
Citation: Arasteh, B.; Arasteh, K.;

Kiani, F.; Sefati, S.S.; Fratu, O.;

Halunga, S.; Tirkolaee, E.B. A

Bioinspired Test Generation Method

Using Discretized and Modified Bat

Optimization Algorithm. Mathematics

2024, 12, 186. https://doi.org/

10.3390/math12020186

Academic Editor: Ioannis G. Tsoulos

Received: 14 November 2023

Revised: 24 December 2023

Accepted: 3 January 2024

Published: 6 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Bioinspired Test Generation Method Using Discretized and
Modified Bat Optimization Algorithm
Bahman Arasteh 1,* , Keyvan Arasteh 1, Farzad Kiani 2,3 , Seyed Salar Sefati 4 , Octavian Fratu 4 ,
Simona Halunga 4 and Erfan Babaee Tirkolaee 5,6,7,*

1 Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University,
Istanbul 34460, Turkey; keyvan.arasteh@istinye.edu.tr

2 Computer Engineering Department, Faculty of Engineering, Fatih Sultan Mehmet Vakif University,
Istanbul 34445, Turkey; fanka@fsm.edu.tr

3 Data Science Application and Research Center (VEBIM), Fatih Sultan Mehmet Vakif University,
Istanbul 34445, Turkey

4 Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest,
060042 Bucuresti, Romania; sefati.seyedsalar@upb.ro (S.S.S.); octavian.fratu@upb.ro (O.F.);
simona.halunga@upb.ro (S.H.)

5 Department of Industrial Engineering, Istinye University, Istanbul 34396, Turkey
6 Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan 320315, Taiwan
7 Department of Industrial and Mechanical Engineering, Lebanese American University, Byblos 36, Lebanon
* Correspondence: bahman.arasteh@istinye.edu.tr (B.A.); erfan.babaee@istinye.edu.tr (E.B.T.)

Abstract: The process of software development is incomplete without software testing. Software
testing expenses account for almost half of all development expenses. The automation of the testing
process is seen to be a technique for reducing the cost of software testing. An NP-complete opti-
mization challenge is to generate the test data with the highest branch coverage in the shortest time.
The primary goal of this research is to provide test data that covers all branches of a software unit.
Increasing the convergence speed, the success rate, and the stability of the outcomes are other goals
of this study. An efficient bioinspired technique is suggested in this study to automatically generate
test data utilizing the discretized Bat Optimization Algorithm (BOA). Modifying and discretizing the
BOA and adapting it to the test generation problem are the main contributions of this study. In the
first stage of the proposed method, the source code of the input program is statistically analyzed to
identify the branches and their predicates. Then, the developed discretized BOA iteratively generates
effective test data. The fitness function was developed based on the program’s branch coverage. The
proposed method was implemented along with the previous one. The experiments’ results indicated
that the suggested method could generate test data with about 99.95% branch coverage with a limited
amount of time (16 times lower than the time of similar algorithms); its success rate was 99.85% and
the average number of required iterations to cover all branches is 4.70. Higher coverage, higher speed,
and higher stability make the proposed method suitable as an efficient test generation method for
real-world large software.

Keywords: bioinspired testing method; discretized bat optimization algorithm; branch coverage;
stability; success rate

MSC: 68Q07; 68T20

1. Introduction

The research problem in this paper originates from the important and increasing
role of software in various applications of human life. Software is also widely used in
even highly critical and vital cases such as medical, financial, and military applications.
Currently, the failure of safety-critical software may result in irrecoverable life and financial
costs. Software testing is considered a significant step in the software development process,

Mathematics 2024, 12, 186. https://doi.org/10.3390/math12020186 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020186
https://doi.org/10.3390/math12020186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5202-6315
https://orcid.org/0000-0002-0354-9344
https://orcid.org/0000-0002-7208-3576
https://orcid.org/0000-0001-5679-9307
https://orcid.org/0000-0001-7028-3921
https://orcid.org/0000-0003-1664-9210
https://doi.org/10.3390/math12020186
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020186?type=check_update&version=1

Mathematics 2024, 12, 186 2 of 18

which is aimed at improving the software quality. A software test includes the running
of the intended software to identify probable faults. Testing accounts for almost half of
the development cost [1,2]. As a result, one of the major and difficult issues of software
engineering is the requirement to lower the overall costs of software tests [3–5]. One
method for regulating and lowering the expenses of software testing is thought to be the
automation of testing processes. Test automation enables the testing team to identify a
higher number of faults with less time and cost. One problem that programmers deal with
is the automatic creation of effective test data. Effective test data is considered to have
primarily greater code coverage capacity. In real-world programs with millions of lines of
code, it is hard to manually generate effective test data.

The main research question of this study is as follows: how to generate effective test
data rapidly is one of the research’s challenges. Generating a test set having a maximum
branch coverage in a finite period is an NP-complete optimization issue since there are
2n branches (test pathways) in a program with n conditional instructions. The major
goal of this study is to generate test data with the greatest amount of branch coverage
in the shortest time possible. Test data have been produced using a variety of heuristic
algorithms, such as the Genetic Algorithm (GA), Particle Swarm Algorithm (PSO), Ant
Colony Optimization (ACO) method, and Artificial Bee Colony (ABC) algorithm [6–8]. The
existing methods are not able to cover the hard-to-cover codes of programs. Furthermore,
the insufficient success rate of the existing methods to provide optimal coverage is one of
the other demerits of the existing methods. This study’s objective is to rapidly produce
the test data for a software unit (function) with maximum branch coverage and success
rate. Identifying and testing the paths with a higher error-propagation rate is the other
challenging problem. The fitness function can be expanded to incorporate the numerous
issues that come up while creating test data for software.

In this study, a method for automatically generating effective test data was proposed.
By modifying and discretizing Bat Optimization Algorithm (BOA), an efficient technique is
suggested in this work to automatically create test data. The proposed method seeks to
produce test data that have the greatest branch coverage in the least amount of time. The
given program’s code is statistically examined in the first step of the suggested method to
determine its branches and related predicates. The suggested BOA then creates efficient test
data iteratively. Based on how well the software covered its branches, the fitness function
was created. The contributions of this work are as follows:

• Developing a bioinspired technique for automatically creating test data using the
modified version of the BOA,

• Achieving more branch coverage at a faster convergence rate,
• Stable outcomes are produced by the suggested technique in different executions,
• Implementing an autonomous test generation system that is open source and free for

software testers and engineers to use.

This paper is organized as follows: The topic of pertinent research, ideas, and obstacles
surrounding the automatic creation of test data is covered in Section 2. The suggested test
generation method is described and discussed in Section 3. The findings are then discussed
in Section 4. Section 5 concludes with suggestions for additional research.

2. Related Work

Nowadays, different machine learning and artificial intelligence algorithms have been
extensively used in different fields of software engineering. Numerous studies have been
conducted on this domain of software engineering. Regarding the way of producing
testing data and detecting software errors, researchers in this area have recently concluded
that search-based methods have more coverage and performance than other methods.
An approach has been recently proposed for testing data by using random algorithms.
Harmen et al. [6] proposed a random approach for generating test data. This approach
keeps producing random data until effective data are generated. It did not produce the
desired outcomes since there was no effective goal function. Simulated annealing (SA) was

Mathematics 2024, 12, 186 3 of 18

suggested by researchers as a solution to the creation of testing data. The SA approach, in
other words, produces ideal testing data by transforming the difficulty of producing test
data into an optimization problem [7]. The main issue with this technique is that it relies on
local optimization, which can be resolved by non-greedy choices. This approach is suitable
for structural testing. Sharma et al. [8] addressed the application of GA as a successful
evolutionary algorithm in this problem. The results of experiments were evaluated on six
benchmark programs, which indicated that the produced data has been improved.

In line to produce testing data, GA was used for selecting sub-paths [9]; also, they
used candidate solutions for achieving optimal processes. In this work, the fitness function
was presented under the name of the similarity function, which assesses how closely the
traveled path resembles the desired path. The remaining test set was chosen using this
method. Path coverage when running the program is referred to as “path optimality”
in this context. The level of optimality rises as the extent of path coverage does. In this
study, it was found that, when the GA is used, the required time for finding the optimal
route is remarkably reduced. To produce testing data that maximized branch coverage,
an ACO-based technique was proposed by Mao et al. [10]. In this work, a unique fitness
function was created to increase branch coverage probability. The results of the studies
showed that this approach has greater coverage, convergence speed, and stability qualities.

Particle swarm optimization (PSO) algorithm was employed by Mao et al. [11] to
resolve the issue of autonomous test data creation due to its remarkable advantages and
capabilities. The branch coverage criterion served as the basis for the objective function
of this method. The research outcomes demonstrated that this approach outperformed
various algorithms regarding branch coverage and execution speed. The branch coverage
metric was utilized to generate testing data using the harmony search method [12]. The
creation of test cases was significantly influenced by the fitness function. The branch
distance criterion was used for designing this function. The obtained results indicate that
by using harmony search, testing data can be produced that have much higher coverage
than the other methods.

ABC algorithm was also utilized to create test data [13]. The suggested technique
begins with the user selecting the program under test (PUT). The structural information
of PUT, such as the number of input arguments, branches, and lines of code (LOC) was
statically identified in the first stage of this technique. In this paper, branch coverage was
defined as the fitness function. In this paper, branch weight relates to a branch’s reachability;
the predicate weight shows the degree of complexity of the branches’ predicates. These
predicates must be true (the condition must be satisfied) before the branch can be said to be
covered by the data values. As benchmarks for comparisons, seven popular and traditional
programs from the research were used. Based on the findings, the ABC-based approach
outperforms GA, PSO, ACO, and SA on average: 99.99% average branch coverage, 99.94%
success rate, 3.59 average convergence, and 0.18 ms average execution time.

An automated test-data generating approach utilizing the Shuffle frog leaping algo-
rithm (SFLA) was presented by Ghaemi and Arasteh [14]. The branch-coverage-based
fitness function was used in this study. SFLA as a swarm-based heuristic algorithm was
used to generate test data. In this method, everyone was defined as test data. The randomly
generated test data at the first iteration of this method were evolved iteratively by the
imitation operator of the SFLA algorithm. This technique was thoroughly evaluated using
the seven conventional standard benchmarks, and the findings indicate that it has certain
benefits over prior algorithms like GA, PSO, and ACO. In the fewest iterations possible, the
SFLA-based technique produces test data with 99.99% branch coverage. Moreover, with a
99.97% success rate, it consistently produces the best test data.

Arasteh et al. [15] offered an automated approach for generating structural test data
was proposed. The program source code is statically evaluated in the first phase, and the
structural information necessary for the subsequent stages is extracted. In the subsequent
phase, the imperialist competitive algorithm (ICA) was implemented to generate the
best test data. The objective function was established using the coverage-based distance

Mathematics 2024, 12, 186 4 of 18

function. By exploring and directing the generated data in this approach, branch coverage
is increased. Each agent in the population is a portion of test data drawn at random from
the starting population. The imperialists were chosen because they were the best agents the
same as GA. The suggested method outperformed the other methods with 99.99% average
coverage, a 99.94% average success rate, and a 2.77 average generation. Table 1 contrasts
the earlier methods.

Table 1. A comparison of test generation methods.

Method Merits Demerits

Modified GA [1] Higher Performance and Coverage Lower success rate
Random search [6] Simplicity of implementation Lack of fitness function
SA algorithm [7] faster than a random search Falling into the local optimum

GA algorithm [8,9] Enhanced coverage and parallel implementation High runtime

PSO algorithm [11] High implementation speed and simplicity Diverse reactions in different executions
and applications

ACO algorithm [10] Considering the branch weights Results with high runtime and volatility
Harmony search [12] More coverage Varied outcomes for various uses
ABC algorithm [13] Higher coverage and Higher speed Different results for different applications

SFLA algorithm [14] Higher coverage, higher stability, success rate,
and Higher speed

The complexity of implementation
and maintenance

ICA algorithm [15] Higher coverage and speed Low stability

Scenario-based Method [16] Higher scenario coverage Mainly for design testing, not for
source-code testing

Hyper Heuristic
Model-based Testing [17]

Higher program state coverage and lower
execution time

The tradeoff between cost and test
effectiveness has not been taken into account

3. Proposed Method

In this work, an automatic technique to generate the structural test data (at the unit
level) is suggested. Figure 1 depicts the suggested method’s flowchart. The input program’s
source code is statically examined in the first stage, after which the structural data needed
for the succeeding processes is extracted. The BOA [18,19] is modified and used in the
second stage to provide effective test data. The test data generated by the BOA is the
second step’s output. The first and second steps of the suggested technique run entirely
automatically on the input program unit. The suggested approach has been used to
construct an automated software tool. The test criterion in the suggested technique was the
coverage of program branches.

Test-data generation consists of two parts: determining the path predicates and sat-
isfying (covering) the predicates. For every test path Pi, there is a conjunctive predicate
Pi = C1 ∧ C2 ∧ . . . ∧ Cn, whose conjuncts Cj match the decision nodes along the test path
Pi. Given the path Pi, the test generation method should find the test data Xk which
covers the Pi by satisfying its predicates. The software test generation method evaluates
the assignments and decision Booleans of the test path (Pi). In this problem, Ak is the
number of assignments in Pi and Bk is the number of simple Booleans in the test path Pi.
Since test generation methods evaluate the decision expressions (assignments and decision
Booleans) of the test path, the time complexity is proportional to Ak + Bk. In the worst case,
the problem of finding Xk (test data) to Boolean satisfiability of Pk can be considered an
NP-complete problem [20]. Indeed, the satisfaction (coverage) of Pk in the worst case is
proportional to 2Bk .

Mathematics 2024, 12, 186 5 of 18
Mathematics 2024, 12, x FOR PEER REVIEW 5 of 22

Figure 1. Process of the proposed method.

Test-data generation consists of two parts: determining the path predicates and sat-
isfying (covering) the predicates. For every test path Pi, there is a conjunctive predicate Pi

Figure 1. Process of the proposed method.

3.1. Program Source-Code Analysis

The suggested technique considers a program source code to be tested as its input.
The number of inputs, the domain of the inputs, the number of conditional instructions
in the program, and the expressions into conditional instructions are all retrieved from

Mathematics 2024, 12, 186 6 of 18

the program source code. The suggested method’s initial step is carried out automatically.
The recommended method’s time complexity for this step is equal to O(n). The input and
output of the first phase of the suggested technique for a benchmark program are shown in
Figure 2.

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 22

= C1 ∧ C2 ∧ … ∧ Cn, whose conjuncts Cj match the decision nodes along the test path Pi.
Given the path Pi, the test generation method should find the test data Xk which covers
the Pi by satisfying its predicates. The software test generation method evaluates the as-
signments and decision Booleans of the test path (Pi). In this problem, Ak is the number of
assignments in Pi and Bk is the number of simple Booleans in the test path Pi. Since test
generation methods evaluate the decision expressions (assignments and decision Boole-
ans) of the test path, the time complexity is proportional to Ak + Bk. In the worst case, the
problem of finding Xk (test data) to Boolean satisfiability of Pk can be considered an NP-
complete problem [20]. Indeed, the satisfaction (coverage) of Pk in the worst case is pro-
portional to 2𝐵𝐵𝑘𝑘.

3.1. Program Source-Code Analysis
The suggested technique considers a program source code to be tested as its input.

The number of inputs, the domain of the inputs, the number of conditional instructions in
the program, and the expressions into conditional instructions are all retrieved from the
program source code. The suggested method’s initial step is carried out automatically.
The recommended method’s time complexity for this step is equal to O(n). The input and
output of the first phase of the suggested technique for a benchmark program are shown
in Figure 2.

Input1 as integer Input2 as integer Input3 as integer

Figure 2. Static analysis of the input program for extracting the structure of the input data and cre-
ating the bat array that includes the input parameters.

3.2. Test Data Generation using BOA
The BOA is considered to be one of the evolutionary algorithms inspired by nature

which was introduced by Yang [18,19]. Agents (bats) in the BOA use sound reflection
when swarming and hunting their prey. Agents make a lot of loud noise (sound) in their
surroundings; then, they listen to their reflections on all sides. Wavelength is related to the
prey size. All bats apply sound reflection to detect the distance to prey. Algorithm 1 shows
the pseudocode of the suggested BOA.

Figure 2. Static analysis of the input program for extracting the structure of the input data and
creating the bat array that includes the input parameters.

3.2. Test Data Generation using BOA

The BOA is considered to be one of the evolutionary algorithms inspired by nature
which was introduced by Yang [18,19]. Agents (bats) in the BOA use sound reflection
when swarming and hunting their prey. Agents make a lot of loud noise (sound) in their
surroundings; then, they listen to their reflections on all sides. Wavelength is related to the
prey size. All bats apply sound reflection to detect the distance to prey. Algorithm 1 shows
the pseudocode of the suggested BOA.

Bats fly randomly at Vi speed in the Xi location with the f min frequency and different
wavelengths of λ and the sound loudness of Ai. Sound loudness may vary from Rmin (the
minimum amount) to Rmax (the maximum amount). The position of each bat indicates the
input data (test data) of the program. Each bat includes position Xi, pulse frequency fi,
initial pulse ri, and sound loudness Ai. Figure 3 shows how to encode the position of each
bat in the TDG problem. The BOA typically involves several stages during each iteration.
Initialization is the first stage of the BOA. In this stage, a population of bats with random
positions in the search space is generated and their velocities and frequencies are randomly
initialized. The fitness of each bat is evaluated using the objective function (i.e., Equation
(8)). In the second stage, the bat with the best fitness value is selected as the best bat. After
selecting the best bat, the velocities of bats based on their current positions and the global
best solution are updated; then, the positions of bats based on their velocities are updated
(using Equations (1)–(3)). In the third stage, a local solution (bat) is generated around the
selected best solution. The fitness of the new bat is evaluated, and the best solution is
compared to it. If the new Bat has better fitness than the current global best, the global best
solution is updated. The loudness and pulse rate are updated.

Mathematics 2024, 12, 186 7 of 18

Algorithm 1 Pseudocode of the suggested BOA for producing test data in program testing

1 Function BAT_algorithm(n, A, fmin, fmax, alpha, gamma, fobj, maxIter)
% output: [bestSolution, bestFitness]

2 Begin
3 n: Number of bats;
4 A: Loudness;
5 fmin, fmax: Frequency range;
6 alpha: Loudness decay;
7 gamma: Pulse rate;
8 fobj: Objective function handle;
9 maxIter: Maximum number of iterations;
10 Initialize the bat population;
11 Initialize the velocities;
12 Evaluate the initial solutions;
13 Find the initial best solution;
14 % Main loop
15 for iter = 1:maxIter % Update bat positions and frequencies
16 for i = 1:n
17 Update the bat frequency by Eq. (1);
18 Update the bat velocity by Eq. (2);
19 Update the bat position by Eq. (3);
20 % Apply the random walk with probability gamma
21 if rand() < gamma
22 bat(i) = bestSolution + randn(1, numel(fmin)) * alpha;
23 end
24 % Apply boundary constraints if necessary
25 bat(i) = max(bat(i), fmin);
26 bat(i) = min(bat(i), fmax);
27 Apply mutation operator on the best bat;
28 Evaluate new solution;
29 % Update best solution
30 if newFitness < bestFitness
31 bestFitness = newFitness;
32 bestSolution = bat(i);
33 end
34 end
35 % Update loudness
36 end
37 end

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 22

31 bestFitness =

newFitness;

32 bestSolution =

bat(i);

33 end

34 end

35 % Update

loudness

36 end

37 end

Bats fly randomly at Vi speed in the Xi location with the fmin frequency and different
wavelengths of λ and the sound loudness of Ai. Sound loudness may vary from Rmin (the
minimum amount) to Rmax (the maximum amount). The position of each bat indicates the
input data (test data) of the program. Each bat includes position Xi, pulse frequency fi,
initial pulse ri, and sound loudness Ai. Figure 3 shows how to encode the position of each
bat in the TDG problem. The BOA typically involves several stages during each iteration.
Initialization is the first stage of the BOA. In this stage, a population of bats with random
positions in the search space is generated and their velocities and frequencies are ran-
domly initialized. The fitness of each bat is evaluated using the objective function (i.e.,
Equation (8)). In the second stage, the bat with the best fitness value is selected as the best
bat. After selecting the best bat, the velocities of bats based on their current positions and
the global best solution are updated; then, the positions of bats based on their velocities
are updated (using Equations (1)–(3)). In the third stage, a local solution (bat) is generated
around the selected best solution. The fitness of the new bat is evaluated, and the best
solution is compared to it. If the new Bat has better fitness than the current global best, the
global best solution is updated. The loudness and pulse rate are updated.

input1 input2 input3

 A Generated Test Data (12, 25, 17) for Triangle
benchmark program

12 25 17

50 4 17BAT1: input1 input2 input3

2 1 21BAT2: 29 3 8BAT3: 12 5 2BAT4:
12 25 17BAT5: 20 19 12BAT6: 9 13 8BAT7: 1 1 14BAT8:

Figure 3. Population structure and the representation of the bat position as an array in TDG prob-
lem.

In the BOA, local and global searches are conducted to find the best bat (solution) in
the current iterations. Bat positions are updated according to sound loudness Ai and pulse
rate ri. Moreover, the global optimal solution is simultaneously updated. The location of
the bat (as an array) is encoded as the test data. New solutions (test data) are generated
by adjusting frequency based on a fitness function, speed, and location; they are updated
by using Equations (1)–(3). Here, β is considered as a random number between 0 and 1
with uniform distribution. Equation (4) was used to implement the local search stage; the
location of the current best bat is modified using direct exploitation (random walk). In
Equation (4), 𝜀 is a random number with uniform distribution from [−1, 1].

Figure 3. Population structure and the representation of the bat position as an array in TDG problem.

Mathematics 2024, 12, 186 8 of 18

In the BOA, local and global searches are conducted to find the best bat (solution) in
the current iterations. Bat positions are updated according to sound loudness Ai and pulse
rate ri. Moreover, the global optimal solution is simultaneously updated. The location of
the bat (as an array) is encoded as the test data. New solutions (test data) are generated
by adjusting frequency based on a fitness function, speed, and location; they are updated
by using Equations (1)–(3). Here, β is considered as a random number between 0 and 1
with uniform distribution. Equation (4) was used to implement the local search stage; the
location of the current best bat is modified using direct exploitation (random walk). In
Equation (4), ε is a random number with uniform distribution from [−1, 1].

fi= fmin+(fmax − fmin)β; β ∈ [0, 1], (1)

vt
i = vt−1

i +
(

xt−1
i − besti

)
fi, (2)

xt
i = xt−1

i + vt
i , (3)

xnew = xold + εAt
0; ε ∈ [−1, 1]. (4)

Each bat’s new position is updated locally using a random walk algorithm in which
one integer is chosen at random. Here, At indicates the average loudness of bats’ sounds
within iteration t. The sound loudness and the pulse rate within each iteration are updated
by using Equations (5)–(7). Moreover, α and y are used as a constant coefficient parameter,
(y > 0).

At+1
i = α At

i , (5)

rt+1
i = r0

i [1 − exp (−yt)], (6)

α > 0, y > 0 and At
i → 0, rt

i → r0
i (as t → ∞). (7)

3.3. Fitness Function

An objective (fitness) function has been defined for comparing the solutions’ effec-
tiveness and selecting the best solution. One of the most important phases in solving
optimization issues is selecting the proper fitness function. The fitness function employed
in this work was the distance function. The input program for this function contains s
branches (s indicates the number of branch instructions). Using bchi, the program’s several
branches are selected. In this study, TS indicates a test suite that includes a set of generated
test data. An input data is indicated by the variable Xk ∈ TS (1 < k < m) if there are exactly
m inputs. Equation (8) is used for calculating the fitness function of test data:

Fitness(Xk) =
1

[δ + ∑s
i=1 wi f (bchi, Xk)]

2 . (8)

The value of δ, as the constant number, is determined by trial and error. Its value
is 0.01. The weight of a branch in the source code is represented by a variable. Here, f
indicates the branch distance function. Table 2 is used to calculate the distance function of
the branch instructions in the source code. The distance function of a branch instruction is
a function of its conditional expression. The fitness function of all the test data in the test
suit (TS) is calculated using Equation (9):

Fitness(TS) = 1/
[
δ + ∑s

i=1 wi min{ f (bchi, Xk)}m
k=1

]2
. (9)

Mathematics 2024, 12, 186 9 of 18

Table 2. Branch-distance function based on the branch’s predicates.

No. Predicate Branch Distance Function f(bchi)

1 Boolean If true then 0 else δ

2 ∼ a Negation is propagated over a

3 a = b If (abs(a − b) = 0) then 0 else (abs(a − b) + δ)

4 a ̸= b If (abs(a − b) = 0) then 0 else δ

5 a < b If (a − b < 0) then 0 else (abs(a − b) + δ)

6 a ≤ b If (a − b ≤ 0) then 0 else (abs(a − b) + δ)

7 a > b If (b − a < 0) then 0 else (abs(b − a) + δ)

8 a ≥ b If (b − a ≥ 0) then 0 else (abs(b − a) + δ)

9 a and b (f (a) + f (b))

10 a or b min(f (a), f (b))

Equation (9) calculates the fitness of the generated test suite based on the distance
function. Table 2 was used to calculate the distance value (bch) for each branch in the
program. The result of the distance function will be zero, as indicated in Table 2, if the
conditional expression is true given the generated inputs; otherwise, the variable value
will be added to the conditional expression’s value. The δ value is 0.01 in the experiments.
Equation (9) is assessed as 1/δ if the test set (TS) covers all of the branches; as a result,
maximum effectiveness is attained. Branch weight (wi) is the coefficient of the distance
function (f) in Equation (9). The weight of the branch in the branch instruction is indicated
by variable wi. The branch weight of a branch instruction is the summation of its nesting
level and its predicate weight and is calculated using Equation (10), where wi denotes the
weight of the ith branch and λ indicates the equilibrium coefficient. In the experiments, λ
is set to 0.5 [10]. The branch weight is the function of the following factors:

• Branch level (nesting level)
• Expression weigh

The nesting level or branch level (as the first factor of branch weight) is obtained
via Equation (11). The value of this equation denotes the nesting level of the branch.
Accessing a branch with a higher nesting level will be more difficult. The variable i denotes
a particular branch where (1 ≤ i ≤ S) and the variable nli depicts the nesting level of the
ith branch. The variable nlmin designates the program’s lowest branch level, which is 1 in
this case. In the program, the highest branch level is indicated by the variable nlmax. Each
branch instruction’s level is normalized using Equation (12).

wi = λ wn′(bchi) + (1 − λ) wp′(bchi), (10)

wn(bchi) =
nli − nlmin + 1

nlmax − nlmin + 1
, (11)

wn′(bchi) =
wn(bchi)

∑s
i=1 wn(bchi)

. (12)

The expression weight (as the second factor of the branch weight) reveals the expres-
sions’ complexity. Using Equation (13) and Table 3, the expression weight of a branch is
determined. Each expression includes h predicates. The expression weight is equivalent to
the square root of the predicates’ weight in cases when the branch instruction consists of h
predicates that have been merged using “and” operator. The expression weight is the same
as the least amount of the predicate weight if the branch instruction contains h expressions
that have been merged by “or” operator. Equation (14) was used for normalizing the weight

Mathematics 2024, 12, 186 10 of 18

of an expression where the expression weight of the respective branch is divided by the
total weight of the branches.

wp(bchi) =

{√
∑h

j=1 w2
r
(
cj
)
, if the conjunction is and,

min
{

wr
(
cj
)}

, if conjunction is or,
(13)

wp′(bchi) =
wp(bchi)

∑s
i=1 wp(bchi)

. (14)

Table 3. Weight of the operators into the predicate of conditional expressions [10].

Operator in Expresion Weight of Operator (wr)

= = 0.9
<, <=, >, >= 0.6

Boolean 0.5
! = 0.2
= = 0.9

In Equation (13), bchi denotes the ith branch (1 ≤ i ≤ s). The variable h indicates
the number of available predicates in the respective branch. Here, cj indicates the jth
conditional predicate (1 ≤ j ≤ h) in the respective branch. The variable wr denotes
the weight of an operator in the predicate whose value is determined using Table 3. The
operators that could be present in the various predicates are listed in this table.

4. Experiment System and Results

In this investigation, the best test data with the most branch coverage were produced
using the modified BOA. The effectiveness of the suggested strategy for producing test
data was assessed and investigated through a series of experiments and tests on benchmark
programs. Figure 4 shows how experiments are conducted.

Mathematics 2024, 12, x FOR PEER REVIEW 12 of 22

of an operator in the predicate whose value is determined using Table 3. The operators
that could be present in the various predicates are listed in this table.

Table 3. Weight of the operators into the predicate of conditional expressions [10].

Operator in Expresion Weight of Operator (wr)
= = 0.9

<, <=, >, >= 0.6
Boolean 0.5

! = 0.2
= = 0.9

4. Experiment System and Results
In this investigation, the best test data with the most branch coverage were produced

using the modified BOA. The effectiveness of the suggested strategy for producing test
data was assessed and investigated through a series of experiments and tests on bench-
mark programs. Figure 4 shows how experiments are conducted.

4.1. Experiment System
The suggested technique, together with the SA [7], GA [9], ACO [10], and PSO [11],

was implemented in MATLAB programming language v2016a. In the current investiga-
tion, an identical hardware setup with 8GB RAM, Intel Core i7 CPU, and Windows 10 OS
was used for all trials. MATLAB is a programming language with outstanding functions
for computational operations; it offers numerous demonstrational computation features
and programming.

Figure 4. Process of experiments conducted in this study.

It has an extensive toolbox including an array of mathematical and computational
functions. The evaluation criteria are as follows:
• Average coverage: this criterion shows the branch coverage of the created test set.

The efficacy increases with the value of this criteria.
• Average generation: It represents the typical number of iterations needed for the par-

ticular method to cover all program branches. The suggested method performs better
the smaller the value of this criteria is.

• Average execution time (ATE): It speaks of the typical time needed to cover every
program branch. Milliseconds are used to measure this criterion (ms). The perfor-
mance of the corresponding approach is inversely correlated with the value of this
metric.

• Success rate (SR): It shows the ability of the algorithm to cover all branches of the
program.

Figure 4. Process of experiments conducted in this study.

4.1. Experiment System

The suggested technique, together with the SA [7], GA [9], ACO [10], and PSO [11],
was implemented in MATLAB programming language v2016a. In the current investigation,
an identical hardware setup with 8GB RAM, Intel Core i7 CPU, and Windows 10 OS
was used for all trials. MATLAB is a programming language with outstanding functions
for computational operations; it offers numerous demonstrational computation features
and programming.

Mathematics 2024, 12, 186 11 of 18

It has an extensive toolbox including an array of mathematical and computational
functions. The evaluation criteria are as follows:

• Average coverage: this criterion shows the branch coverage of the created test set. The
efficacy increases with the value of this criteria.

• Average generation: It represents the typical number of iterations needed for the
particular method to cover all program branches. The suggested method performs
better the smaller the value of this criteria is.

• Average execution time (ATE): It speaks of the typical time needed to cover every
program branch. Milliseconds are used to measure this criterion (ms). The performance
of the corresponding approach is inversely correlated with the value of this metric.

• Success rate (SR): It shows the ability of the algorithm to cover all branches of the
program.

The collection of benchmark programs has been employed in several earlier studies to
assess the effectiveness of test data [9–15]. The characteristics of the benchmark programs
employed in this investigation are listed in Table 4.

Table 4. Specifications of the benchmarks.

Program #Arg #Arg.Type LOC Description

triangleType 3 Integer 31 Triangle type categorization
calDay 3 Integer 72 Create a weekday calculator

IsValidDate 3 Integer 41 Verify whether a date is current
cal 6 Integer 26 Calculate the number of days between the two dates

remainder 2 Integer 7 Find the remainder when dividing an integer
printCalender 2 Integer 124 Print a calendar using the year and month inputs

4.2. Results and Discussion

In this study, a large number of experiments were conducted, and the suggested
approach was assessed using the aforementioned standards. The first criterion was the
average branch coverage by the generated test data, as was previously described. Each
test production method was run ten times to acquire the average values of the branch
coverage. The results show that most benchmark programs provide test data with better
branch coverage. The ability to detect bugs increases with the degree of coverage of the
data. One could argue that the test results produced by the recommended method are
more beneficial.

The program’s source code is divided into classes and functions; huge programs are
made up of classes and functions towards the end. Contrarily, according to programming
best practices, a function contains between 20 and 100 lines of code. The benchmarks
utilized in this paper are extremely established and popular. Additionally, any program-
ming constructions that can be applied to complicated software in the actual world are
included in these benchmarks. These benchmarks employ every possible conditional, loop,
arithmetic, logical, and jump operator and instruction. The same results can be produced by
the suggested technique in real-world programs. The produced test data by the suggested
methods in the triangleType, Cal, and Reminder benchmarks is 100%, as shown in Table 5.
The suggested approach generates test data that has approximately 99.99% coverage. The
suggested approach achieves 99.93% coverage in calDay, whereas PSO and ACO algorithms
produce 100% coverage for this program. In terms of average coverage, the suggested
strategy works better overall.

As previously indicated, another factor utilized to compare the proposed technique to
other algorithms in the creation of test data was convergence speed. This criterion shows
the typical rate of delivering effective test results. An algorithm’s rate of convergence is
determined by the average number of iterations needed to generate test data (AG). The
algorithm’s rate of convergence is shown by the average number of iterations.

Mathematics 2024, 12, 186 12 of 18

Table 5. Average coverage of the test data generated by different test data generating methods (%).

No. Program SA [7] GA [1] PSO [11] ACO [10] BOA Best Method

1 triangleType 91.86 95.00 99.94 100.00 100.00 ACO, BOA
2 calDay 96.12 96.31 100.00 100.00 99.93 ACO, PSO, BOA
3 isValidDate 95.37 99.95 100.00 99.98 99.99 PSO, BOA
4 Cal 97.00 99.02 100.00 100.00 100.00 PSO, ACO, BOA
5 Reminder 95.02 94.07 100.00 100.00 100.00 PSO, ACO, BOA
7 printCalender 95.26 95.06 99.72 99.85 99.78 ACO, PSO, BOA

The average number of iterations indicates the convergence speed of the algorithm.
Fewer numbers of iterations indicate a higher convergence speed of the related algorithm.
Table 6 gives the average number of iterations for each algorithm concerning test data
production. The obtained results reveal that the convergence speed of the BOA method is,
on average, better than that of the GA. That is, when compared with the GA, in triangleType,
isValidDate, Cal, Reminder, and printCalender, the proposed method can achieve maximum
convergence speed.

Table 6. Average generation of test generation methods.

No. Program GA [1] PSO [11] ACO [10] BOA Best Method

1 triangleType 13.79 5.36 5.76 1.12 BOA
2 calDay 35.80 10.37 9.51 11.13 ACO
3 isValidDate 21.69 11.90 15.16 3.72 BOA
4 Cal 15.24 8.33 9.58 1.75 BOA
5 Reminder 16.31 5.35 2.01 1.30 BOA
7 printCalender 42.03 12.59 17.42 9.20 BOA

Another assessment factor that was taken into account was the amount of time needed
to produce the test data with the greatest possible coverage. A related algorithm’s fast
speed is shown by less time spent producing test data. Table 7 displays the AET required to
produce test data using various techniques. The suggested approach outperforms the GA
and the PSO algorithm in terms of speed, as shown by the results collected and shown in
Table 7. In triangleType, calDay, isValidDate, Cal, and Reminder benchmarks, the BOA method
as well as the ACO method have higher speeds (lower time consumption) than the other
methods. Indeed, can generate effective test data in less time and cost.

Table 7. AET of different test data generating methods.

No. Program GA [1] PSO [11] ACO [10] BOA Best Method

1 triangleType 10.83 0.19 6.22 0.06 BOA, PSO
2 calDay 35.73 0.35 12.84 0.19 PSO, BOA
3 isValidDate 11.68 0.54 19.94 0.14 PSO, BOA
4 Cal 11.41 0.50 11.18 0.14 PSO, BOA
5 Reminder 6.09 0.17 10.49 0.09 BOA
7 printCalender 35.48 1.41 96.27 10.00 PSO

The success rate is another evaluation criterion that was used in this study for com-
paring different methods. This criterion reflects the chance that the test data generated
will cover every software branch. Higher numbers for the output in this criterion suggest
more efficacy. Each method was run ten times on each benchmark to calculate this criterion.
The likelihood that each method would completely cover all program branches was then
calculated. The likelihood that various algorithms will achieve 100% coverage is shown in

Mathematics 2024, 12, 186 13 of 18

Table 8. Except for the printCalender benchmark program, the suggested technique achieved
a high percentage of success.

Table 8. SR (%) of different test generation methods.

No. Program SA [7] GA [1] PSO [11] ACO [10] BOA Best Method

1 triangleType 73.51 76.40 99.80 100.00 100.00 ACO, BOA
2 calDay 70.29 65.00 100.00 100.00 99.90 PSO, ACO, BOA
3 isValidDate 84.13 99.40 100.00 99.80 99.92 PSO, BOA
4 Cal 91.13 98.70 100.00 100.00 100.00 PSO, ACO, BOA
5 Reminder 70.03 82.50 100.00 100.00 100.00 PSO, ACO, BOA
7 printCalender 74.51 61.60 99.100 99.20 99.31 ACO

Another factor for assessing the results was the stability of the outcomes. It should be
emphasized that the heuristic methods randomly produce the starting population. Hence,
the results provided by different executions of each algorithm may be different. Accordingly,
the results of only one execution may not demonstrate the capability of an algorithm; each
algorithm should be executed more than once. Furthermore, the average standard deviation
of the results should be computed and taken into consideration. In this study, 10 different
executions (each execution includes 200 iterations) were investigated. The results from 10
executions of the benchmark programs showed that the average objective function of the
BOA performed better than GA and ACO. Table 9 gives standard deviation values for 10
exactions of the different algorithms.

Table 9. Standard deviation values for 10 exactions.

Criteria GA [1] PSO [11] ACO [10] BOA Best
Method

Standard deviation of the
average convergence criterion
for the 10 times executions

0.37 0.11 0.21 0.09 BAT

Figure 5 illustrates the coverage of the produced test data for all programs. In the
experiments, the overall coverage of the test data is 99.95%. ACO and BOA generate test
data with the most coverage. The average required time of the proposed method to achieve
99.95% coverage is 1.77 s. None of the existing methods generate test data with a coverage
rate of 99.95% in 1.7 s. Regarding the average results shown in Figures 6–8, the ACO
achieves 99.97% code coverage in 26.15 s. Indeed, the time spent by the ACO algorithm
is almost 14 times the time required by the BOA method. In real-world large software
products, the required time of ACO is not acceptable compared to the time required by
the BOA.

Figure 6 shows the success rate of algorithms in generating maximum-coverage test
data. Significantly, 99.85% of the generated test data can achieve maximum coverage.
Figure 7 shows the average number of iterations required by each algorithm to generate
maximum-coverage test data. Figure 8 also illustrates the average required time of the
test generation algorithms. The proposed method generates the maximum-coverage test
data after about 4.7 iterations on average. Indeed, the proposed method has a higher
convergence speed than the other test generation algorithms. Generating test data with
99.95% coverage after 4.7 iterations (on average) and 1.7 s by the proposed method is a
superior result in the field. ACO can generate test data with a higher amount of coverage,
but its speed is considerably lower than the proposed method. On the other hand, the
stability of the proposed method is higher than the other algorithm. The stability of a
heuristic-based algorithm indicates its reliability during different executions. The same or
very similar results during different executions indicate the reliability of heuristic-based

Mathematics 2024, 12, 186 14 of 18

test generation algorithms. The standard deviation among the obtained results of the
proposed method is 0.09 which is lower than the other algorithms. All in all, the proposed
method can be used as an effective test generation method to test real-world large software
products. Generating test data with 99.95% with a negligible amount of time and the lowest
standard deviation (higher reliability) are the main advantages of the method.

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 22

rithm is almost 14 times the time required by the BOA method. In real-world large soft-
ware products, the required time of ACO is not acceptable compared to the time required
by the BOA.

Figure 6 shows the success rate of algorithms in generating maximum-coverage test
data. Significantly, 99.85% of the generated test data can achieve maximum coverage. Fig-
ure 7 shows the average number of iterations required by each algorithm to generate max-
imum-coverage test data. Figure 8 also illustrates the average required time of the test
generation algorithms. The proposed method generates the maximum-coverage test data
after about 4.7 iterations on average. Indeed, the proposed method has a higher conver-
gence speed than the other test generation algorithms. Generating test data with 99.95%
coverage after 4.7 iterations (on average) and 1.7 s by the proposed method is a superior
result in the field. ACO can generate test data with a higher amount of coverage, but its
speed is considerably lower than the proposed method. On the other hand, the stability
of the proposed method is higher than the other algorithm. The stability of a heuristic-
based algorithm indicates its reliability during different executions. The same or very sim-
ilar results during different executions indicate the reliability of heuristic-based test gen-
eration algorithms. The standard deviation among the obtained results of the proposed
method is 0.09 which is lower than the other algorithms. All in all, the proposed method
can be used as an effective test generation method to test real-world large software prod-
ucts. Generating test data with 99.95% with a negligible amount of time and the lowest
standard deviation (higher reliability) are the main advantages of the method.

Figure 5. Average coverage of the test data generated by different algorithms.

95.10%

96.56%

99.94% 99.97% 99.95%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

SA GA PSO ACO BAT

AV
G

 C
ov

er
ag

e
(%

)

Benchmark Programs

Figure 5. Average coverage of the test data generated by different algorithms.

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 22

Figure 6. Average success rate of the generated test data by the different algorithms.

Figure 7. Average number of iterations that is required for generating the test data with
maximum coverage by the different algorithms.

Figure 8. Average execution time required to generate the optimal test data.

4.3. Parameter Calibration and Statistical Analysis

77.26% 80.60%

99.81% 99.83% 99.85%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

SA GA PSO ACO BAT

Av
er

ag
e

Su
cc

es
s R

at
e

Benchmark Programs

24.143

8.98 9.9

4.7

0

5

10

15

20

25

30

GA PSO ACO BAT

Av
er

ag
e

G
en

er
at

io
n

Benchmark Programs

18.53

0.52

26.15

1.77

0

5

10

15

20

25

30

GA PSO ACO BAT

Av
er

ag
e

Ti
m

e
(S

ec
on

d)

Benchmark Programs

Figure 6. Average success rate of the generated test data by the different algorithms.

4.3. Parameter Calibration and Statistical Analysis

Finding the best values for each method’s parameters is one of the downsides of
heuristic algorithms. In most cases, parameters are crucial in advancing an algorithm
toward the best outcome. The six parameters that make up the BOA can be modified
depending on the software and the application in question. Like all the other algorithms,
adjusting the parameters of the BOA is carried out via trial and error. These parameters are
first given in Table 10; then, the optimal adjusted values for the BOA are shown in Table 11.

To analyze the significance of the results, a statistical test has been performed on the
results. ANOVA was used to evaluate the significance of the difference in the coverage
of the generated test data. The outcomes of the ANOVA test are shown in Table 12. The
significance of the variance in the results is shown by the values of f and p. The null
hypothesis in the ANOVA test indicates that the coverage of the test data produced by

Mathematics 2024, 12, 186 15 of 18

various algorithms does not differ significantly. The ANOVA results show that the null
hypothesis was not accepted, and they also show that the suggested approach and the
other methods significantly differ in how well they cover the given program branches. The
suggested strategy provides much more coverage of the test data generated.

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 22

Figure 6. Average success rate of the generated test data by the different algorithms.

Figure 7. Average number of iterations that is required for generating the test data with
maximum coverage by the different algorithms.

Figure 8. Average execution time required to generate the optimal test data.

4.3. Parameter Calibration and Statistical Analysis

77.26% 80.60%

99.81% 99.83% 99.85%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

SA GA PSO ACO BAT

Av
er

ag
e

Su
cc

es
s R

at
e

Benchmark Programs

24.143

8.98 9.9

4.7

0

5

10

15

20

25

30

GA PSO ACO BAT

Av
er

ag
e

G
en

er
at

io
n

Benchmark Programs

18.53

0.52

26.15

1.77

0

5

10

15

20

25

30

GA PSO ACO BAT

Av
er

ag
e

Ti
m

e
(S

ec
on

d)

Benchmark Programs

Figure 7. Average number of iterations that is required for generating the test data with maximum
coverage by the different algorithms.

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 22

Figure 6. Average success rate of the generated test data by the different algorithms.

Figure 7. Average number of iterations that is required for generating the test data with
maximum coverage by the different algorithms.

Figure 8. Average execution time required to generate the optimal test data.

4.3. Parameter Calibration and Statistical Analysis

77.26% 80.60%

99.81% 99.83% 99.85%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

SA GA PSO ACO BAT

Av
er

ag
e

Su
cc

es
s R

at
e

Benchmark Programs

24.143

8.98 9.9

4.7

0

5

10

15

20

25

30

GA PSO ACO BAT

Av
er

ag
e

G
en

er
at

io
n

Benchmark Programs

18.53

0.52

26.15

1.77

0

5

10

15

20

25

30

GA PSO ACO BAT

Av
er

ag
e

Ti
m

e
(S

ec
on

d)

Benchmark Programs

Figure 8. Average execution time required to generate the optimal test data.

Table 10. Parameters of modified BOA.

Symbol Parameter

A Sound loudness
r Sound pulse rate
α The sound loudness reduction coefficient
y Sound pulse reduction coefficient

Qmin Lowest sound frequency
Qmax Highest sound frequency

Mathematics 2024, 12, 186 16 of 18

Table 11. BOA parameters calibration.

Benchmark Population A r α y Qmin Qmax

triangleType 40 0.7 0.8 0.99 0.01 0 0.3
CalDay 40 0.7 0.8 0.99 0.01 0 0.3

isValidDate 70 0.7 0.8 0.99 0.01 0 0.3
Cal 40 0.7 0.8 0.99 0.01 0 0.3

Reminder 70 0.07 0.8 0.99 0.01 0 0.3
printCalender 40 0.1 0.2 0.99 0.01 0 0.3

Table 12. Results of the ANOVA test on the average convergence of the generated test.

Source SS df MS

Between-treatments 128.5435 4 32.1359 F = 18.3167
Within-treatments 43.8614 25 1.7545 p < 0.00001
Total 172.4049 29

In this study, BOA was modified and discretized, and adopted to the test generation
problem. Furthermore, a mutation operator was embedded into the BOA to create local
diversity in the population. The modified and discretized BOA, as a swarm-based heuristic
algorithm, has higher performance in the software test generation problem. Software
test data generation is formally a combinatorial optimization problem. BOA was used to
find the optimal combination of the test data to attain the highest branch coverage. The
movement operator in the BOA was implemented based on sound loudness and frequency;
in the test data generation problem, the developed BOA had a higher success rate and
performance than the SA, GA, PSO, and ACO.

The mutation test was carried out to assess the efficacy of the generated test data using
the suggested technique. The Mujava tool was used to automatically introduce a set of
faults (bugs) into the program’s source code. The provided test data were used to identify
the injected faults. Mujava evaluates the mutation score of the test data. The ability of each
test set to find the implanted bugs is represented by the mutation score. Table 13 displays
the mutation score (fault detection capabilities) of test data for each program. The findings
validate the suggested method’s usefulness in generating bug detection data. Table 14
shows the generated test data for the triangletype program.

Table 13. Mujava tool to calculate the mutation score.

Program triangleType calDay isValidDate Cal Reminder printCalendar

Mutation Score 98.52% 92.20% 98.72% 98.20% 93.80 99.70

Table 14. Generated test data by the proposed method for the triangletype program.

#Test Data Input 1 Input 2 Input 3

1 25 26 79

2 0 68 44

3 14 84 91

4 9 5 90

5 57 95 82

6 8 15 25

7 49 10 77

Mathematics 2024, 12, 186 17 of 18

Table 14. Cont.

#Test Data Input 1 Input 2 Input 3

8 79 37 39

9 69 61 78

10 31 17 72

11 15 75 75

12 11 90 94

13 77 47 71

14 26 26 97

15 36 44 65

16 54 48 54

17 25 78 15

18 9 19 18

19 33 33 10

20 33 89 66

5. Conclusions

Automatic test data creation refers to a procedure that generates data to fulfill the
test criteria. The generation of test data in this study was done using the modified and
discretized BOA. The authors focused on four criteria: branch coverage, average number
of iterations, success rate, and average time to find optimal test data. The results of the
experiment demonstrated that the proposed BOA has several benefits over other heuristic
algorithms, such as GA, PSO, and ACO. The recommended BOA had an average branch
coverage of 99.95%, an average duration of 1.77 s, and a success rate of 99.85%. The average
number of iterations required to cover all branches was 4.70. The fundamental goal of
the suggested technique was to cover every branch of a program. Additionally, some test
paths in programs have higher error propagation. Therefore, the objective function should
only include the paths that have a higher error propagation rate. Identifying and testing
the paths with a higher error-propagation rate is suggested as a future study. As further
research, other metaheuristic algorithms, such as Olympiad optimization [21], artificial
rabbits optimization [22], gazelle optimization [23], African vultures optimization [24],
and jellyfish search optimization [25], can be used to generate effective test data. The
optimization and learning methods can be used in the software test generation methods.
The fitness function can be expanded in future studies to incorporate the numerous issues
that come up while creating test data for software.

Author Contributions: Conceptualization, O.F.; Methodology, B.A. and S.S.S.; Software, F.K.; Val-
idation, B.A. and E.B.T.; Formal analysis, B.A., O.F., S.H. and E.B.T.; Investigation, K.A. and S.H.;
Resources, K.A. and F.K.; Data curation, K.A.; Writing—original draft, F.K. and S.S.S.; Writing—review
& editing, S.H. and E.B.T.; Project administration, S.S.S.; Funding acquisition, O.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This study has been conducted under the project ‘MObility and Training fOR beyond 5G
ecosystems (MOTOR5G)’. The project has received funding from the European Union’s Horizon 2020
programme under the Marie Skłodowska Curie Actions (MSCA) Innovative Training Network (ITN)
under grant agreement No. 861219.

Data Availability Statement: The datasets created and the code used during the current investigation
are accessible on Google Drive and can be accessed through https://drive.google.com/drive/folders/
1acF5W6p4hRvWy7hmNwdsy_N3d8iU26Q-?usp=sharing (accessed on 13 November 2023).

https://drive.google.com/drive/folders/1acF5W6p4hRvWy7hmNwdsy_N3d8iU26Q-?usp=sharing
https://drive.google.com/drive/folders/1acF5W6p4hRvWy7hmNwdsy_N3d8iU26Q-?usp=sharing

Mathematics 2024, 12, 186 18 of 18

Conflicts of Interest: All authors state that there is no conflict of interest.

References
1. Khamprapai, W.; Tsai, C.-F.; Wang, P.; Tsai, C.-E. Performance of Enhanced Multiple-Searching Genetic Algorithm for Test Case

Generation in Software Testing. Mathematics 2021, 9, 1779. [CrossRef]
2. Khurma, R.A.; Alsawalqah, H.; Aljarah, I.; Elaziz, M.A.; Damaševičius, R. An Enhanced Evolutionary Software Defect Prediction

Method Using Island Moth Flame Optimization. Mathematics 2021, 9, 1722. [CrossRef]
3. Khari, M.; Kumar, P. An extensive evaluation of search-based software testing: A review. Soft Comput. 2019, 23, 1933–1946.

[CrossRef]
4. Khoshniat, N.; Jamarani, A.; Ahmadzadeh, A.; Kashani, M.H.; Mahdipour, E. Nature-inspired metaheuristic methods in software

testing. Soft Comput. 2023. [CrossRef]
5. Aleti, A.; Moser, I.; Grunske, L. Analysing the fitness landscape of search-based software testing problems. Autom. Softw. Eng.

2017, 24, 603–621. [CrossRef]
6. Khatun, S.; Rabbi, K.F.; Yaakub, C.Y.; Klaib, M.F.J. A Random search based effective algorithm for pairwise test data generation. In

Proceedings of the International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), Kuantan, Malaysia,
21–22 June 2011; pp. 293–297. [CrossRef]

7. Cohen, M.B.; Colbourn, C.J.; Ling, A.C.H. Augmenting Simulated Annealing to Build Interaction Test Suites. In Proceedings of
the Fourteenth International Symposium on Software Reliability Engineering (ISSRE’03), Denver, CO, USA, 17–20 November
2003; pp. 394–405.

8. Sharma, C.; Sabharwal, S.; Sibal, R. A Survey on Software Testing Techniques using Genetic Algorithm. Int. J. Comput. Sci. 2014,
10, 381–393.

9. Lin, J.C.; Yeh, P.L. Automatic Test Data Generation for Path Testing using Gas. J. Inf. Sci. 2001, 131, 47–64. [CrossRef]
10. Mao, C.; Xiao, L.; Yu, X.; Chen, J. Adapting Ant Colony Optimization to Generate Test Data for Software Structural Testing. J.

Swarm Evol. Comput. 2015, 20, 23–36. [CrossRef]
11. Mao, C. Generating Test Data for Software Structural Testing Based on Particle Swarm Optimization. Arab. J. Sci. Eng. 2014, 39,

4593–4607. [CrossRef]
12. Sahoo, R.K.; Ojha, D.; Mohapatra, D.P.; Patra, M.R. Automatic Generation and Optimization of Test Data Using Harmony Search

Algorithm. Comput. Sci. Inf. Technol. Conf. Proc. 2016, 6, 23–32. [CrossRef]
13. Aghdam, Z.K.; Arasteh, B. An Efficient Method to Generate Test Data for Software Structural Testing Using Artificial Bee Colony

Optimization Algorithm. Int. J. Softw. Eng. Knowl. Eng. 2017, 27, 951–966. [CrossRef]
14. Ghaemi, A.; Arasteh, B. SFLA-based heuristic method to generate software structural test data. J. Softw. Evol. Proc. 2020, 32, e2228.

[CrossRef]
15. Arasteh, B.; Hosseini, S.M.J. Traxtor: An Automatic Software Test Suit Generation Method Inspired by Imperialist Competitive

Optimization Algorithms. J. Electron. Test. 2022, 38, 205–215. [CrossRef]
16. Martou, P.; Mens, K.; Duhoux, B.; Legay, A. Test scenario generation for feature-based context-oriented software systems. J. Syst.

Softw. 2023, 197, 111570. [CrossRef]
17. Sulaiman, R.A.; Jawawi, D.N.; Halim, S.A. Cost-effective test case generation with the hyper-heuristic for software product line

testing. Adv. Eng. Softw. 2023, 175, 103335. [CrossRef]
18. Yang, X.; Gandomi, A. Bat Algorithm: A Novel Approach for Global Engineering Optimization. Engineering Computations. Eng.

Comput. 2012, 29, 464–483. [CrossRef]
19. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO

2010). Stud. Comput. Intell. 2010, 284, 65–74.
20. Alachtey, M.; Young, P. An Introduction to the General Theory of Algorithms; Elsevier: North-Holland, NY, USA, 1978.
21. Arasteh, B.; Bouyer, A.; Ghanbarzadeh, R.; Rouhi, A.; Mehrabani, M.N.; Tirkolaee, E.B. Data replication in distributed systems

using olympiad optimization algorithm. Facta Univ. Ser. Mech. Eng. 2023, 21, 501–527. [CrossRef]
22. Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm

for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [CrossRef]
23. Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Gazelle optimization algorithm: A novel nature-inspired metaheuristic optimizer.

Neural Comput. Appl. 2023, 35, 4099–4131. [CrossRef]
24. Singh, N.; Houssein, E.H.; Mirjalili, S.; Cao, Y.; Selvachandran, G. An efficient improved African vultures optimization algorithm

with dimension learning hunting for traveling salesman and large-scale optimization applications. Int. J. Intell. Syst. 2022, 37,
12367–12421. [CrossRef]

25. Zarate, O.; Zaldívar, D.; Cuevas, E.; Perez, M. Enhancing Pneumonia Segmentation in Lung Radiographs: A Jellyfish Search
Optimizer Approach. Mathematics 2023, 11, 4363. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/math9151779
https://doi.org/10.3390/math9151722
https://doi.org/10.1007/s00500-017-2906-y
https://doi.org/10.1007/s00500-023-08382-8
https://doi.org/10.1007/s10515-016-0197-7
https://doi.org/10.1109/INECCE.2011.5953894
https://doi.org/10.1016/S0020-0255(00)00093-1
https://doi.org/10.1016/j.swevo.2014.10.003
https://doi.org/10.1007/s13369-014-1074-y
https://doi.org/10.5121/csit.2016.60903
https://doi.org/10.1142/S0218194017500358
https://doi.org/10.1002/smr.2228
https://doi.org/10.1007/s10836-022-05999-9
https://doi.org/10.1016/j.jss.2022.111570
https://doi.org/10.1016/j.advengsoft.2022.103335
https://doi.org/10.1108/02644401211235834
https://doi.org/10.22190/FUME230707033A
https://doi.org/10.1016/j.engappai.2022.105082
https://doi.org/10.1007/s00521-022-07854-6
https://doi.org/10.1002/int.23091
https://doi.org/10.3390/math11204363

	Introduction
	Related Work
	Proposed Method
	Program Source-Code Analysis
	Test Data Generation using BOA
	Fitness Function

	Experiment System and Results
	Experiment System
	Results and Discussion
	Parameter Calibration and Statistical Analysis

	Conclusions
	References

