersection point
cannot be calculated, it is necessary to move in the direction of the maximum approach,
which is determined by Formulas (19) and (20);

3. If the evader is moving away from the Apollonius sphere, then the pursuer must fly
parallel to the evader by setting the appropriate direction. An alternative option is to
build a forecast of the evader’s movement k steps ahead, after which the pursuer pi
begins to move to the calculated point (xe(tn+k), ye(tn+k), ze(tn+k)), where tn is the
current point in time and n is the number of observed waypoints.
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In contrast to the approach proposed in [37], the strategy of the pursuers was significantly
improved by expanding the number of rules and incorporating Formulas (19) and (20), which
allow for maintaining the integrity of the boundary formed by Apollonius spheres during
the pursuit. In the presence of significant wind loads, the outcome of the game becomes
even less predictable. Thus, in each specific case, it is necessary to model the game with the
use of modern simulators in conditions close to real ones, suggesting that mathematical
models of players and wind disturbances will be taken into account.

3.5. Neural Network Model for Predicting Evader’s Trajectory

The problem of constructing and training an artificial neural network model to quickly
predict the opponent’s trajectory in pursuit–evasion games are solved. An original parabola-
based activation function is used, which satisfies all the requirements for activation func-
tions and has important new properties: it reduces the computational complexity of im-
plementing nonlinearity and increases the efficiency of the ANN [51]. Unlike the previous
study, which focused on the training of a neural network for basic logical functions, this
paper proposes a general algorithm for training a two-layer neural network with an activa-
tion function of the “s-parabola” type. The considered activation function is a combined
second-order curve using individual branches of a parabola, and in the general case, both
branches can be used.

The upper branch of the parabola has the form y2 = 2px; that is, y = +
√

2px, x > 0,
while the lower branch of the parabola has the form y2 = −2px, or y = −

√
−2px, x < 0.

Corresponding derivatives are as follows [51]:

for x > 0:

.
y1 =

p

(2px)
1
2

,
..
y1 = − p

x(2px)
1
2

(23)

for x < 0:

.
y2 =

p

(−2px)
1
2

,
..
y2 = − p

x(−2px)
1
2

(24)

Let us construct an s-shaped curve in which the upper part is the upper branch of the
parabola, and the lower part reflects the lower part of the parabola relative to the ordinate
axis. Thus, we obtain a composite s-shaped curve with an inflection point, which we will
further call “s-parabola”. Figure 3 shows some variants of such a function for different
values of p.
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Note that to solve a number of practical problems, it is sufficient to use only the first
(upper) part of the s-shaped curves.
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3.5.1. Algorithm for Training a Two-Layer ANN with the s-Parabola Activation Function

The training scheme with the specified activation function is common for tuning the
parameters of an ANN using the backpropagation method, but it also has its own features.
Let us consider, without loss of generality, an algorithm for training a feedforward ANN
with n inputs (x1, x2, . . . , xn), m neurons in the first layer, two layers, and one output.

ANN training algorithm:

1. Initialization of initial parameters and weights.
2. Calculation of a neural network in the forward direction:

• Calculation of the first-layer signals:

s1
j = w1

0j +
n

∑
i=1

xiw1
ij, y1

j = f (s1
j ) =

 β +
√

2ps1
j , i f s1

j > 0

β−
√
−2ps1

j , i f s1
j < 0

(25)

where j = 1, . . . , m, β ∈ [0, 1) is the displacement of the parabola along the
OY axis. The superscript for variables indicates the number of the neural net-
work layer.

• Calculation of signals of the second (output) layer:

s2
1 = w2

01 +
m

∑
i=1

y1
i w2

i1, y2
1 = f (s2

1) =

 β +
√

2ps2
1, i f s2

1 > 0

β−
√
−2ps2

1, i f s2
1 < 0

(26)

3. Calculation of errors in inputs and outputs of neurons in the backward direction.

• Errors at the output and input of the last layer neuron. Output error: δ2
out =

y2
g − yout, where yout is the current value of the neuron output. The required

value y2
g is set by the user. Error at neuron input: δ2

in = s2
g − s2, where s2

g is the
given input value of the second-layer neuron:

s2
g =

(y2
g − β)2

2p
, i f s2

1 > 0, s2
g = −

(y2
g − β)2

2p
, i f s2

1 < 0 (27)

• Errors at the output and input of the ith neuron of the first layer containing m
neurons. Errors in neuron outputs: δ1

iout = δ2
inw2

i1/K2, where i = 1, . . . , m, K2 =∣∣w2
01

∣∣ + ∑m
i=1
∣∣w2

i1

∣∣ is the normalizing coefficient. On the other hand, δ1
iout =

y1
ig − y1

i , where y1
ig, y1

i are the given and current output values of the ith neuron
of the first layer. Calculation of input signals for the activation function:

s1
ig =

(y1
ig − β)2

2p
, i f s1

1 > 0, s1
ig = −

(y1
ig − β)2

2p
, i f s1

1 < 0 (28)

Error at the input of the ith neuron of the first layer: δ1
i,in = s1

ig − s1
i .

4. Correction of the neural network weights, which is carried out as follows:

w1
ij(k + 1) = w1

ij(k) +
ηδ1

j,inxi

K1
j

, w1
0j(k + 1) = w1

0j(k) +
ηδ1

j,in

K1
j

,

w2
ij(k + 1) = w2

ij(k) +
ηδ2

iny1
i

K2 , w2
01(k + 1) = w2

01(k) +
ηδ2

in
K2 ,

(29)

where K1
j =

∣∣∣w1
0j

∣∣∣ + ∑n
i=1

∣∣∣w1
ij

∣∣∣ is the normalizing coefficient, η is the learning rate,
0 < η ≤ 1.
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5. If the error at the output δ2
out =

∣∣∣y2
g − yout

∣∣∣ is less than the predetermined value, then
a stop is performed. Otherwise, the learning rate is reduced by a certain amount,
η := η − ∆, and the transition to step 2 is carried out.

3.5.2. An Example of Predicting the Planar Trajectory of an Evader

Let us assume that there is a time series of an evader’s positions (xe(t), ye(t)) =
((xe(t1), ye(t1)), (xe(t2), ye(t2)) . . . , (xe(tn), ye(tn))), observed during a certain time inter-
val. We use the available values to predict its position at moment tn+1. We suppose that
the number of observations is five (n = 5). Below, we propose a solution to the problem
using an ANN with an s-parabola activation function.

The network consists of two layers. In the first layer, there are five neurons (m = 5)
with an activation function of the s-parabola type, given that β = −0.5, and p = 1/4, while
in the second layer, there is one neuron of the same type. The number of inputs is equal to
the number of neurons in the first layer (n = m). The proposed network predicts the value
of the next n + 1 element of a time series based on the previous n samples. The results of
using the constructed neural network to predict the movement of the evader are presented
in Figure 4.
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Figure 4. The result of predicting the movement of the evader using a neural network with an
activation function of the “s-parabola” type.

The solid green line in Figure 4 represents the participant’s actual trajectory. The
prediction obtained on the training set is indicated by the dash-dotted blue line, and the
results obtained on the test set are shown by the dashed red line. When training using
x-coordinates, the average prediction error was 2.673, and the training time was 86.494 s.
When training using y-coordinates, the average prediction error was 2.494, and the training
time was 4.151 s.

3.6. Trajectory-Tracking Problem

One of the frequently encountered problems in robotics is to follow previously ob-
tained routes with minimal deviations. Moreover, if the principal issue is to be at designated
points of the path at certain times, then the problem of trajectory tracking arises. The exact
formulation of such a problem for UAVs and its solution based on the pursuit–evasion
theory were discussed by authors in earlier papers [37,45,49]. However, due to its urgency
and gaining popularity, it is necessary to briefly discuss the issue based on the previously
achieved results.

In the general case, intermediate reference waypoints Ej of the route are known,

through which the vehicle e must fly at certain times t(e)j . A novel approach is to introduce
a pseudo-target c that generates an ideal flight path. At the same time, the aircraft pursues
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its pseudo-target by controlling the speed and direction of flight. To approach the pseudo-
target, we use a geometric approach that implies the calculation of the Apollonius sphere
and the convergence point. In conditions of significant wind loads and uncertainty, it is
advisable to apply intelligent control methods. An intelligent aerial vehicle may have
a special knowledge base in which control rules are stored that define the conditions
for generating control commands. Rational actions imitate the behavior of a human
operator and are based on strategies implemented by sets of rules under given control
restrictions and existing perturbations in accordance with the principles of dynamic systems
modeling [52].

Let us briefly consider some control strategies to perform trajectory-tracking.

Strategy 1. Point-by-point flight involves correcting the motion of a UAV in accordance with the
current deviation from the given ideal trajectory. At that, all control points must be passed with a
minimum deviation: ∣∣e(tj

)
− Ej

∣∣→ min,
∣∣∣tj − t(e)j

∣∣∣→ min, (30)

where tj is the moment of closest approach of the UAV e to the control point Ej.

Strategy 2. The pursuit strategy involves calculating the speed, pitch, yaw, and appropriate point
of the closest approach required for a UAV to capture its pseudo-target.

d(e(T), c(T))→ min, T → min (31)

It is assumed that geometric invariants in the form of a sphere or an ellipsoid can be used to
calculate the convergence point. In this case, the UAV does not need to pass exactly through all
reference waypoints.

The developed strategies are integrated into a single control system designed to
perform trajectory-tracking tasks under disturbances. Since these strategies are clearly
described in earlier works, the detailed implementation here is omitted.

4. Results

A series of simulation studies of the pursuit–evasion game between dynamic objects
has been carried out. The essence of the competition is that an evader tries to reach its
target point in the shortest possible time, whereas the opponents, guided by their own
strategies, are aiming to capture it. It is assumed that the velocity of the evader is greater
than that of the pursuers.

4.1. Planar Case

First, for simplicity and convenience of visualization, the solution of the problem
is studied in the yaw plane without detailed mathematical models of dynamic objects.
To model the possible outcomes of the game, we use a special software developed in
C# language (Microsoft Visual Studio Community 2022, version 17.6.5, Microsoft .NET
SDK, version 4.8.09032, Microsoft, Redmond, WA, USA). For convenience of analysis, the
results of three experiments involving different arrangements of players are visualized.
Figures 5–7 show the initial and final stages of the game while displaying the locations of
the participants and the calculated circles of Apollonius. The target, evader, and pursuers
are marked by green, red, and gray dots, respectively, whereas the Apollonius circles and
their centers are marked by cyan.

In the first scenario (Figure 5a,b), the runaway player manages to avoid capture,
but the pursuers can stand on the way to the target point. As can be seen in the figure,
if the evader initially tries to move directly towards the target, then it will be captured
by one of the dynamic objects at the point of intersection of their paths, which lies on
the corresponding circle of Apollonius. In this example, by using the proposed heuristic
strategies and taking rational actions, the runaway escaped the encirclement but failed the
mission to reach the target.
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The second scenario (Figure 6a,b) assumes that, thanks to the favorable location of the
target, the evader manages to both avoid its capture and complete the general task.

The last one (Figure 7a,b) deals with the case when the evaders’ only mission is to
escape, but due to the specific players’ arrangement, it immediately becomes surrounded.
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Table 1 below presents various outcomes of the game depending on the scenario, and
the cells related to the participants indicate their coordinates and speed.

Table 1. Outcomes of the pursuit–evasion game obtained from the new and previous strategies.

No Evader Pursuer 1 Pursuer 2 Pursuer 3 Pursuer 4 Pursuer 5 Target Evader
Escapes

Evader
Reaches

the Target

1 (0, 0), 5 (20, 30), 4 (−20, 20), 4 (−20, −20), 4 (100, 20), 4 (−20, −90), 4 (−5, −100) Yes/Yes No
2 (0, 0), 5 (30, 20), 4 (−30, −50), 4 (−70, 40), 3 (100, −20), 4 (100, −90), 4 (100, 150) Yes/Yes Yes
3 (0, 0), 5 (30, 30), 4 (−30, 30), 4 (−30, −30), 4 (200, −20), 4 (50, −190), 4 - No/Yes -
4 (0, 0), 5 (20, 20), 4 (−20, 20), 4 (−20, −20), 4 (100, −20), 4 (100, −90), 4 (−50, −50) Yes/Yes No
5 (0, 0), 5 (20, 20), 4 (−20, 20), 4 (−20, −20), 4 (100, −20), 4 (100, −90), 4 (−150, −150) Yes/Yes Yes
6 (0, 0), 5 (30, 20), 4 (−30, 20), 4 (−30, −20), 3 (100, −20), 4 (100, −90), 4 (−100, −150) Yes/Yes Yes
7 (0, 0), 5 (30, 30), 3 (−30, 30), 3 (−30, −30), 3 (200, −20), 4 (50, −190), 4 - Yes/Yes -
8 (0, 0), 5 (20, 20), 4 (−20, 20), 4 (−20, −20), 4 (100, 0), 4 (0, −90), 4 - No/Yes -
9 (0, 0), 5 (20, 20), 3 (−20, 20), 3 (−20, −20), 4 (100, −10), 4 (−40, −100), 4 - Yes/Yes -

10 (0, 0), 5 (20, 20), 4 (−20, 20), 4 (−20, −20), 4 (50, 0), 4 (0, −50), 4 - No/No -

Some of the missions are only aimed at escaping the encirclement, while others
additionally require the presence of a target point that must be reached.

Figures 5–7 correspond to the cases shown in rows 1–3 in Table 1, respectively. Note
that earlier in the authors’ works, the variant of the game where the pursuer needs to
reach the target point was not considered [37]. The strategy of the pursuers has also been
improved, now preventing gaps from appearing in the boundary formed by the Apollonius
circles. The “Evader escapes” column in Table 1 shows whether the evader manages to
escape in the corresponding scenario. Here, the first value shows the outcome of the game
in accordance with the strategy described in this study, and the second one reflects the
outcome of the game in accordance with the strategies from [37]. As can be seen in the
table in scenarios 3 and 8, the improved strategy of the pursuers did not allow the evader
to escape the encirclement.

The results obtained prove the feasibility of the proposed approach and its applicability
in modeling pursuit–evasion games with one fast evader. The developed program is a
tool for preliminary testing of various game scenarios and assessing the likelihood of
each outcome.
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4.2. UAV Dynamics Model

The equations of motion of a UAV (fixed-wing aircraft) in a turbulent atmosphere are
considered in terms of the increments to the nonperturbed flight mode in the coordinate
system fixed to the vehicle (the origin lies at the center of mass, the axis Xv is directed
along the longitudinal axis of the UAV, the axis Yv is directed upward, and the axis Zv is
directed rightward).

We introduce the following notation:

• a, b, and c with various subscripts are the parameters of longitudinal dynamics de-
pending on the UAV type and flight mode;

• k, l, and n with various subscripts are the parameters of lateral dynamics depending
on the UAV type and flight mode;

• θ, ψ, and γ are the pitch, yaw, and roll angles;
• δe is the elevator angle;
• δa, δr are deflection angles of the ailerons and rudder;
• wx, wy, and wz are the projections of wind velocities on the XB, YB, and ZB axes of the

base coordinate system;
• Vb is the UAV speed relative to air in the unperturbed mode;
• Vgx, Vgy are the projections of the UAV ground speed on the axes Xv and Yv;
• xb, yb, and zb are the coordinates of the center of mass on the XB, YB, and ZB axes;
• ωgx, ωgy, and ωgz are the projections of the angular speed relative to air on the

Xv, Yv, and Zv axes;
• k = 1

57.3 is the correcting coefficient;
• s is the Laplace transform parameter.

We make the following assumptions:

• The lateral and longitudinal motions are independent;
• The wind speed is significantly less than the speed of the UAV;
• The horizontal rectilinear flight under no wind conditions without roll and sliding is

taken as the unperturbed mode.

In the unperturbed mode, the motion parameters have the following values (we use
the subscript b to mark the unperturbed mode):

V = Vb = Vgx = const; θ = θb; ωgz = Vgy = 0(
dxg
dt

)
b
= Vbcosθb;

(
dyg
dt

)
b
= Vbsinθb

(32)

The equations of the longitudinal motion in the restless atmosphere have the following form:

aθ∆θ +
d∆Vgx

dt + a .
x∆Vgx + a .

yVgy = a .
xwx + a .

ywy

Vb
d∆θ
dt − b .

x∆Vgx +
dVgy

dt + b .
yVgy = −b .

xwx + b .
ywy

d2∆θ
dt2 + c .

θ
d∆θ
dt + c .

x∆Vgx − c ..
y

dVgy
dt − c .

yVgy = −cδ∆δe + c .
xwx − c .

ywy
d∆xb

dt = Vb + ∆Vgx; d∆yb
dt = Vb∆θ + Vgy

(33)

Here, ∆ denotes the deviation of values from their magnitude in the unperturbed mode.
System (33) describes both short-period and long-period motions of the UAV. It can be
simplified by going to the description in terms of short-period motions (the first and fourth
equations and all terms with Vgx are excluded). This assumption is acceptable for most
applied problems of flight dynamics. The simplified equations for the longitudinal motion
in the restless atmosphere have the following form:

dVgy
dt + b .

yVgy + kVb∆ωgz = −b .
xwx + b .

ywy
d∆ωgz

dt + c .
θ
∆ωgz − c ..

y
dVgy

dt − c .
yVgy = −cδ∆δe + c .

xwx − c .
ywy

d∆yb
dt = Vb∆θ + Vgy

(34)
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Since the pitch angle is measured in degrees, a correcting coefficient k is introduced.
The equations of the lateral motion in the restless atmosphere have the following form:

dβg
dt + kββg − kγγ− dψ

dt =
kβ

Vb
wz,

lββg +
d2γ
dt2 + l .

γ
dγ
dt + l .

ψ

dψ
dt =

lβ

Vb
wz − laδa,

nββg + n .
γ

dγ
dt +

d2ψ

dt2 + n .
ψ

dψ
dt =

nβ

Vb
wz − nrδr,

dzg
dt = Vb(βg − ψ)

(35)

Here, βg is the slip angle determined from the ground speed vector.
For the convenience of modeling dynamics, we will use the transfer functions from

control and disturbing wind influences for the longitudinal and lateral movement of the
UAV (fixed-wing aircraft) derived in [53].

For longitudinal dynamics, the resulting transfer functions from the control action
of the elevator ∆δe and wind components wx, wy to the pitch angular velocity ωgz are
as follows:

Wωgz/∆δe(s) =
−0.753s−1.213

0.139s2+0.537s+1
Wωgz/wx (s) =

−0.007s−0.057
0.139s2+0.537s+1 ; Wωgz/wy(s) =

0.355s
0.139s2+0.537s+1

(36)

For lateral dynamics, the resulting transfer functions from the control action of the
rudder ∆δr and the wind component wz to the yaw angular velocity ωgy have the follow-
ing form:

Wωgy/δr (s) =
−4.5s− 0.75

s2 + 1.1s + 4.2
; Wωgy/wz(s) =

0.072s + 0.175
s2 + 1.1s + 4.2

(37)

Formulas (36) and (37) use the adjusted flight parameters of a small aircraft taken
from [54]. The described transfer functions are further integrated into the structure of the
flight-simulation scheme.

4.3. Matlab Simulation Scheme

The present section describes basic tools for conducting complex and full-fledged
simulations of pursuit–evasion games under close-to-real conditions. We propose modeling
schemes designed in a MATLAB/Simulink environment (version 8.4.0, MathWorks, Natick,
MA, USA) in accordance with the principles of intelligent and geometric control theories.

The general control scheme for trajectory-tracking of a UAV presented in [45] is
adapted to simulate the motion of both an evader (Figure 8a) and a pursuer (Figure 8b) in
an unstable three-dimensional environment.

The evader’s scheme contains the incoming coordinates of the pursuers and the target
point. All necessary calculations in accordance with the strategy proposed in Section 3.4.1
are made in the geometric module.

The pursuer’s subsystem of intelligent–geometric control consists of two modules that
complement each other. The geometric module is aimed at solving optimization problems
of trajectory motion control with the given constraints [49] and accurate calculation of flight
parameters. The intelligent control module is activated in unstable conditions to select
among strategies (30) and (31) in accordance with the current situation. In accordance with
the proposed scheme, the pursuer receives the coordinates of the evader and all closest
obstacles (other pursuers). Intelligent and geometric blocks implement the pursuer’s
strategy given in Section 3.4.2.

The “Current state calculation” block calculates the following UAV parameters: current
position in the base coordinate system, current speed (taking into account wind load), and
flight altitude. Wind loads are generated by the standard block “Wind Shear Model”.



Mathematics 2023, 11, 4869 20 of 26

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 27 
 

𝑊ఠ/௪ೣ(𝑠) = −0.007𝑠 − 0.0570.139𝑠ଶ + 0.537𝑠 + 1 ; 𝑊ఠ/௪(𝑠) = 0.355𝑠0.139𝑠ଶ + 0.537𝑠 + 1 
For lateral dynamics, the resulting transfer functions from the control action of the 

rudder Δ𝛿 and the wind component 𝑤௭ to the yaw angular velocity 𝜔௬ have the follow-
ing form: 𝑊ఠ/ఋೝ(𝑠) = −4.5𝑠 − 0.75𝑠ଶ + 1.1𝑠 + 4.2 ; 𝑊ఠ/௪(𝑠) = 0.072𝑠 + 0.175𝑠ଶ + 1.1𝑠 + 4.2 (37) 

Formulas (36) and (37) use the adjusted flight parameters of a small aircraft taken 
from [54]. The described transfer functions are further integrated into the structure of the 
flight-simulation scheme. 

4.3. Matlab Simulation Scheme 
The present section describes basic tools for conducting complex and full-fledged 

simulations of pursuit–evasion games under close-to-real conditions. We propose mod-
eling schemes designed in a MATLAB/Simulink environment (version 8.4.0, MathWorks, 
Natick, MA, USA) in accordance with the principles of intelligent and geometric control 
theories. 

The general control scheme for trajectory-tracking of a UAV presented in [45] is 
adapted to simulate the motion of both an evader (Figure 8a) and a pursuer (Figure 8b) 
in an unstable three-dimensional environment. 

The evader’s scheme contains the incoming coordinates of the pursuers and the tar-
get point. All necessary calculations in accordance with the strategy proposed in Section 
3.4.1 are made in the geometric module. 

  
(a) (b) 

Figure 8. General intelligent–geometric schemes for controlling the motion of dynamic objects: (a) 
For an evader; (b) For a pursuer. 

The pursuer’s subsystem of intelligent–geometric control consists of two modules 
that complement each other. The geometric module is aimed at solving optimization 
problems of trajectory motion control with the given constraints [49] and accurate calcu-
lation of flight parameters. The intelligent control module is activated in unstable condi-
tions to select among strategies (30) and (31) in accordance with the current situation. In 
accordance with the proposed scheme, the pursuer receives the coordinates of the evad-
er and all closest obstacles (other pursuers). Intelligent and geometric blocks implement 
the pursuer’s strategy given in Section 3.4.2. 

Figure 8. General intelligent–geometric schemes for controlling the motion of dynamic objects: (a)
For an evader; (b) For a pursuer.

To ensure the stability of the flight, we introduce a special “Stabilization module”
that contains transfer functions (36) and (37) obtained from the equations of lateral and
longitudinal motions of an aerial vehicle in a perturbed atmosphere. This block contains
general control schemes for pitch and yaw angles and is discussed in detail in [49].

A general scheme is proposed for modeling a goal-directed flight of a UAV in the
presence of dynamic obstacles that perform reasonable actions to capture it. As an example,
Figure 9 shows a pursuit–evasion game for several (five) pursuers and one evader. This
figure presents an updated version of the simulation scheme proposed in [37], taking into
account the destination of the evader.
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Figure 9. The scheme of modeling the pursuit–evasion game with five pursuers and one evader.

The scheme includes the models of players’ dynamics and serves as the basis for
solving complex motion control problems of aerial vehicles operating in an uncertain
environment with obstacles.

4.4. Spatial Case

In accordance with the model proposed in the previous section (see Figure 9), sim-
ulation studies of the pursuit–evasion problem with five pursuers and one evader were
carried out. The average airspeed of the pursuers was equal to 40 m/s, and that of the
evader was 50 m/s. We take the rms values of the longitudinal and transversal components
of the wind σt = σn = 3 m/s.

Figures 10 and 11 show the results of the game with five and six pursuers, respectively.
The spatial trajectories of the evader (dashed red curve) and dynamic obstacles (solid gray
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curves) were obtained in the MATLAB/Simulink environment. The initial positions of
the players are marked with circles, and the target point is marked with a green dot. The
arrows show the direction of movement of the players at the current moment. Figure 11
illustrates how adding another pursuer affects the evader’s trajectory.
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wind disturbances based on the use of pursuit–evasion strategies. 

The main contributions of the study are as follows: 

Figure 11. Motion trajectories of the participants (for one evader and six pursuers): (a) At the initial
stage; (b) At the final stage.

These examples illustrate the impact of wind loads on the flight route of the partici-
pants, performing logical actions to imitate the behavior of human operators. The figures
also visualize how the proposed heuristic strategies form the trajectory of each player’s
motion toward its target. We note that, in general, the proposed evader’s strategy increases
the time to reach its target point but makes the flight safer. The developed methods and
modeling system make it possible to test complex scenarios of the pursuit–evasion game in
the presence of disturbances that affect the strategies of the participants.
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5. Discussion

In this paper, we consider an approach to solving the problem of goal-directed motion
planning for an unmanned aerial vehicle in the presence of dynamic obstacles and wind
disturbances based on the use of pursuit–evasion strategies.

The main contributions of the study are as follows:

1. For both the pursuers and the evader, we propose simple but effective heuristic rules
that imitate the reasonable actions of a human operator in accordance with precise
geometric calculations and the modified potential field approach.

2. The problem of predicting the movement of an evader using a two-layer, fully con-
nected feed-forward network is considered. A distinctive feature of the model is the
use of a special activation function, which reduces the calculation time in conditions
of limited computing power and the need to take prompt action.

3. The solution of the trajectory tracking problem based on the principles of functioning
of intelligent dynamic systems is discussed.

4. A scheme for simulating pursuit–evasion games is proposed and studied that takes into
account the dynamic models of participants and wind disturbances. A series of simula-
tions conducted in MATLAB/Simulink environment demonstrates that the proposed
strategies determine the natural behavior of dynamic objects under uncertainty.

We believe that the considered algorithms are advisable to use in control systems of
small UAVs with limited computing resources. The obtained results sufficiently demon-
strate the efficiency of the combined use of intelligent–geometric control approaches.

Future research will address the following important issues:

1. Pursuers can be considered as intelligent agents, endowed with the ability to exchange
information and make collective decisions. This approach determines the need to
conduct research at the strategic level, related to issues of goal setting and distribution
of tasks between participants.

2. The problem statement can be expanded, for example, by considering scenarios with
the low-speed agile evader or where the pursuers know the evader’s target point.

3. Further improvement of the intelligent component is seen in the introduction of a
knowledge representation model for describing the workspace in the form of semantic
networks and the creation of appropriate decision-making procedures, increasing the
intelligence of the participants themselves through the development of goal-setting
approaches. This, of course, will require the creation of new strategies and algorithms.

4. Finally, natural experiments are needed to demonstrate in practice the effectiveness of
the developed intelligent–geometric control algorithms.

Flight control of the UAV is planned to be carried out using specialized software devel-
oped in high-level Java (version Java SE 19, Oracle, Austin, TX, USA) and Python (version
3.12.0, Python Software Foundation, Wilmington, DE, USA) languages. This includes a
multimodal control command system and a multi-window simulator. All control software
is distributed between the ground control station and the onboard computer system.
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Nomenclature

Symbol Name Definition
XB, YB, ZB Axes of the base coordinate system

X, Y, Z
Axes of the coordinate system fixed to the vehicle, and parallel to
axes XB, YB, and ZB.

Xv, Yv, Zv

Axes of the coordinate system fixed to the vehicle (the axis Xv is directed
along the longitudinal axis, the axis Yv is directed upward, and the axis
Zv is directed rightward).

e Evader.
pi ith pursuer in group P.
(x e, ye, ze) Coordinates of the evader.

(x p,i, yp,i, zp,i

)
Coordinates of the pursuer pi.

ve Speed of the evader.
vp,i Speed of the pursuer pi.
θe, ψe Pitch and yaw angles of the evader.
θp,i, ψp,i Pitch and yaw angles of the pursuer pi.
g
(

xg, yg, zg
)

Target point of the evader.
Tg Time moment when the evader reaches its target.
Tc Time moment when at least one of the pursuers captures the evader.
εmin Required distance between the evader and its target point.
R Radius of the geometric model of a UAV.
θ, ψ, γ Pitch, yaw, and roll angles.
Qp,i State of pursuer pi (coordinates and velocity).
Qe State of the evader (coordinates and velocity).
d(o1, o2) Distance between objects o1, o2.

Fi
Unit vector that starts from evader’s location point e and coincides
with the direction from pi to e.

Fg
Unit vector that starts from evader’s location point e and coincides
with the direction from e to g.

Fesc Ray that does not intersect any of the Apollonius spheres.
a, b,c Parameters of longitudinal dynamics.
k, l, n Parameters of lateral dynamics.
δe Elevator angle.
δa, δr Deflection angles of the ailerons and rudder.
xb, yb, zb Coordinates of the center of mass on the XB, YB,ZB axes.
V UAV airspeed.
Vb UAV speed relative to air in the unperturbed mode.
Vgx, Vgy Projections of the UAV ground speed on the axis X, Y.
ωgx, ωgy, ωgz Projections of the angular speed on the X, Y, Z axes.
s Laplace transform parameter.

Wωgz/∆δE

Transfer function from the control action of the elevator ∆δe to
the pitch angular velocity ωgz.

Wωgz/wx , Wωgz/wy

Transfer functions from the wind components wx and wy to the pitch
angular velocity ωgz.

Wωgy/∆δr

Transfer function from the control action of the rudder ∆δr to the yaw
angular velocity ωgy.

Wωgy/wz

Transfer function from the wind component wz to the yaw angular
velocity ωgy.

t(e)j
Reference time moment corresponding to the passage of
the point Ej by the UAV.

tj Moment of closest approach of the UAV to the waypoint Ej.
Ej Intermediate reference waypoint of the route.

e
(

tj

)
Coordinates of the UAV at time tj.

c Pseudo-target that simulates an ideal flight path.
β Displacement of the parabola along the OY axis.
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s1
j , s2

j Sum of weighted inputs on the jth neuron of the first/second layer.
y1

j , y2
j Output signal of the jth neuron of the first/second layer.

w1
ij

Weight of the connection between the ith input value and the jth neuron
of the first layer.

yout Neural network output.
δ2

out, δ2
in Error at the output/input of the second layer.

δ1
j,out, δ1

j,in Error at the output/input of the jth neuron of the first layer.
g Subscript g indicates the target values of the corresponding parameters s, y.
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