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Abstract: We consider the following generalization of the classical coupon collector problem. We
assume that, in addition to the initial collection of standard coupons, there is one more coupon that
acts as a reset button, removing all coupons from the part of the collection that has already been
drawn. For the case where standard coupons have unequal probabilities of being drawn, we obtain
the distribution of the waiting time until the end of the collection process. For the case where standard
coupons have equal probabilities, we derive a simple formula for the expected waiting time in terms
of the beta function, and discuss the asymptotic properties of this expected waiting time, when the
number of standard coupons tends toward infinity.
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1. Introduction

In the classical coupon collector problem (CCP) the goal is to analyze the waiting time
(in days) for a collector, who buys a coupon each day, in order to complete a full collection
of n distinct coupons from the set Nn = {1, 2, . . . , n}, assuming that each coupon is drawn
with probability 1

n . Similarly, the coupon collector problem with unequal probabilities
(CCPU) refers to the situation where the coupon j ∈ Nn is drawn with probability pj and
∑n

j=1 pj = 1.
The coupon collector problem can be formulated in different ways. In its simplest

form, it appears in the well known work [1], but it can also be formulated and treated as a
special kind of urn model (see, for example, [2,3]) or in the context of formal languages [4].
On the other hand, several results related to the waiting time problems have been obtained
using Markov chain techniques (see, for example, [5,6]). The coupon collector problem and
its generalizations also led to various types of asymptotic results (see, for example, [7–9]).

We consider the following generalization of the coupon collector problem, which,
to our knowledge, has not been considered before. We assume that there is a special coupon
(we call it the reset coupon) that does not belong to Nn and acts as a reset button, in the
sense that the set of coupons drawn up to time (day) t becomes empty when the reset
coupon is drawn on day t + 1. After that, the collection can start again from the beginning
(or not). Therefore, we work with an augmented set of available coupons,

N(⊗)
n = {1, 2, . . . , n,⊗}, (1)

where ⊗ denotes the reset coupon.
We call this version of the problem coupon collector with reset button and refer to it as

CCPRB in the rest of the text.
We assume, in sampling with replacement, that the probability of obtaining the reset

coupon is pR, 0 ≤ pR < 1, and that the probabilities of obtaining standard coupons (from
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the set Nn) sum up to 1 − pR. Obviously, the problem reduces to CCP or CCPU when
pR = 0.

The CCPRB problem we consider belongs to the group of generalizations of CCP that
are based on the idea of introducing additional coupons with special purposes into the
coupon set. Other generalizations of CCP of this type are analyzed in [5,10–13].

The variant of the coupon collector problem, where each coupon can have several
purposes (so called, goals), is considered in [13]. In this case, the experiment ends when the
sum of the numbers of goals reaches a certain limit.

Another generalization of the classical coupon collector problem is proposed in [11],
where the appearance of an additional coupon (so called, bonus coupon) leads to obtaining
one more coupon.

In [12], the author considers the case where the additional coupon (so called, penalty
coupon) interferes with collecting standard coupons, in the sense that the collection process
ends when the absolute difference between the number of collected standard coupons and
the number of collected penalty coupons is equal to the total number of standard coupons.

In this work, we refer to results related to the coupon collector problem with a null
coupon, as considered in [5,10]. This is the situation where the probabilities of the standard
coupons sum up to ∑n

j=1 pj = 1 − pN < 1, or, equivalently, there is a null coupon, that can
be drawn with probability pN , but does not belong to any collection. This variant of the
problem reduces to CCPU when pN = 0.

It is well known that the coupon collector problem has various applications in engi-
neering (see, for example, [14]). In particular, the CCPU has recently been used in biology,
to model parasitism (explained in [15]), and in telecommunications, to model the transmis-
sion of information in computer networks [16], and to analyze Internet security problems
(analyzed in [5,10,17]).

The structure of this paper is as follows. In Section 2, we obtain the general properties
of the waiting time for a full collection of standard coupons, in the case of CCPRB with
unequal probabilities. In Section 3, we obtain the expected waiting time for a full collection
in the case of equal probabilities, and derive its relation to the beta function. In Section 4,
we provide some numerical examples. In Section 5, we discuss the asymptotic properties of
the expected waiting time for a full collection in the case of equal probabilities, for different
values of pR and when n tends to infinity, and give some specific examples. The conclusions
are given in Section 6.

2. Distribution of the Waiting Time for a Full Collection in General Case

Here, we derive the distribution of the waiting time until a full collection of standard
coupons is sampled in the case of unequal probabilities (where each coupon j ∈ Nn is
drawn with probability pj, such that ∑n

j=1 pj = 1 − pR).

Let W(⊗)
n denote the waiting time until a full collection of standard coupons in CCPRB

are collected, and Wn denote the corresponding waiting time in the coupon collector
problem with unequal probabilities and no additional coupons. We will also use the
notation N0 = {0, 1, 2, . . . } and PJ = ∑j∈J pj.

The distribution of the waiting time Wn is a well known result,

P{Wn > k} =
n−1

∑
i=0

(−1)n−1−i ∑
J⊂Nn ,
|J|=i

Pk
J , k ≥ 0, (2)

(see, for example, [5], Theorem 1, p. 409).
The corresponding result related to the waiting time W(⊗)

n is obtained in the next
theorem. In the rest of the text, we will use the abbreviation Di,k for

(k1, k2, . . . , ki+1) ∈ Ni+1
0 , k1 + k2 + · · ·+ ki+1 = k − i.
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Theorem 1. For every k ≥ 0, for the waiting time W(⊗)
n , the following relations hold:

1.

P{W(⊗)
n > k} =

k

∑
i=0

pi
R(1 − pR)

k−i ∑
Di,k

i+1

∏
j=1

P{Wn > k j}, (3)

2.

P{W(⊗)
n = k} =

k

∑
i=0

pi
R(1 − pR)

k−i ∑
Di,k

i

∏
j=1

P{Wn > k j}(P{Wn > ki+1 − 1} − P{Wn > ki+1}). (4)

Proof.

1. Each sequence draws up to time k can be presented in the form

B1RB2R . . . BiRBi+1, (5)

where R represents a single reset coupon and Bj, j ∈ {1, 2, . . . , i + 1} represent blocks
of standard coupons, such that the length of the block Bj is k j ≥ 0, ∑i+1

j=1 k j = k − i,
and none of the blocks Bj consist of a full collection of standard coupons.
We define the events as follows:

• Sm,t, t ≥ 1, 0 ≤ m ≤ t: m reset coupons appeared up to time t;
• Qk, k ≥ 0: block of the length k does not consist of a full collection of standard

coupons.

Therefore,

P{W(⊗)
n > k} =

k

∑
i=0

∑
Di,k

P

Si,k ∩
i+1⋂
j=1

Qkj

. (6)

On the other hand, we have

P

Si,k ∩
i+1⋂
j=1

Qkj

 = P(Si,k)P

i+1⋂
j=1

Qkj
|Si,k

 = pi
R(1 − pR)

k−i
i+1

∏
j=1

P{Wn > k j}, (7)

since all the blocks Bj consist of incomplete collections of standard coupons, their
lengths sum up to k − i, and the appearance of the blocks of any combination of
lengths are mutually independent events. This completes the proof of the statement.

2. This is a simple modification of the first part of the theorem. Each realization of the
experiment has the form

B1RB2R . . . BiRBi+1, (8)

where none of the blocks Bj, 1 ≤ j ≤ i consists of a full collection of standard coupons,
and the block Bi+1 consist of the full collection of standard coupons. Using the fact that

P{Wn = ki+1} = P{Wn > ki+1 − 1} − P{Wn > ki+1},

we complete the proof of the theorem.

Remark 1. The sequence of draws in the CCPRB can be seen as a renewal process, as the coupon
collection starts over after each reset. More precisely, the events of the type BjR, defined in (5), can
be regarded as recurring events, in the sense of Definition 1, p. 308 in [1].

Example 1. If n = 2, pR = 1
7 and p1 = p2 = 3

7 , the probability that the full collection of standard
coupons has not been drawn by the time (day) k = 3 is equal to
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P{W(⊗)
2 > 3} =

3

∑
i=0

(
1
7

)i(6
7

)3−i

∑
Di,3

i+1

∏
j=1

P{W2 > k j} =
3

∑
i=0

(
1
7

)i(6
7

)3−i
F3,i, (9)

where

F3,0 = P{W2 > 3} = 0.25,

F3,1 = 2P{W2 > 0}P{W2 > 2}+ P{W2 > 1}2 = 2,

F3,2 = 3P{W2 > 1}P{W2 > 0}2 = 3,

F3,3 = P{W2 > 0}4 = 1.

Therefore,
P{W(⊗)

2 > 3} = 0.4227.

Remark 2. The expected waiting time for a full collection can be obtained as

E(W(⊗)
n ) = ∑

k≥0
P{W(⊗)

n > k}, (10)

where P{W(⊗)
n > k} is given in (3).

Remark 3. It is well known that, for large n, the computation of probabilities associated with the
coupon collector problem with unequal probabilities, such as (3), becomes computationally intensive,
and requires some sort of approximation or bounds. This is even more obvious in the case of CCPRB.
However, the upper and lower bounds for the probability (3) can be obtained directly by applying the
corresponding upper and lower bounds for the probability (2) in (3). For a detailed discussion on
this topic, and a comprehensive list of upper and lower bounds on the probability (2), see [17].

Observing that

P{Wn > k − i} ≤ ∑
Di,k

i+1

∏
j=1

P{Wn > k j}, (11)

we obtain an additional, simple lower bound for the probability P{W(⊗)
n > k}:

k

∑
i=0

pi
R(1 − pR)

k−iP{Wn > k − i} ≤ P{W(⊗)
n > k}. (12)

Remark 4. Let W(⊗)
n,c denote the waiting time until c, 1 ≤ c ≤ n, out of n coupons in CCPRB are

collected. For this waiting time, results analogous to Theorem 1 and its consequences can be derived
using the same technique.

3. Expected Waiting Time for a Full Collection in the Case of Equal Probabilities

The expected waiting time for a full collection, or a subcollection, can be obtained
from (10). However, if we assume that all the standard coupons have an equal probability
p = 1−pR

n of being drawn, the expected waiting time for a full collection has a simpler form,
which is conveniently derived using the Markov chain technique.

Let Xt be the number of different types of standard coupons sampled after t units of
time (days). We can notice that {Xt, t ∈ N} is a Markov chain on the state space:

S = {0, 1, . . . , n − 1, n}. (13)

Depending on how we define the end of the collection process, we can distinguish
between two characteristic cases.
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3.1. Case 1: The Collector Gives up Collecting after the First Reset

In the first case, the collector starts with a certain number of coupons, and buys
coupons until he completes his collection, or the first reset happens.

The transition probability matrix is

P =



0 1 2 3 . . . . . . n − 1 n
0 1 0 0 0 . . . . . . 0 0
1 pR p (n − 1)p 0 . . . . . . 0 0
...

...
...

n − 2 pR 0 0 0 . . . (n − 2)p 2p 0
n − 1 pR 0 0 0 . . . 0 (n − 1)p p
n 0 0 0 0 . . . 0 0 1


(n+1)×(n+1)

, (14)

and
vk = E(min{t ≥ 0 : Xt = 0, or Xt = n}|X0 = k), k ∈ S (15)

is the waiting time until absorption, starting from the state k.

3.2. Case 2: The Collector Keeps Collecting after the Reset

In this case, the collector buys coupons until he completes his collection, regardless of
how many resets occur in the meantime.

The transition probability matrix is

P =



0 1 2 3 . . . . . . n − 1 n
0 pR 1 − pR 0 0 . . . . . . 0 0
1 pR p (n − 1)p 0 . . . . . . 0 0
...

...
...

n − 2 pR 0 0 0 . . . (n − 2)p 2p 0
n − 1 pR 0 0 0 . . . 0 (n − 1)p p
n 0 0 0 0 . . . 0 0 1


(n+1)×(n+1)

, (16)

and
uk = E(min{t ≥ 0 : Xt = n}|X0 = k), k ∈ S (17)

is the waiting time until absorption, starting from the state k.
The expected waiting times vk and uk, k ∈ S are obtained in the next theorem.

Theorem 2.

1. For the expected waiting time vk in Case 1, Section 3.1, the following relations hold:

vk =
1
p

Γ(n − k + 1)
Γ( pR

p + n − k + 1)

n−k−1

∑
i=0

Γ( pR
p + n − k − i)

Γ(n − k − i + 1)
, k = 1, . . . , n − 1,

v0 = 0,

vn = 0, (18)

where Γ(·) denotes the gamma function.
2. For the expected waiting time uk in Case 2, Section 3.2, the following relations hold:

uk =
vk

(1 − pR)(1 − pRv1)
, k = 1, 2, . . . , n − 1,

u0 =
1 + (1 − pR)v1

(1 − pR)(1 − pRv1)
,

un = 0. (19)
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Proof.

1. Applying the first step analysis to the Markov chain with the transition probability
matrix (14), we obtain that

vk = 1 + kpvk + (n − k)pvk+1, v0 = vn = 0. (20)

The recurrence (20) is solved in [18] (problem 6.2., p. 165):

vk =
1

pR + (n − k)p
+

hk,k+1

pR + (n − k − 1)p
+ · · ·+

hk,n−1

pR + p
, (21)

where

hk,j =
(n − k)p

pR + (n − k)p
· (n − k − 1)p

pR + (n − k − 1)p
. . .

(n − j + 1)p
pR + (n − j + 1)p

, k < j. (22)

Next, we have

hk,j =
n − k

pR
p + n − k

· n − k − 1
pR
p + n − k − 1

. . .
n − j + 1

pR
p + n − j + 1

=
Γ(n − k + 1)Γ( pR

p + n − j + 1)

Γ(n − j + 1)Γ( pR
p + n − k + 1)

. (23)

Now, we can rewrite (21) as

vk =
1
p

n−k−1

∑
i=0

Γ(n − k + 1)Γ( pR
p + n − k − i + 1)

( pR
p + n − k − i)Γ(n − k − i + 1)Γ( pR

p + n − k + 1)

=
1
p

Γ(n − k + 1)
Γ( pR

p + n − k + 1)

n−k−1

∑
i=0

Γ( pR
p + n − k − i)

Γ(n − k − i + 1)
, (24)

which completes the proof of the statement.
2. Applying the first step analysis to the Markov chain with the transition probability

matrix (16), we conclude that

uk = 1 + pRu0 + kpuk + (n − k)puk+1, k = 1, 2, . . . , n − 1, un = 0, (25)

and
u0 = 1 + pRu0 + (1 − pR)u1. (26)

Applying the substitution

vk =
uk

1 + pRu0
,

we obtain the Equation (20), and the solution is given by (21). From (26), it follows
that

u0 =
1 + (1 − pR)v1

(1 − pR)(1 − pRv1)
, (27)

and
uk =

vk
(1 − pR)(1 − pRv1)

, k = 1, 2, . . . , n − 1, (28)

which completes the proof of the theorem.

Example 2. The case pR = 0 is the CCP, and the waiting time u0 becomes the expected waiting
time in CCP. From (24) with k = 1 we have

v1 = n
n−1

∑
j=1

1
j
= nH(1)

n−1(0), (29)
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where

H(a)
n (b) =

n

∑
k=1

1
(k + b)a . (30)

Using pR = 0 in (29) and (27) leads to the well known result, related to harmonic numbers:

u0 = n
n

∑
j=1

1
j
= nH(1)

n (0). (31)

The expected waiting times v1 and u0 are the most general, in the sense that the collector
has to wait for the almost full or full collection. Next, we will provide simplified expressions for
the waiting times v1 and u0 for the case pR > 0. For that purpose, we need the next lemma.

Lemma 1. Let (a)k denote the falling factorial:

(a)k = a(a − 1) . . . (a − k + 1). (32)

1. For any m ∈ N, the following equality holds:

m

∑
k=1

(a)k
(b)k

=
a

b − a + 1

(
1 − (a − 1)m

(b)m

)
. (33)

2. For any m ∈ N, a, b ∈ R+, b ̸= a + 1, the following equality holds:

m

∑
k=0

Γ(a + k)
Γ(b + k)

=
Γ(a + m)

Γ(b + m)

(a + m)m+1 − (b + m − 1)m+1

(a − b + 1)(a + m − 1)m
. (34)

Proof.

1. We use a mathematical induction on m. For m = 1, we easily confirm that the equality (33)
is valid. Next, assuming that (33) holds for m− 1, we check that (33) holds for m. We have

m

∑
k=1

(a)k
(b)k

=
a

b − a + 1

(
1 − (a − 1)m−1

(b)m−1

)
+

(a)m

(b)m

=
a

b − a + 1

(
1 − (a − 1)m−1

(b)m−1
+ (b − a + 1)

(a − 1)m−1

(b)m

)
=

a
b − a + 1

(
1 − (a − m)

(a − 1)m−1

(b)m

)
=

a
b − a + 1

(
1 − (a − 1)m

(b)m

)
, (35)

which completes the proof of the statement.
2. Using (33), we obtain

m

∑
k=0

Γ(a + k)
Γ(b + k)

=
m

∑
k=0

Γ(a + m − k)
Γ(b + m − k)

=
Γ(a + m)

Γ(b + m)

(
1 +

m

∑
k=1

(b + m − 1)k
(a + m − 1)k

)

=
Γ(a + m)

Γ(b + m)

(
1 +

b + m − 1
a − b + 1

(
1 − (b + m − 2)m

(a + m − 1)m

))
=

Γ(a + m)

Γ(b + m)

(
a + m

a − b + 1
− b + m − 1

a − b + 1
(b + m − 2)m

(a + m − 1)m

)
=

Γ(a + m)

Γ(b + m)

(a + m)m+1 − (b + m − 1)m+1

(a − b + 1)(a + m − 1)m
, (36)



Mathematics 2024, 12, 239 8 of 12

which completes the proof of the lemma.

Theorem 3.

1. If pR > 0, for the expected waiting time v1, the following equality holds:

v1 =
1

pR

(
1 − npR

1 − pR
B
(

n,
npR

1 − pR

))
, (37)

where B(·) denotes the beta function.
2. If pR > 0, for the expected waiting time u0, the following equality holds:

u0 =
1

pR

 1

npRB
(

n, npR
1−pR

) − 1

. (38)

Proof.

1. From (24) it follows that

v1 =
1

np
Γ(n + 1)

Γ( pR
p + n)

n−1

∑
j=1

Γ( pR
p + n − j)

Γ(n − j + 1)
=

1
np

Γ(n + 1)
Γ( pR

p + n)

n−2

∑
j=0

Γ( pR
p + j + 1)

Γ(j + 2)
. (39)

If pR > 0, using Lemma 1, we obtain

v1 =
1

np
Γ(n + 1)

Γ( pR
p + n)

Γ( pR
p + n − 1)

Γ(n)

( pR
p + n − 1)n−1 − (n − 1)n−1

pR
p ( pR

p + n − 2)n−2

=
1

np
Γ(n + 1)

Γ( pR
p + n)

Γ( pR
p + 1)

(n − 1)!

( pR
p + n − 1)n−1 − (n − 1)!

pR
p

=
1

np
Γ(n + 1)

Γ( pR
p + n)

(
Γ( pR

p + n)
pR
p Γ(n)

−
Γ( pR

p + 1)
pR
p

)

=
1

pR

(
1 − pR

p

Γ(n)Γ( pR
p )

Γ( pR
p + n)

)

=
1

pR

(
1 − pR

p
B
(

n,
pR
p

))
. (40)

Using the equality p = 1−pR
n , we obtain the required statement.

2. The equality (27) can be written as follows:

u0 =
1

pR

(
1

(1 − pR)(1 − pRv1)
− 1
)

. (41)

Using (40) in (41), we obtain

u0 =
1

pR

 1

(1 − pR)
pR
p B
(

n, pR
p

) − 1

 =
1

pR

 1

npRB
(

n, npR
1−pR

) − 1

, (42)

which completes the proof of the theorem.



Mathematics 2024, 12, 239 9 of 12

4. Numerical Examples

In this section, we provide numerical examples for the CCPRB with equal probabilities,
as analyzed in Section 3. We assume that the set of available coupons is N10. We consider
different values of the probability pR and calculate the expected waiting time u0 = u(10)

0
for this case using formula (27). The results are shown in Table 1. Statistical Software R,
version 2023.03.0+386 was used for all calculations.

Table 1. Expected waiting time u(10)
0 .

pR
3
4

2
3

1
2

1
4

1
8

1
10

1
20

1
50

1
100 0

u(10)
0 1.13 × 109 4.51 × 107 3.69 × 105 1.77 × 103 1.92 × 102 1.27 × 102 5.87 × 101 3.83 × 101 3.34 × 101 2.93 × 101

Next, we show how the expected waiting time u0 depends on the probability pR for
different values of n.

Note that the behavior of the expected waiting time u0, depicted in Figure 1, is
consistent with the intuition we have about CCPRB: u0 increases as n increases (as having
more standard coupons to collect extends the waiting time), and u0 increases as pR increases
(as resets remove the coupons already collected, and therefore extend the waiting time).

Figure 1. Expected waiting time u0 in terms of pR for different values of n.

In some cases considered, we can also notice some kind of exponential growth, which
we discuss in more detail in the next section.

5. Asymptotic Properties of the Waiting Times v1 and u0

Here, we analyze the properties of the expected waiting times until the end of the
collection process, as the number of standard coupons n tends to infinity, for different
values of the probability pR. We can distinguish between the case when pR is fixed, and the
case when pR depends on n.

For fixed pR ∈ (0, 1), we can apply the Stirling approximation of the term B
(

n, npR
1−pR

)
in Theorem 3, and obtain the asymptotic estimate for u0, as n → ∞, formulated in the next
proposition.

Proposition 1. For any pR ∈ (0, 1), the following asymptotic relation holds as n → ∞:

u0 ∼ 1
pR

 1√
2pRπn(1 − pR)n p

npR
1−pR
R

− 1

. (43)
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Remark 5. The expression (43) can be alternatively written in the following form:

u0 ∼ 1
pR

(
α−n√
2pRπn

− 1

)
, where α = (1 − pR)p

pR
1−pR
R . (44)

The relations (43) and (44) also hold when pR depends on n, in the case when the ratio npR
1−pR

= pR
p

tends to infinity as n → ∞.

For the case when the ratio npR
1−pR

is bounded (which means that the collection process
is not interrupted too often by resets), we have the following asymptotic result.

Proposition 2. For npR
1−pR

= O(1), the following asymptotic relation holds, n → ∞:

u0 ∼ 1
pR

 n
npR

1−pR

(1 − pR)Γ(
npR

1−pR
+ 1)

− 1

. (45)

Proof. The statement follows from Theorem 3 and the relation

lim
x→∞

Γ(x + a)
xa−bΓ(x + b)

= 1 (46)

(see, for example, [19], page 257).

Next, we analyze some particular cases of the problem.

Example 3. The case pR = p = 1
n+1 corresponds to the situation where the reset coupon has the

same probability of being drawn as any other coupon. Using Theorem 3, we obtain the expressions

v1 = (n + 1)(1 − B(n, 1)) =
n2 − 1

n
∼ n, as n → ∞, (47)

and

u0 = (n + 1)

(
1

n
n+1 B(n, 1)

− 1

)
= n(n + 1) ∼ n2, as n → ∞. (48)

This case is “exactly solvable", in the sense that, for a given value u0, we can simply obtain n = nu0

such that the expected waiting time is less or equal to u0. Precisely, from the inequality

n2 + n ≤ u0

and the fact that nu0 ≥ 0, we obtain that

nu0 ∈
[

0,
−1 +

√
1 + 4u0

2

]
.

Example 4. The case pR = 1
2 corresponds to the situation where the ratio npR

1−pR
is equal to n.

Using Theorem 3, we obtain the expressions

v1 = 2(1 − B(n, n)) ∼ 2
(

1 −
√

πn
22n−1

)
, as n → ∞, (49)

and

u0 = 2
(

2
nB(n, n)

− 1
)
∼ 2

(
22n

√
πn3

− 1
)

, as n → ∞. (50)
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6. Conclusions

In this paper, we considered a generalization of the coupon collector problem where
there is an additional coupon that resets the collection process and is drawn with probability
0 ≤ pR < 1.

We distinguished between cases where standard coupons are drawn with arbitrary
probabilities that sum up to 1− pR (which generalizes CCPU), and the case where standard
coupons are drawn with the same probability 1−pR

n (which generalizes CCP). The object of
interest was the waiting time until the end of the coupon collection procedure.

For the case of equal probabilities, we specified the distribution of this waiting time in
a very general way, in terms of the corresponding distribution in CCPU.

For the case of equal probabilities, applying the first step analysis for the appropriately
constructed Markov chains, we have obtained the expression for the expected waiting
time in both possible cases (when the collection process continues after the reset or not),
and derived its simple form in terms of the beta function. We determined the asymptotic
behavior (when the size of the collection tends to infinity) of the expected waiting time,
considering possible values of the probability pR (fixed or depending on n).

We have also discussed some characteristic examples of this problem.
The possible applications (or interpretations) of this work relate to the detection of

distributed denial-of-service (DDoS) attacks, which are explained, for example, in [5].
The authors conclude that, since the solution to these attacks is to continuously moni-
tor Internet traffic, the occurrence of standard coupons in the coupon collector problem
corresponds to tracking c (out of n) recent high traffic flows, where the portion size c is
determined by server capacity, and the probability of null coupon, pN , corresponds to the
case of flows with small probabilities that sum up to pN . In this context, the appearance
of the reset coupon at the moment t0 can be interpreted as a system crash, which leads to
losing information about high traffic flows that have been monitored up to that moment.
Having information about the frequency of such crashes is important for maintaining
proper protection.
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