
Citation: Gao, C.; Li, T.; Gao, Y.;

Zhang, Z. A Comprehensive

Multi-Strategy Enhanced

Biogeography-Based Optimization

Algorithm for High-Dimensional

Optimization and Engineering Design

Problems. Mathematics 2024, 12, 435.

https://doi.org/10.3390/

math12030435

Academic Editors: Tien Anh Tran,

Roman Rodriguez Aguilar,

Gerhard-Wilhelm Weber, Igor

Litvinchev, Joshua Thomas and

Pandian Vasant

Received: 15 December 2023

Revised: 19 January 2024

Accepted: 23 January 2024

Published: 29 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Comprehensive Multi-Strategy Enhanced Biogeography-Based
Optimization Algorithm for High-Dimensional Optimization
and Engineering Design Problems
Chenyang Gao 1, Teng Li 1, Yuelin Gao 1,2,* and Ziyu Zhang 2

1 School of Computer Science and Engineering, Xidian University, Xi’an 710071, China;
ghygao2008@gmail.com (C.G.); tengli@xidian.edu.cn (T.L.)

2 Ningxia Province Key Laboratory of Intelligent Information and Data Processing, North Minzu University,
Yinchuan 750021, China; algorithmzzy@126.com

* Correspondence: gaoyuelin@263.net

Abstract: The biogeography-based optimization (BBO) algorithm is known for its simplicity and low
computational overhead, but it often struggles with falling into local optima and slow convergence
speed. Against this background, this work presents a multi-strategy enhanced BBO variant, named
MSBBO. Firstly, the example chasing strategy is proposed to eliminate the destruction of the inferior
solutions to superior solutions. Secondly, the heuristic crossover strategy is designed to enhance
the search ability of the population. Finally, the prey search–attack strategy is used to balance the
exploration and exploitation. To verify the performance of MSBBO, we compare it with standard
BBO, seven BBO variants (PRBBO, BBOSB, HGBBO, FABBO, BLEHO, MPBBO and BBOIMAM)
and seven meta-heuristic algorithms (GWO, WOA, SSA, ChOA, MPA, GJO and BWO) on multiple
dimensions of 24 benchmark functions. It concludes that MSBBO significantly outperforms all
competitors both on convergence accuracy, speed and stability, and MSBBO basically converges
to the same results on 10,000 dimensions as on 1000 dimensions. Further, MSBBO is applied to
six real-world engineering design problems. The experimental results show that our work is still
more competitive than other latest optimization techniques (COA, EDO, OMA, SHO and SCSO) on
constrained optimization problems.

Keywords: biogeography-based optimization; heuristic crossover; prey search–attack; high-dimensional
optimization; engineering design

MSC: 68W50

1. Introduction

With the development of engineering technology and science, the optimization prob-
lem has been widely existent in all aspects of social production. In order to solve different
optimization problems, various optimization techniques have been designed. They are all
involved in problems where there are optimal solutions, such as robot path planning [1],
vehicle routing [2], portfolio optimization [3], job-shop scheduling [4], array antenna
optimization [5], etc. The purpose of optimization is to reduce cost consumption, im-
prove economic returns, enhance system efficiency, save time, etc. At present, a relatively
complete optimization system has been formed, which mainly uses mathematical meth-
ods to provide solutions to various problems. These methods are mainly divided into
two categories: traditional optimization technology and meta-heuristic algorithm. Tra-
ditional optimization methods rely more on the known information of the problem to
solve the deterministic problem effectively, such as the branch and bound algorithm [6],
conjugate gradient method [7], steepest descent method [8], etc. Unlike these techniques,
meta-heuristic algorithms obtain new optimization models by simulating certain natural
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phenomena or animal behaviors. Meta-heuristic algorithms can not only solve NP-hard
problems but also find the optimal solution in finite time, and do not need the gradient
information of the problem, so they are more suitable for nonlinear and complex optimiza-
tion problems. They meet the requirements of current optimization problems and become
mainstream optimization methods.

As shown in Figure 1, meta-heuristic algorithms can be roughly divided into five
categories according to different classification standards: evolution-based optimization algo-
rithms, such as the genetic algorithm (GA) [9], differential evolution (DE) [10] and immune
algorithm (IA) [11]; population-based optimization algorithms, such as particle swarm
optimization (PSO) [12], whale optimization algorithm (WOA) [13] and sparrow search
algorithm (SSA) [14]; nature-based optimization algorithms, such as biogeography-based
optimization (BBO) [15], invasive weed optimization (IWO) [16] and tree seed algorithm
(TSA) [17]; physics-based optimization algorithms, such as the Archimedes optimization
algorithm (AOA) [18], Kepler optimization algorithm (KOA) [19] and Young’s double-slit
experiment optimizer (YDSE) [20]; and human-based optimization algorithms, such as
student psychology-based optimization (SPBO) [21], teaching and learning optimization
(TLO) [22] and human behavior-based optimization (HBBO) [23]. Different meta-heuristic
algorithms have different performance in solving different types of optimization problems.
These existing meta-heuristic algorithms have been widely used in various fields of manu-
facturing. However, with the rapid development of the information age, the complexity
of the problems faced by human beings is different from the past, and gradually tends to
be high dimensional and large scale. According to the investigation, problems with more
than 100 dimensions are considered high-dimensional optimization problems [24–26]. But
the vast majority of meta-heuristic algorithms have not been used to solve optimization
problems with more than 100 dimensions. Therefore, in this context, it is still necessary
to improve the existing meta-heuristic algorithm to solve the optimization problem of
higher dimensions.

Figure 1. Meta-heuristic algorithm classification.

The BBO algorithm is a novel meta-heuristic algorithm proposed by Simon in “IEEE
TEVC” in 2008 [15]. The BBO algorithm simulates the movement of species between differ-
ent habitats in nature. Due to its simple principle and few parameters, BBO attracted many
scholars once it was proposed and has been widely used in various fields [27–30]. Com-
pared with other meta-heuristic algorithms, BBO has the following advantages: (1) BBO
uses the migration operator to complete the variable exchange between candidate solu-
tions, which is more ergodic than the crossover operator. When the dimension of the
optimization problem is high, it can still search for the optimal direction in each dimension.
(2) BBO does not need to adjust parameters, as the only two parameters are fixed. In other
words, when solving high-dimensional optimization problems, the parameters will not
affect the algorithm performance of BBO. This is more convenient than PSO, DE and other
algorithms. (3) BBO can take advantage of the useful information carried by the current
population. Unlike other meta-heuristic algorithms, the BBO candidate solution variables
come from all population individuals. This enables the BBO to search adequately, even in
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high-dimensional environments. Based on the above discussion, we can find that BBO has
more obvious advantages than other meta-heuristic algorithms in solving high-dimensional
optimization problems. Therefore, based on the unique advantages of BBO, we choose
to use BBO to challenge the efficient solution of high-dimensional optimization problems.
This is also the motivation of choosing BBO in this paper.

However, according to the “no free lunch” principle, the BBO algorithm is not perfect.
Similar to many meta-heuristic algorithms, BBO has some shortcomings, such as slow
convergence speed, premature convergence, and falling into local optima. In recent years,
researchers have proposed various BBO variants to improve its performance and prevent
premature convergence [31]. For example, Ergezer [32] designed the OBBO algorithm
based on the opposition-based learning (OBL) strategy for the first time. Experimental
results show that the probability of obtaining the optimal solution of the problem is much
better than that of the standard BBO algorithm. Wang et al. [33] designed a biogeography-
based krill herd (BBKH) algorithm to solve complex optimization problems. The main
improvement is to introduce a new krill migration operator to deal with nonlinear problems
more efficiently. Lohokare et al. [34] adopted an improved mutation function to embed
the neighborhood mutation of DE into BBO, thus accelerating the convergence of BBO.
In their study, when the authors evaluated the performance of their proposed approach on
benchmark test suite and economical load scheduling problems, their improved BBO out-
performed the standard BBO. In order to reduce the dependence of BBO on the coordinate
system of the optimization problem, Chen et al. [35] developed a variant of BBO based on
covariance matrix migration. Experiments show that this method is superior to previous
BBO variants. Then, Sang et al. [36] proposed DCGBBO by a hierarchical tissue-like P
system with triggering ablation rules, making use of the evolution rule and communication
rule to achieve migration and mutation, which reduces the computational complexity.
Recently, to enhance the overall performance of BBO algorithm, [37] designed a novel BBO
variant with hybrid migration operator and feedback differential evolution mechanism,
referred to as HFBBO. It is a “living algorithm” that can self-regulate the mutation mode.
The HFBBO feedback differential evolution mechanism is designed to replace the random
mutation operator, so the population can select the mutation mode intelligently to avoid
falling into the local optima.

We investigated articles on the BBO algorithm in some well-known journals as shown
in Figure 2. As you can see, BBO already exists in a certain number of variants, which makes
its performance also improve. Unfortunately, these variants do not make the BBO algorithm
suitable for high-dimensional optimization environments. BBO is still not effective in
solving high-dimensional global optimization problems. Why not try to improve the BBO
algorithm to solve them? Therefore, in order to make a breakthrough in this field, this paper
proposes a simple and efficient multi-strategy-enhanced BBO variant based on the example
chasing strategy, heuristic crossover strategy and prey search–attack strategy, referred to as
MSBBO. It is “simple” because our algorithm has lower computational complexity, simpler
steps and fewer parameters than BBO. It is “efficient” because our method can effectively
solve large-scale global optimization problems up to 10,000 dimensions. The primary
contributions of this paper are summarized as follows:

(1) A novel framework of BBO is proposed, which is simpler and more efficient than the
original BBO algorithm. Meanwhile, MSBBO has lower computational complexity
than BBO.

(2) MSBBO uses the example chasing strategy to eliminate the misguidance of bad in-
formation in the population. Then, the heuristic crossover and prey search–attack
strategies are used to balance the exploration and exploitation of the population.
MSBBO makes BBO suitable for high-dimensional optimization environments.

(3) MSBBO successfully challenges the 10,000-dimensional numerical optimization prob-
lem. Compared with other meta-heuristic algorithms, its convergence performance is
basically not affected by dimensions and has good ductility.
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Figure 2. BBO articles’ source statistics.

The organization of the rest of this paper is as follows: Section 2 introduces the
standard BBO algorithm. Section 3 describes the three improvement strategies of MSBBO
in this paper. Then, Section 4 analyzes the complexity of the proposed MSBBO. Section 5
is the numerical experiment and analysis. The last section, Section 6, is the conclusion.
The graphical abstract of this paper is shown in Figure 3.

Figure 3. Graphical abstract of this paper.

2. Standard BBO

In BBO, every habitat contains some characteristic variables. They determine how
many species a habitat can hold and are called suitability index variables (SIVs). A habitat
that is suitable for living species is interpreted as having a high habitat suitability index
(HSI). So, the habitat with higher HSI is more likely to emigrate species, while the habitat
with lower HSI is more likely to immigrate species. This is the main idea of BBO [15].
Table 1 shows the correspondence.

Table 1. Correspondence among biogeography theory and BBO algorithm.

Biogeography Theory Biogeography-Based Optimization Algorithm

Habitats (Islands) Individuals (candidate solutions)
Habitat suitability index (HSI) Objective function value (fitness)
Suitability index variables (SIVs) Characteristic variables of solutions
Catastrophic events destroyed the habitat Mutation
The number of habitats Population size (the number of solutions)
Habitats with low HSI immigrate species Inferior solutions accept variables
Habitats with high HSI emigrate species Superior solutions share variables
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In the first stage, BBO uses Equation (1) to generate N habitats as the initial population,
and each habitat contains D variables:

xij = lbj + rand(0, 1) ·
(
ubj − lbj

)
(1)

where i = 1,2,. . . ,N; j = 1,2,. . . ,D. xi=(xi1,xi2,. . . ,xiD). ubj and lbj are the upper and lower
limits of the j-th variable, respectively. Then, the HSI of each habitat is calculated based
on the fitness function, and the population is sorted by the HSI. Specifically, if xij is the
best individual in the population, then i = 1; if xij has the second highest fitness in the
population, then i = 2, and so on. In other words, the subscript i of xij indicates its fitness
ranking in the population. So, each xi is assigned a new i, and the species number Si of xi
is calculated according to Equation (2):

Si = Smax − 2 · i, i = 1, 2, · · · , N (2)

where Smax is the maximum species number, which is usually set to 2 · N. In this paper,
we adopt the cosine migration model to calculate the immigration rate λi and emigration
rate µi:

λi =
I
2

(
1 + cos

π · Si
Smax

)
, µi =

E
2

(
1 − cos

π · Si
Smax

)
. (3)

where I is the maximum immigration rate and E is the maximum emigration rate. They are
usually set to 1.

In the second stage, the specific operation of migration operator is to generate a random
number between [0, 1] for each variable of xi. If it is smaller than λi, in the remaining N-1
habitats, the xk to be emigrated is determined according to µk. Then, the variable of xk is
used to replace the corresponding variable of xi.

In the third stage, it is the mutation operator. The species probability Pi of each habitat
is calculated through Equation (4):

Pi =


−(λi + µi)Pi + µi+1Pi+1, Si = 0
−(λi + µi)Pi + λi−1Pi−1 + µi+1Pi+1, 1 ≤ Si ≤ Smax − 1
−(λi + µi)Pi + λi−1Pi−1, Si = Smax

(4)

The mutation rate of a habitat is inversely proportional to its species probability.
Therefore, the mutation rate mi of each habitat is as follows:

mi =

(
1 − Pi

Pmax

)
· mmax, Pmax = max

(
{Pi}N

i=1

)
(5)

where, mmax is the maximum mutation rate. For each habitat xi, a number between [0, 1] is
randomly generated, and if it is smaller than mi, xi needs to be mutated. Then, for each
variable of xi, a random number in the range of upper and lower bounds is generated to
replace the original variable. Algorithm 1 shows the computation pseudo-code of BBO.
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Algorithm 1 Pseudo-code of the BBO.
initialize parameters: Smax, I, E, N, and mmax
initialize the population by Equation (1)
for t = 1 to T do

calculate the HSI and sort from best to worst
calculate the Si by Equation (2), the λi and µi by Equation (3)
calculate the Pi by Equation (4), the mi by Equation (5)
for i = 1 to N do

% Migration
for j = 1 to D do

if rand(0,1) < λi do
select the xk according to {µk}N

k=1
xij = xkj

end if
end for
% Mutation
if rand(0,1) < mi do

for j = 1 to D do
xij = lbj + rand(0, 1) ·

(
ubj − lbj

)
end for

end if
end for

end for
output the optimal solution

3. Proposed Algorithm: MSBBO
3.1. Motivation

BBO uses roulette to select habitats to be emigrated, which can cause damage to the
habitats with high HSI. At the same time, BBO replicates a single variable of another
individual in the form of direct migration. However, a candidate solution performs well
because the whole vector is closer to the optimal solution in the problem space, rather than
because a single variable value performs well. In addition, the BBO random mutation
operator cannot effectively help the algorithm to escape from the local optima. In fact, this
mutation is blind and cannot maintain the population diversity. In addition, BBO relies
only on the replacement of variables between different habitats to search for new solutions,
which cannot balance the exploration and exploitation well and has a slow convergence
speed. These are the main reasons why BBO cannot effectively solve high-dimensional
numerical problems [38].

According to the literature reviews, we can observe that many studies have not
completely overcome these shortcomings. Some variants change the mode of direct migra-
tion but do not eliminate the damage of inferior solutions to superior solutions, such as
LxBBO [39], TDBBO [40], IWO/BBO [41], etc. Although HGBBO [42] and HFBBO [37] elim-
inate the damage of the inferior solutions to the superior solutions, the candidate solution
changes only a certain part of variables in the migration. When solving high-dimensional
optimization problems, the updating of candidate solutions cannot traverse every dimen-
sion. EMBBO [43] and NBBO [44] directly delete the random mutation operator but do
not design more effective strategies to avoid the population falling into the local optima.
In addition, the evolutionary mechanism of BBO itself determines that its performance
ceiling is not high. Therefore, other heuristic strategies need to be considered to improve
the convergence performance.

In view of the above shortcomings, this section proposes three improvement strategies
to obtain a new variant of BBO with excellent performance. We firstly propose the example
chasing strategy to eliminate the destruction of the inferior solutions to the superior solu-
tions, thus effectively maintaining population diversity. Secondly, the heuristic crossover
strategy is designed to enhance the search ability of the algorithm. The algorithm can
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search more adequately in the vicinity of superior individuals. Then, the prey search–attack
strategy is designed to balance between the exploration and exploitation. In the evolu-
tion of the new algorithm population, the search emphasis is different in different stages.
Meanwhile, to balance the computational complexity, the random mutation operator in the
original BBO algorithm is deleted. The details are as follows.

3.2. Example Chasing Strategy

BBO randomly selects the candidate solution to emigrate, which is easy to damage
the solutions with high fitness. For instance, xi is the immigration individual, and xj is the
emigration individual selected by roulette. There is a good chance that j is greater than
i, which means that islands with lower HSI immigrate to islands with higher HSI, and
the variables of the bad candidate solution replace the variables of the better one. It not only
reduces the population diversity but also causes the population to deviate from the optimal
solution. In fact, candidate solutions with high fitness tend not to accept variables from
candidate solutions with low fitness. Therefore, to avoid the inferior individuals destroying
the superior individuals, the example chasing strategy is designed. We set examples based
on the ranking of each individual. For individual xi, it ranks i-th in the population, and the
fitness of other individuals better than xi can only be x1, x2, ..., xi−1. These individuals rank
higher than xi, so they become the examples of xi, and xi becomes the chaser. Everyone has
a natural tendency to chase the examples, so the chasers achieve better fitness by chasing
their examples. The reason why human beings can progress is they continue to learn from
the best and surpass them. To intuitively explain the principle of the example chasing
strategy, Figure 4 is plotted.

(a) Random migration operator (b) Migration with example chasing rule

Figure 4. Random migration vs. the example chasing strategy.

As shown in Figure 4a, every two-candidate solution can migrate to each other. x1
can be replaced by any lower-fitness solution, while x5 can emigrate variable values to
any better candidate solution. So, random migration will cause the inferior individuals
to destroy the superior individuals, thus reducing the population diversity. Figure 4b
is the example chasing strategy. It can be observed that only unidirectional migration
can be carried out between candidate solutions. That is, the poor individuals can only
accept features from the better individuals, and the poor individuals cannot affect the
better individuals. For instance, only x1 is ranked higher than x2, so x2 can only accept the
variables from x1, while individuals ranked lower than x2 can accept the variables from x2
but cannot emigrate to it.

During the migration of xi, the example xk of xi can be selected by Equation (6):

k = round (ceil (1, i − 1)), i = 2, 3, · · · , N. (6)

where ceil(∗) is a random number between 1 and i, and round(∗) is an integer function.
Therefore, the example chasing strategy avoids the bad influence of poor individuals

on good individuals, effectively maintains the population diversity, and speeds up the
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search of the population to the optimal solution. In addition, it does not need to calculate
the emigration rate of each individual, which reduces the calculation amount.

3.3. Heuristic Crossover Strategy

In the natural evolution of organisms, two homologous chromosomes through mating
and recombination will form a new chromosome, thus giving rise to a new individual or
species [45]. New individuals often absorb the advantages from their parents and thus
better adapt to the current living environment. If it is used in the evolutionary algorithm,
the search efficiency of the population in the search space can be improved. Inspired by
this idea, to overcome the defects of the direct migration mode in the BBO algorithm, this
paper designs a dynamic random heuristic crossover strategy as shown in Equation (7):

xt+1
i = xt

k + α ∗ (xt
best − xt

i ) (7)

where t is the current iteration number, k is the example individual selected by Equation (6),
and xt

best is the optimal individual of the current population. It should be noted that the
heuristic crossover we designed is carried out for the whole candidate solution vector,
rather than including only some variables like the standard BBO algorithm. Therefore,
when solving a high-dimensional global optimization problem, the search of the problem
space for candidate solutions can traverse every dimension.

Equation (7) has an important impact on the performance of MSBBO, and is expected
to improve the search ability and convergence speed of MSBBO in the iterative process.
It consists of a basis vector and a difference vector. The former is used to determine the
search center, and the latter is used to control the search scope and direction. In the MSBBO
framework, to make full use of the promising information provided by elite individuals
and their guiding effect on other individuals, we use example individuals as the base
vector. We have reason to believe the better solution is closer to the optimal solution, so the
population can search in more valuable areas. The role of examples is crucial to the growth
of an individual. It is because we have role models that we can become better people. We
enhance our own abilities by mimicking the behaviors of examples or by being influenced
by their personalities. Poor candidate solutions can also improve their competitiveness
by absorbing the characteristics of good solutions. In addition, the optimal solution xt

best
of the current population is used to generate the difference vector to ensure a preferable
searching direction. Through this strategy, individuals can exploit the area around an
example; meanwhile, they can be attracted by the xt

best.
The dynamic parameter α is a random number that varies nonlinearly with the current

iteration number t, which is given as Equation (8):

α =
1
2
∗
(

sin(2π ∗ f req ∗ t) ∗ t
T
+ 1
)

(8)

The main idea of the dynamic parameter α is to design a novel formula which not only
permits the adjustment of parameter values but also permits the adjustment of its direction.
Such a possibility is well offered by the sine function. By transforming the sine function,
the value of a given parameter increases and decreases periodically. This is accurately what
we need, with some flexibility in the search direction when changing the parameter. f req is
used to control the fluctuation frequency of parameter α. After a lot of experiments, we
suggest that the best value of f req is 0.25.

3.4. Prey Search–Attack Operator

The BBO random mutation operator easily generates low-quality habitats and re-
duces the population diversity. It cannot effectively help the algorithm to escape from
the local optima, and the calculation of species probability consumes much CPU time.
Therefore, in MSBBO, we delete the random mutation operator, which further reduces the
computational complexity. Meanwhile, inspired by the searching and attacking behavior of
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predators [46], we put forward the prey search–attack operator. It supposes the best solu-
tion of the current population xt

best is the prey pt, and the rest N-1 solutions are predators.
Then, the searching and attacking behavior is defined as the following:

pt = ω1 · xt
i + ω2 ·

(
xt

best − xt
i
)

(9)

xt+1
i = |xt

best − pt| (10)

Equation (9) is used for searching the prey xt
best, and Equation (10) is used for attacking

the prey xt
best. ω1 and ω2 are two self-adjusting parameters, which can be calculated by

the following:
ω1 = (rand + 1) · (1 − t/T) (11)

ω2 = 2 · (1 − t/T) · (rand − 0.5) (12)

where ω1 and ω2 are used to better balance between the exploration and exploitation over
the whole evolution. The former is responsible for the global search, that is, exploration; the
latter is responsible for the local search, that is, exploitation. ω1 makes xi search spaciously
in the entire solution space where the prey xt

best lives. On the contrary, ω2 makes xi search
around a small limited small area of the prey xt

best. The values of ω1 and ω2 are both large
at the beginning of the evolution because in the early stage, it is necessary to maintain
the population diversity. Later in the iteration, the population has already closed to the
optimal solution, and it is not recommended to search in a large range. Instead, a more
refined exploit should be tried near the optimal solution, so the values of ω1 and ω2 are all
small. Therefore, the parameters ω1and ω2 guarantee a dynamic balance of the exploration
and exploitation.

To sum up, this section proposes a multi-strategy enhanced BBO variant based on
the example chasing strategy, heuristic crossover strategy and prey search–attack operator.
Algorithm 2 shows the calculation flow of MSBBO.

Algorithm 2 Pseudo-code of the MSBBO.
initialize parameters: Smax, I, N, f req
initialize the population by Equation (1)
calculate the Si by Equation (2), the λi by Equation (3)
calculate the HSI and sort from best to worst
for t = 1 to T do

for i = 1 to N do
if rand(0,1) < λi do

select the xk according to Equation (6)
heuristic crossover of xi by Equations (7) and (8)

end if
calculate the ω1 by Equation (11), the ω2 by Equation (12)
search the prey by Equation (9)
attack the prey by Equation (10)

end for
calculate the HSI and sort from best to worst

end for
output the optimal solution

4. Complexity Analysis

In this section, the computational complexity of MSBBO and BBO is compared.
The comparison between Algorithms 1 and 2 shows that MSBBO moves the calculation
of the immigration rate out of the loop. Because it is based on the ranking, there is no
need to calculate again. In BBO, the N individuals’ immigration rate and emigrate rate
are calculated in each iteration. So, the total calculation complexity of BBO is O(2 · T · N).
While MSBBO adopts the example chasing strategy to select the emigration individual,
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there is no need to calculate the emigration rate, so the calculation time is O(N). The origi-
nal migration operator of BBO requires each dimension of each individual to be judged
and computed separately, so the total computation is O(T · N · D). While the heuristic
crossover of MSBBO migrates the whole candidate solution vector and reduces one “for”
loop, the computational complexity is O(T · N). Then, in the mutation operator, accord-
ing to Equations (4) and (5), its calculation times of each generation are O(2 · N). So the
total calculation times of the BBO mutation operator is at least O(2 · T · N). MSBBO uses
prey search–attack operator to replace the mutation operator, which adds two calculation
times in each iteration. So, the total calculation complexity is also O(2 · T · N). However,
MSBBO has fewer judgments than BBO in each iteration because the execution of the prey
search–attack operator does not need to generate random numbers for judgment. So, BBO
has O(T · N) more computation times than MSBBO in generating random numbers.

According to the above analysis, the computational complexity of BBO is O(T ·N(D+5)),
while that of MSBBO is O(N(3 · T + 1)). The MSBBO designed in this paper can effectively
reduce the calculation cost of the BBO algorithm and reduce the calculation amount. We
will further verify this by experiments later on.

5. Experimental Results and Analysis
5.1. Experiment Preparation

In order to fully test the comprehensive performance and competitiveness of MSBBO,
in this section, a series of comparative experiments are made on a set of classic benchmark
functions and several engineering design optimization problems. We first compare the
MSBBO algorithm with the standard BBO algorithm to verify the effectiveness of the three
improvement strategies. We then compare MSBBO to seven excellent BBO variants to verify
the superiority of MSBBO in the same class of algorithms. After that, in order to verify
the advancement of MSBBO in different algorithms, we choose seven new meta-heuristic
algorithms to compare with it. Finally, we apply the proposed algorithm to six practical
engineering problems, and select five advanced optimization techniques as competitors
to demonstrate the value and development potential of MSBBO at the application level.
The used well-known benchmark functions are shown in Table 2. They contain complex
problems such as unimodal, multimodal, irregular, compound and nonlinear, which can
fully test the comprehensive performance of the algorithms. The number of independent
runs is 51, and the population size (N) of each compared algorithm is 50. We choose
the Wilcoxon rank-sum test to analyze and evaluate all experimental results [47]. Then,
the development environment is MATLAB R2022a.

Table 2. Twenty-four benchmark functions.

Function Search Space f (x∗)

f 1(x) = ∑D
i=1 ix2

i [−10, 10]D 0

f 2(x) = ∑D
i=1|xi|+ ∏D

i=1|xi| [−10, 10]D 0

f 3(x) = ∑D
i=1 x2

i +
(

∑D
i=1 0.5ixi

)2
+
(

∑D
i=1 0.5ixi

)4
[−5, 10]D 0

f 4(x) = maxD
i=1{|xi|} [−100, 100]D 0

f 5(x) = ∑D
i=1

(
∑i

j=1 xj

)2
× (1 + 0.4|N(0, 1)|) [−100, 100]D 0

f 6(x) = ∑D
i=1 ix4

i + rand [−100, 100]D 0

f 7(x) = ∑D
i=1 z2

i − 450, z = x − o [−100, 100]D −450

f 8(x) = ∑D
i=1|xi|i+1 [−1, 1]D 0

f 9(x) = exp
(

0.5 ∑D
i=1|xi|

)
− 1 [−1.28, 1.28]D 0

f 10(x) = ∑D
i=1
(
106) i−1

D−1 x2
i [−100, 100]D 0

f 11(x) = ∑D
i=1⌊xi + 0.5⌋2 [−100, 100]D 0
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Table 2. Cont.

Function Search Space f (x∗)

f 12(x) = ∑D
i=1

(
∑i

j=1 xj

)2
[−100, 100]D 0

f 13(x) = ∑D
i=1
[
z2

i − 10 cos(2πzi) + 10
]
− 330, z = x − o [−5.12, 5.12]D −330

f 14(x) = ∑D
i=1
[
z2

i − 10 cos(2πzi) + 10
]
,

zi =

 xi, |xi|< 0.5

round (2xi)/2, else

[−5.12, 5.12]D 0

f 15(x) = −20 exp
(
−0.2

√
∑D

i=1
z2

i
D

)
− exp

[
1
D ∑D

i=1 cos(2πzi)
]

+e − 120, z = x − o
[−32, 32]D −140

f 16(x) = ∑D
i=1|xi sin(xi) + 0.1xi| [−10, 10]D 0

f 17(x) = 1
4000

[
∑D

i=1(zi − 100)2
]
−
[
∏D

i=1 cos
(

zi−100√
i

)]
−179, z = x − o

[−600, 600]D −180

f 18(x) = − cos
(

2π
√

∑D
i x2

i

)
+ 0.1 ×

√
∑D

i x2
i + 1 [−100, 100]D 0

f 19(x) = ∑D
i=1

{
∑kmax

k=0

[
ak cos

(
2πbk(xi + 0.5)

)]}
−

D ∑kmax
k=0

[
ak cos

(
2πbk × 0.5

)]
,

a = 0.5, b = 3, kmax = 20

[−0.5, 0.5]D 0

f 20(x) = π
D {10 sin2(πyi) + ∑D−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]

+(yD − 1)2}+ ∑D
i=1 u(xi, 10, 100, 4)

yi = 0.25(xi + 1) + 1, u(xi, a, k, m) =


k(xi − a)m, xi > a

0,= −a ≤ xi ≤ a

k(−xi − a)m, xi < −a

[−50, 50]D 0

f 21(x) = 0.1{sin2(3πx1) + ∑D−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)

]
+(xD − 1)

[
1 + sin2(2πxD)

]
}+ ∑D

i=1 u(xi, 5, 100, 4)

u(xi, a, k, m) =


k(xi − a)m, xi > a

0,−a ≤ xi ≤ a

k(−xi − a)m, xi < −a

[−50, 50]D 0

f 22(x) = ∑n−1
i=1 F(xi, xi+1) + F(xn, x1), [−100, 100]D 0

F(x, y) =
(

x2 + y2)0.25 ·
[
sin2

(
50
(

x2 + y2)0.1
)
+ 1
]

f 23(x) = ∑D−1
i=1

[
x2

i + 2x2
i+1 − 0.3 cos(3πxi) cos(3πxi+1) + 0.3

]
[−100, 100]D 0

f 24(x) = ∑D/4
i=1 [(x4i−3 + 10x4i−2)

2 + 5(x4i−1 − x4i)
2

+(x4i−2 − 2x4i−1)
4 + 10(x4i−3 − x4i)

4]
[−4, 5]D 0

5.2. Comparison between MSBBO and Standard BBO

In order to test the effectiveness of MSBBO, we compare MSBBO with BBO first in this
subsection. The standard BBO is not suitable for large-scale optimization problems, so we
compare the performance of the two algorithms on 30, 50 and 100 dimensions, respectively.
Our work does not add additional function evaluations, that is, the maximum iteration
number (T) of MSBBO should be equal to that of BBO. We set T = 1000. The mean and
standard deviation of the 51 errors are summarized in Table 3, and the last line is the
results of the Wilcoxon rank-sum test. The representative meaning of “(w/t/l)” is w(+:
win)/t(≈: tie)/l(-: lose), where “-” means that the performance of the compared algorithm
is worse than MSBBO, “+” means the compared algorithm is superior, and “≈” means the
compared algorithm is similar to MSBBO. The bolded data represents the best value in
both algorithms.



Mathematics 2024, 12, 435 12 of 35

Table 3. Comparison results of MSBBO and BBO (D = 30, 50, 100).

F
BBO (D = 30) MSBBO (D = 30) BBO (D = 50) MSBBO (D = 50) BBO (D = 100) MSBBO (D = 100)

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

f 1 1.74E+00 4.83E-01 0.00E+00 0.00E+00 1.47E+01 1.80E+01 0.00E+00 0.00E+00 3.56E+02 3.33E+03 0.00E+00 0.00E+00
f 2 1.24E+00 6.40E-02 0.00E+00 0.00E+00 3.49E+00 2.53E-01 0.00E+00 0.00E+00 1.65E+01 2.82E+00 0.00E+00 0.00E+00
f 3 6.89E+01 2.99E+02 0.00E+00 0.00E+00 2.12E+02 1.55E+03 0.00E+00 0.00E+00 7.91E+02 7.05E+03 0.00E+00 0.00E+00
f 4 9.75E+00 3.53E+00 0.00E+00 0.00E+00 2.01E+01 5.39E+00 0.00E+00 0.00E+00 4.12E+01 6.70E+00 0.00E+00 0.00E+00
f 5 1.88E+04 2.09E+07 0.00E+00 0.00E+00 5.51E+04 1.37E+08 0.00E+00 0.00E+00 2.11E+05 9.67E+08 0.00E+00 0.00E+00
f 6 4.61E+02 1.88E+05 2.42E-05 2.47E-05 1.40E+04 1.73E+08 3.03E-05 4.05E-05 2.25E+06 8.81E+11 4.52E-05 4.41E-05
f 7 1.29E+01 2.25E+01 0.00E+00 0.00E+00 6.61E+01 2.46E+02 0.00E+00 0.00E+00 8.55E+02 1.73E+04 0.00E+00 0.00E+00
f 8 8.86E-06 2.13E-10 0.00E+00 0.00E+00 1.60E-05 5.24E-10 0.00E+00 0.00E+00 2.26E-05 1.56E-09 0.00E+00 0.00E+00
f 9 8.93E-02 2.46E-04 0.00E+00 0.00E+00 2.78E-01 1.72E-03 0.00E+00 0.00E+00 2.30E+00 1.07E-01 0.00E+00 0.00E+00
f 10 3.70E+05 8.62E+10 0.00E+00 0.00E+00 1.36E+06 6.38E+11 0.00E+00 0.00E+00 9.03E+06 9.35E+12 0.00E+00 0.00E+00
f 11 1.29E+01 2.50E+01 0.00E+00 0.00E+00 7.63E+01 4.23E+02 0.00E+00 0.00E+00 8.49E+02 2.05E+04 0.00E+00 0.00E+00
f 12 1.77E+03 5.33E+05 0.00E+00 0.00E+00 2.40E+04 6.00E+07 0.00E+00 0.00E+00 9.86E+05 4.18E+10 0.00E+00 0.00E+00
f 13 4.76E+00 1.70E+00 0.00E+00 0.00E+00 1.73E+01 7.91E+00 0.00E+00 0.00E+00 8.17E+01 5.71E+01 0.00E+00 0.00E+00
f 14 4.66E+00 2.02E+00 0.00E+00 0.00E+00 1.62E+01 6.40E+00 0.00E+00 0.00E+00 6.10E+01 1.37E+01 0.00E+00 0.00E+00
f 15 1.85E+00 9.78E-02 4.44E-16 0.00E+00 2.93E+00 5.39E-02 4.44E-16 0.00E+00 4.98E+00 8.09E-02 4.44E-16 0.00E+00
f 16 8.14E-02 9.15E-04 0.00E+00 0.00E+00 4.06E-01 8.68E-03 0.00E+00 0.00E+00 3.63E+00 2.76E-01 0.00E+00 0.00E+00
f 17 1.10E+00 1.07E-03 0.00E+00 0.00E+00 1.60E+00 2.64E-02 0.00E+00 0.00E+00 8.29E+00 1.44E+00 0.00E+00 0.00E+00
f 18 2.07E+00 5.86E-02 0.00E+00 0.00E+00 3.79E+00 1.73E-01 0.00E+00 0.00E+00 8.91E+00 4.75E-01 0.00E+00 0.00E+00
f 19 3.22E+00 1.41E-01 0.00E+00 0.00E+00 7.51E+00 3.37E-01 0.00E+00 0.00E+00 2.56E+01 3.23E+00 0.00E+00 0.00E+00
f 20 5.18E-01 1.38E-01 7.07E-02 2.90E-03 6.54E-01 1.32E-01 2.93E-01 2.07E-02 3.04E+00 4.73E-01 8.21E-01 9.38E-02
f 21 3.54E+00 6.57E-01 5.95E-01 6.07E-02 6.62E+00 2.17E+00 3.54E+00 7.36E-01 3.81E+02 4.84E+05 1.53E+01 1.37E+00
f 22 4.11E+01 2.09E+01 0.00E+00 0.00E+00 8.52E+01 6.65E+01 0.00E+00 0.00E+00 2.66E+02 1.65E+02 0.00E+00 0.00E+00
f 23 4.43E+01 2.40E+02 0.00E+00 0.00E+00 2.23E+02 3.63E+03 0.00E+00 0.00E+00 2.53E+03 1.93E+05 0.00E+00 0.00E+00
f 24 3.86E+00 6.75E+00 0.00E+00 0.00E+00 1.61E+01 7.63E+01 0.00E+00 0.00E+00 1.55E+02 2.71E+03 0.00E+00 0.00E+00

w/t/l 0/0/24 - 0/0/24 - 0/0/24 -
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It can be seen from Table 3 that the numerical calculation results of the proposed
MSBBO algorithm on 24 benchmark functions (D = 30, 50 and 100) are significantly better
than those of the BBO algorithm. This shows that our work has obviously improved the
convergence accuracy of BBO. Through careful observation, it can be seen that the results of
MSBBO on 30, 50 and 100 dimensions are basically the same, indicating that its performance
is almost unaffected by dimensional changes on the lower dimensions. According to this,
MSBBO has good malleability and can challenge higher dimensions. When D = 100,
MSBBO also converges to the optimal value with zero error on 20 benchmark functions.
This shows that MSBBO acquires a better exploration ability and still preserves the exploita-
tion ability. This is because the example chasing strategy proposed in this paper blocks
the transmission of bad information of the inferior solutions to the superior solutions,
thus successfully maintaining the population diversity. The heuristic crossover strategy
can enhance the random search ability of the algorithm. It helps the population exploit
more fully in the vicinity of a superior candidate solution, thereby efficiently improving
the convergence accuracy. At the same time, the prey search–attack operator helps the
population to switch freely between global search and local search so as to quickly find
the optimal evolutionary direction. Therefore, the improvement strategies in this paper
effectively enhance the overall performance of the original BBO algorithm so that it can
achieve the balance between exploration and exploitation. The three strategies complement
each other, without excess, and work together.

Then, to provide an intuitive comparison [48,49], some convergence curves and box-
plots of MSBBO and BBO are plotted as shown in Figure 5. The convergence curve is used
to observe the convergence rate and the evolution state of the population, and the boxplot
is used to evaluate the stability of the algorithm. From Figure 5, MSBBO converges much
faster than BBO on all selected functions (D = 30, 50 and 100). Especially on the functions
f 9, f 11, f 14 and f 19, the convergence curve of MSBBO decreases rapidly, which indicates
that its population is rapidly concentrated towards the optimal solution. This shows that
the strategies in our work can accelerate the convergence speed of the original algorithm by
a large margin. Further, all the convergence trends of MSBBO on the three low-dimensions
are basically the same, and there is no obvious difference. This also proves that the con-
vergence performance of the proposed approach is not affected by dimensional changes
on low dimensions. Meanwhile, by carefully observing the boxplots, it also shows that
MSBBO is more stable and has stronger robustness than BBO. The results of 51 runs of the
BBO algorithm fluctuate greatly, and there are outliers, such as functions f 2, f 6, f 8 and f 24,
etc. MSBBO does not have any outliers, and the boxplot on all functions is almost a straight
line. This means that each search of MSBBO converges to almost the same optimal value,
providing superior consistency. In addition, both BBO and MSBBO were run 51 times
on each benchmark function (D = 100), so we calculated their respective average run
times on each function as shown in Figure 6. It can be intuitively found that the average
calculation time of MSBBO on each function is much smaller than that of BBO, which not
only improves the convergence accuracy but also saves time consumption. It also verifies
that the complexity analysis in Section 4 is correct, and MSBBO has a simpler framework
that reduces the unnecessary calculation of the immigration rate and the judgment steps
for each dimension.

According to the above experiments and discussions, the performance of MSBBO is
fully better than that of BBO. Therefore, the improvement strategies in our work successfully
enhance the optimization capacity of BBO. In particular, MSBBO improves the malleability
of the algorithm to the problem dimension.
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Figure 5. Convergence curves and boxplots of MSBBO and BBO on different benchmark functions
(D = 30, 50, 100).
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Figure 6. Average running seconds of BBO and MSBBO on each function (D = 100).

5.3. Comparison between MSBBO and BBO Variants

In this subsection, we compare MSBBO with seven excellent BBO variants: PRBBO [50],
BBOSB [51], HGBBO [42], FABBO [52], BLEHO [53], MPBBO [54] and BBOIMAM [55]. We
compare their performance on 200 dimensions. Consistent with Section 5.2, eight algo-
rithms search the optimal values on 24 benchmark functions, and the mean and standard
deviation of 51 errors are used as evaluation indexes. Table 4 shows the comparison results.
Among them, the mean error is the focus of comparison, and the bold data represent the
optimal value.

From Table 4, MSBBO outperforms all BBO variants more than 90% of the problems
according to the Wilcoxon rank-sum test. The experimental results of PRBBO and HGBBO
are the same, their convergence results on f 20 and f 21 are better than MSBBO, and they
converge to the same optimal value on f11, but the convergence results on the remaining
22 functions are worse than MSBBO. BBOSB performs better than MSBBO only on f 21
and worse on all other functions. In contrast, FABBO is the least competitive, with signifi-
cantly worse experimental results than MSBBO on all functions. In the high-dimensional
environment of 200 dimensions, MSBBO can still converge to the theoretical optimal value
on 20 benchmark functions, which is basically consistent with the results in Table 3. This
shows that the performance of the MSBBO algorithm does not decrease significantly with
the increase in dimension, and can adapt well to the high-dimensional optimization envi-
ronment. In addition, MSBBO performs better on 91.7% of the benchmark problems than
other algorithms of the same class, demonstrating the superiority of this paper’s work in
the BBO variants. It achieves more trustworthy results with a simpler algorithmic structure
and complexity. Also, for better evaluation, the convergence curves and boxplots of them
on different functions are shown in Figure 7. Obviously, MSBBO converges the fastest on
all functions and does not fall into local optima. Especially on functions f 13, f 14, f 19 and
f 23, the convergence curves of MSBBO are almost perpendicular to the horizontal axis;
the convergence speed is fast. The example chasing strategy prevents population degra-
dation, so the convergence curves of MSBBO will not fluctuate and will always converge.
Then, the heuristic crossover strategy ensures that the population search can traverse every
dimension, so MSBBO can quickly find the evolutionary direction in high-dimensional en-
vironments. Finally, the prey search–attack strategy ensures the dynamic balance between
global exploration and local exploitation of the population, and successfully improves the
convergence rate. In addition, a closer look at the boxplots shows that MSBBO has almost
no boxplot and no outliers on all benchmark functions. In contrast, other BBO variants
have erratic performance on some functions, and their algorithmic generality is relatively
low. Therefore, the improvement strategies designed in this paper effectively improve the
comprehensive performance of the original algorithm and have strong competitiveness
among BBO variants.
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Table 4. Comparison results of MSBBO and BBO variants (D = 200).

F
PRBBO (2017) BBOSB (2018) HGBBO (2020) FABBO (2021) BLEHO (2022) MPBBO (2022) BBOIMAM (2022) MSBBO

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

f 1 1.43E-02 2.09E-05 2.01E+03 6.06E+04 2.13E-15 1.23E-30 1.47E-13 1.95E-27 1.80E+02 2.65E+03 7.93E-04 1.63E-07 1.29E+02 4.84E+02 0.00E+00 0.00E+00
f 2 2.98E-02 3.18E-05 3.42E+01 1.25E+01 4.19E-11 1.56E-22 3.21E-07 6.91E-16 2.66E+01 2.54E+01 3.81E+02 7.19E+04 1.11E+01 5.55E-01 0.00E+00 0.00E+00
f 3 2.08E+03 5.83E+04 2.97E+03 6.08E+04 3.78E+03 3.27E+04 2.54E+03 6.29E+04 1.46E+05 2.34E+10 2.61E+02 5.32E+03 1.55E+03 2.19E+04 0.00E+00 0.00E+00
f 4 3.01E+01 1.99E+01 2.98E+01 7.53E+00 2.39E-02 7.06E-05 6.89E+01 1.20E+02 2.09E-02 1.67E-04 1.18E+01 3.09E+00 2.12E+01 3.17E+00 0.00E+00 0.00E+00
f 5 4.05E+05 5.84E+09 5.09E+05 2.89E+09 6.95E+05 7.22E+10 4.68E+05 4.62E+09 1.87E+05 2.02E+09 2.18E+05 4.41E+09 1.78E+05 6.67E+08 0.00E+00 0.00E+00
f 6 4.61E+01 1.68E+03 4.07E+03 1.46E+06 5.15E-02 1.35E-04 2.50E-01 3.86E-03 7.06E+03 4.18E+06 8.82E-01 3.27E-01 3.86E+04 8.48E+07 4.81E-05 4.41E-05
f 7 1.98E-02 5.78E-05 2.20E+01 4.68E+00 1.28E-16 6.78E-33 1.02E-13 3.38E-28 3.04E+01 1.59E+01 3.51E-04 8.51E-08 1.41E+02 2.83E+02 0.00E+00 0.00E+00
f 8 2.35E-21 1.17E-41 2.29E-05 6.36E-10 1.24E-109 2.68E-218 8.64E-01 3.33E-01 1.91E-23 7.38E-46 1.86E-19 8.30E-38 1.60E-06 4.63E-12 0.00E+00 0.00E+00
f 9 1.40E-03 7.94E-08 2.31E+05 2.39E+10 4.94E-12 3.90E-24 1.99E-08 2.94E-18 4.69E+00 3.14E+00 1.65E-04 1.47E-09 1.74E+00 3.74E-02 0.00E+00 0.00E+00
f 10 2.32E+01 9.02E+01 3.98E+05 6.59E+09 3.59E-10 2.85E-20 7.12E+01 6.03E+03 1.02E+07 5.47E+12 2.77E+04 1.42E+08 1.01E+06 6.47E+10 0.00E+00 0.00E+00
f 11 0.00E+00 0.00E+00 4.75E+01 4.72E+01 0.00E+00 0.00E+00 4.54E+01 1.82E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.52E+02 2.70E+02 0.00E+00 0.00E+00
f 12 7.56E+01 7.15E+02 3.30E+05 1.82E+09 1.22E-11 8.06E-23 3.76E-09 4.10E-18 2.06E+06 6.25E+10 3.59E+01 6.74E+01 5.17E+05 2.37E+09 0.00E+00 0.00E+00
f 13 6.63E+02 6.61E+02 7.12E+02 2.79E+03 1.31E-11 2.21E-22 1.14E+03 1.11E+04 3.34E+02 4.49E+03 3.99E+02 4.80E+03 1.02E+02 1.64E+02 0.00E+00 0.00E+00
f 14 5.08E+02 7.19E+02 5.15E+02 2.58E+03 4.40E-04 2.96E-07 1.28E+03 1.76E+04 2.65E+02 2.27E+04 4.85E+02 3.67E+03 8.06E+01 3.05E+01 0.00E+00 0.00E+00
f 15 1.26E-02 3.66E-06 3.11E+00 4.65E-02 1.99E+01 6.88E-04 1.60E+00 4.80E-01 3.63E+00 5.71E-02 6.84E+00 6.53E+01 2.26E+00 1.79E-02 4.44E-16 0.00E+00
f 16 9.36E-01 6.22E-01 3.81E+01 1.74E+01 4.32E-02 3.99E-04 6.42E+00 8.08E+01 2.44E+01 2.45E+01 9.14E+00 8.52E+00 3.73E+00 5.73E-01 0.00E+00 0.00E+00
f 17 5.28E-03 3.29E-06 1.78E-01 4.85E-04 1.11E-16 0.00E+00 3.84E-03 2.21E-05 1.26E+00 1.28E-03 2.79E-03 1.35E-05 2.31E+00 2.83E-02 0.00E+00 0.00E+00
f 18 2.81E+00 3.55E-02 4.71E+00 8.88E-02 4.01E-01 3.98E-03 2.12E+00 2.09E-01 4.19E+00 7.28E-02 1.42E+00 2.51E-02 5.67E+00 4.96E-02 0.00E+00 0.00E+00
f 19 9.38E-01 8.32E-03 1.88E+02 2.05E+01 6.87E-10 4.51E-20 6.35E+01 3.29E+01 1.26E+02 1.36E+02 8.27E-01 9.15E-03 4.10E+01 1.62E+00 0.00E+00 0.00E+00
f 20 2.06E-02 3.31E-04 1.76E+00 2.49E-01 7.96E-06 3.26E-12 7.82E+00 1.06E+01 1.14E+01 4.55E+00 3.49E+00 2.35E+00 6.89E-02 1.59E-04 9.47E-01 7.06E-02
f 21 2.73E-01 1.79E-02 1.84E+01 2.05E+01 8.71E-04 1.11E-07 1.09E+02 8.51E+03 5.11E+01 2.38E+02 2.52E-02 6.21E-04 6.59E+00 6.89E-01 3.21E+01 2.05E+00
f 22 1.17E+02 1.02E+02 6.11E+02 2.38E+03 2.42E-03 5.70E-07 1.25E+03 7.29E+03 1.09E+03 5.35E+03 4.06E+02 7.15E+04 3.13E+02 1.75E+02 0.00E+00 0.00E+00
f 23 7.21E-01 1.03E-01 1.22E+02 8.72E+01 4.34E-15 1.81E-29 4.16E+00 7.08E+00 1.70E+02 1.61E+02 2.11E-02 2.94E-04 4.70E+02 4.07E+03 0.00E+00 0.00E+00
f 24 8.75E+00 8.98E+00 1.85E+03 8.66E+04 8.30E-01 5.30E-02 1.90E-01 5.15E-03 2.65E+01 4.97E+01 2.95E+00 2.06E+00 2.15E+01 3.55E+01 0.00E+00 0.00E+00

w/t/l 2/1/21 1/0/23 2/1/21 0/0/24 0/1/23 1/1/22 2/0/22 -
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Figure 7. Convergence curves and boxplots of MSBBO and BBO variants on different benchmark
functions (D = 200).

To sum up, the performance of MSBBO is better than that of PRBBO, BBOSB, HGBBO,
FABBO, BLEHO, MPBBO and BBOIMAM. Compared to the same type of algorithm, MSBBO
has outstanding ductility and is more suitable for high-dimensional optimization problems.
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5.4. Comparison between MSBBO and Other Meta-Heuristic Algorithms

To further verify the superiority of MSBBO for solving large-scale optimization prob-
lems, we compare it with seven meta-heuristic algorithms proposed in the past few
years: GWO [56], WOA [13], SSA [57], ChOA [58], MPA [59], GJO [60] and BWO [61].
Among them, GWO, WOA, SSA, ChOA and MPA are highly cited algorithms. GJO and
BWO are the novel algorithms proposed in the last years which are competitive. There-
fore, MSBBO can further verify its advancement by comparing with these outstanding
algorithms. We compare their performance on 500 dimensions. Similarly, the mean and
standard deviation of 51 errors are used as evaluation indexes. Table 5 shows the experi-
mental results, and the bold data represent the optimal value.

According to Table 5, MSBBO still has the best overall performance among the eight
new meta-heuristic algorithms, with the minimum mean error obtained on 22 functions
and zero error on 20 functions. GWO converges to the theoretical optimal value on three
functions ( f 11, f 13 and f 23), while the results on the remaining 21 functions are inferior to
MSBBO. WOA converges to the theoretical optimal value only on the function f 9, and the
experimental results on the remaining functions are inferior to MSBBO. SSA and BWO
converge to relatively better results among the eight compared algorithms on f 20 and
f 21, the results on f 11 are equal to MSBBO, and the results on the other functions are
inferior to MSBBO. However, ChOA and GJO do not show some competitiveness, and the
experimental results on 24 benchmark functions are inferior to MSBBO. In contrast, SSA
and MPA are more competitive. MPA outperforms MSBBO on two functions ( f 20 and f 21)
and converges to the optimal solution on eight functions ( f 8, f 9, f 11, f 13, f 14, f 17, f 19 and
f 23). Although these novel algorithms show excellent performance on low-dimensional
problems, their precision obviously decreases when solving high-dimensional optimization
problems. On the contrary, even when D = 500, MSBBO converges error-free to the optimal
value of the objective function on 20 problems. In other words, our work is still clearly
competitive among different types of meta-heuristic algorithms, so it is advanced. A careful
comparison between Tables 4 and 5 shows that the experimental results of MSBBO on
200 dimensions are almost the same as on 500 dimensions. Therefore, the improvement
strategies in our work enable the population to search in a high-dimensional environment,
and the algorithm performance has good ductility.

For a better evaluation of MSBBO and the seven new meta-heuristic algorithms,
Figure 8 shows the convergence curves and boxplots of them on different problems. It
can be found that the MSBBO algorithm converges much faster than other competitors on
different benchmark functions, saving at least 1500 iterations and not falling into the local
optima. Especially on functions f 13, f 14, f 15, f 19 and f 23, MSBBO converges rapidly, and
the convergence curve is almost invisible. Further, even if D = 500, the boxplot of MSBBO
on different functions is almost invisible, and the algorithm performance remains stable.
This shows that MSBBO can continue to challenge higher-dimensional problems.



Mathematics 2024, 12, 435 19 of 35

Table 5. Comparison results of MSBBO and other meta-heuristic algorithms (D = 500).

F
GWO (2014) WOA (2016) SSA (2019) ChOA (2019) MPA (2020) GJO (2022) BWO (2022) MSBBO

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

f 1 6.10E-56 5.02E-56 4.90E-103 2.03E-102 5.73E-05 1.32E-04 1.06E-12 9.06E-13 2.92E-125 7.86E-125 1.31E-16 1.49E-16 1.89E-04 1.51E-04 0.00E+00 0.00E+00
f 2 1.00E-33 6.29E-34 1.15E-108 3.19E-108 6.69E-03 5.18E-03 2.18E-09 1.27E-09 1.63E-06 1.15E-05 4.44E-140 5.38E-140 1.83E-02 7.94E-03 0.00E+00 0.00E+00
f 3 7.02E+03 5.32E+03 7.97E+03 3.52E+02 1.22E+00 3.08E+00 6.57E+02 4.06E+02 2.90E-02 2.01E-02 1.05E+04 1.05E+04 1.39E+00 1.26E+00 0.00E+00 0.00E+00
f 4 9.94E+01 7.07E+01 9.89E+01 3.91E-01 1.05E-04 9.49E-05 2.63E+02 2.13E+02 6.28E-42 9.13E-42 2.13E+02 1.76E+02 3.50E-04 1.57E-04 0.00E+00 0.00E+00
f 5 4.82E+05 2.99E+05 4.32E+07 2.83E+07 2.89E+00 2.67E+00 1.31E+06 6.79E+05 3.30E+02 6.46E+02 1.80E+07 1.12E+07 9.73E+00 7.54E+00 0.00E+00 0.00E+00
f 6 6.84E-03 3.73E-03 2.00E+02 2.81E+02 3.52E-03 3.15E-03 6.51E-03 3.31E-03 2.59E-04 1.11E-04 2.74E+05 1.82E+05 2.31E-03 1.40E-03 4.98E-05 5.99E-05
f 7 3.83E-56 3.73E-56 1.73E-102 1.13E-101 1.00E-05 1.75E-05 2.64E-13 1.89E-13 6.28E-126 1.02E-125 1.60E-15 2.02E-15 7.46E-05 6.95E-05 0.00E+00 0.00E+00
f 8 5.65E-24 6.55E-24 1.40E-05 2.08E-05 2.60E-12 6.30E-12 2.61E+00 1.92E+00 0.00E+00 0.00E+00 2.15E-06 2.35E-06 1.20E-12 1.40E-12 0.00E+00 0.00E+00
f 9 3.89E-15 3.31E-15 0.00E+00 0.00E+00 4.19E-04 3.59E-04 8.62E-11 5.33E-11 0.00E+00 0.00E+00 4.66E-16 2.54E-16 1.26E-03 4.90E-04 0.00E+00 0.00E+00
f 10 2.56E-53 1.85E-53 2.51E-102 1.55E-101 1.05E+00 1.71E+00 6.21E-10 5.63E-10 1.01E-121 3.56E-121 4.16E-26 5.50E-26 5.85E+00 5.03E+00 0.00E+00 0.00E+00
f 11 0.00E+00 0.00E+00 2.81E+01 3.49E+01 0.00E+00 0.00E+00 1.40E-01 3.51E-01 0.00E+00 0.00E+00 5.64E+02 4.66E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 12 4.23E-52 2.49E-52 1.34E-98 1.68E-98 1.39E+00 1.16E+00 8.24E-09 6.54E-09 8.73E-122 1.61E-121 9.39E-15 1.11E-14 2.95E+00 1.60E+00 0.00E+00 0.00E+00
f 13 0.00E+00 0.00E+00 1.25E+02 5.98E+02 7.46E-06 1.48E-05 3.88E-06 4.23E-06 0.00E+00 0.00E+00 1.17E+03 1.50E+03 4.42E-05 4.06E-05 0.00E+00 0.00E+00
f 14 1.24E+00 1.48E+00 7.29E+01 1.49E+02 1.34E-05 2.52E-05 2.82E-01 2.85E-01 0.00E+00 0.00E+00 8.99E+01 8.57E+01 3.69E-05 2.41E-05 0.00E+00 0.00E+00
f 15 9.05E-14 7.37E-14 3.25E+00 7.11E+00 1.64E-04 1.58E-04 5.13E+01 4.48E+01 4.44E-15 0.00E+00 1.08E-10 1.21E-10 4.77E-04 2.40E-04 4.44E-16 0.00E+00
f 16 2.01E-32 2.16E-32 3.13E+01 5.94E+01 2.32E-04 2.24E-04 1.83E-07 1.93E-07 2.77E-75 7.32E-75 2.55E+01 2.76E+01 1.85E-03 6.85E-04 0.00E+00 0.00E+00
f 17 6.05E-04 2.99E-03 1.22E-03 5.39E-03 4.19E-06 1.12E-05 1.14E-02 1.34E-02 0.00E+00 0.00E+00 1.81E-02 2.12E-02 1.55E-05 1.48E-05 0.00E+00 0.00E+00
f 18 2.69E-01 1.39E-01 1.22E+00 5.44E-01 6.06E-04 1.01E-03 2.20E-01 1.34E-01 1.60E-01 4.95E-02 4.27E+00 2.85E+00 1.93E-02 1.86E-02 0.00E+00 0.00E+00
f 19 5.24E-14 7.35E-14 6.75E-14 8.46E-14 2.17E-01 1.51E-01 5.22E-08 4.40E-08 0.00E+00 0.00E+00 2.06E-13 1.69E-13 5.17E-01 2.59E-01 0.00E+00 0.00E+00
f 20 1.22E+00 1.04E+00 2.34E+05 1.58E+05 1.19E-09 2.14E-09 2.45E+00 1.99E+00 2.66E-02 3.30E-03 4.80E+04 2.68E+04 1.86E-04 2.52E-04 1.09E+00 3.05E-02
f 21 8.61E+01 5.98E+01 1.47E+05 9.36E+04 4.57E-07 1.31E-06 9.03E+01 4.26E+01 3.84E+01 1.08E+00 9.46E+04 6.91E+04 4.24E-06 3.10E-06 8.30E+01 4.75E+00
f 22 2.27E-15 9.95E-16 4.51E-65 6.96E-65 6.88E+00 4.09E+00 3.72E-03 2.28E-03 1.63E-43 4.36E-43 9.25E-82 1.04E-81 1.57E+01 2.86E+00 0.00E+00 0.00E+00
f 23 0.00E+00 0.00E+00 1.40E-16 4.57E-16 2.77E-04 5.38E-04 4.36E-11 4.60E-11 0.00E+00 0.00E+00 4.77E-15 3.19E-15 1.96E-03 1.86E-03 0.00E+00 0.00E+00
f 24 4.10E-06 4.43E-06 1.60E-05 4.39E-05 7.55E-07 1.22E-06 1.50E-06 1.45E-06 2.27E-124 1.15E-123 1.55E-01 1.04E-01 4.66E-06 4.38E-06 0.00E+00 0.00E+00

w/t/l 0/3/21 0/1/23 2/1/21 0/0/24 2/8/14 0/0/24 2/1/21 -
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10-4 Boxplots of eight algorithms
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Figure 8. Convergence curves and boxplots of MSBBO and other meta-heuristic algorithms on
different benchmark functions (D = 500).

According to the above analysis, for large-scale optimization problems, the perfor-
mance of MSBBO is significantly better than that of GWO, WOA, SSA, ChOA, MPA, GJO
and BWO in both solution quality and convergence speed. In addition, the convergence per-
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formance of MSBBO on 500 dimensions is not overtly different from that on low dimensions,
so the performance is maintained well.

5.5. Comparison of MSBBO on Different High Dimensions

Although problems with more than 100 dimensions are defined as high-dimensional
optimization problems. But in fact, many large-scale optimization problems in human
society go far beyond 100 dimensions, and even beyond thousands of dimensions. In this
context, the ability of the algorithm to adapt to high-dimensional optimization environment
needs to be as strong as possible. In order to conduct a more thorough examination and
testing, we compare the performance of MSBBO on the dimensions of 500, 1000, 2000,
5000 and 10,000, respectively. The mean error and standard deviation of the results are
summarized in Table 6. As shown in Table 6, except for f 20 and f 21, MSBBO basically
converges to the same results on 10,000 dimensions as on 500 dimensions. Though the
accuracy is reduced on f 6, it does not exceed two exponential levels. Therefore, in the
search space below 10,000 dimensions, the convergence accuracy of MSBBO is basically not
affected by the dimensions. Then, to fully demonstrate the advantages of MSBBO in high-
dimensional environments, some convergence curves of MSBBO on different dimensions
are plotted and shown in Figure 9.

From Figure 9, it is not difficult to conclude that with the increase in dimensions,
the convergence curves of MSBBO are basically the same. There is no obvious separation
of the convergence curves on different dimensions. In other words, there is basically no
difference in the domain structure of populations on different dimensions, and they can
also gather quickly in a high-dimensional space. The performance of most meta-heuristic
algorithms decreases significantly with the increase in dimension, but the performance
of MSBBO is relatively little affected by the change of dimension. It is fair to say that
we have taken on a very challenging job, as there are very few algorithms that can plot
the effects of Figure 9. Our algorithm has great advantages in solving high-dimensional
optimization problems.
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Figure 9. Convergence curves of MSBBO on f 1, f 3, f 7, f 10, f 16 and f 24 (D = 500, 1000, 2000, 5000
and 10,000).
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Table 6. Results obtained by MSBBO on 24 benchmark functions ( D = 500, 1000, 2000, 5000 and 10,000).

F
MSBBO (D = 500) MSBBO (D = 1000) MSBBO (D = 2000) MSBBO (D = 5000) MSBBO (D = 10,000)

Mean Std Mean Std Mean Std Mean Std Mean Std

f 1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 6 4.98E-05 5.99E-05 5.10E-05 3.81E-05 5.37E-05 9.76E-05 5.87E-05 6.03E-05 6.02E-05 5.94E-05
f 7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 15 4.44E-16 0.00E+00 4.44E-16 0.00E+00 4.44E-16 0.00E+00 4.44E-16 0.00E+00 4.44E-16 0.00E+00
f 16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 17 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 20 1.09E+00 3.05E-02 1.13E+00 1.79E-02 1.16E+00 6.15E-02 1.16E+00 6.31E-02 1.17E+00 6.43E-02
f 21 8.30E+01 4.75E+00 1.67E+02 9.49E+00 3.32E+02 1.97E+01 8.46E+02 3.09E+01 1.90E+03 4.12E+01
f 22 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 23 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f 24 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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5.6. Application on Engineering Design Problems

Finally, we are also concerned about the application value of MSBBO in practical
problems. To simply verify the usefulness of MSBBO, we apply it to the following six real-
world engineering optimization problems: pressure vessel design, tension/compression
spring design, welded beam design, speed reducer design, step-cone pulley problem
and robot gripper problem. At the same time, these problems are also solved by some
new advanced optimization techniques. Therefore, we selected six optimization methods
(COA [62], EDO [63], OMA [64], SHO [65] and SCSO [66]) just proposed in 2023 to compare
the results to fully verify the superiority and competitiveness of MSBBO. The population
size of all algorithms is 50, and the maximum number of iterations is 1000.

The six engineering design problems are all constrained optimization problems. When
using meta-heuristic algorithms to solve constraint optimization problems, besides the
performance of the algorithm, the processing technology of constraint conditions is also
very important. If the treatment of constraints is not applicable, even the algorithm with
superior performance cannot search for the optimal solution. In order to make the six
engineering problems meet the use conditions of the meta-heuristic algorithm and the
experimental results more dependent on the search ability of the algorithm, we choose the
penalty function method in literature [67] to deal with the constraints of these problems:

Minimize

F(−→x ) = f (−→x )±
(

p

∑
i=1

aiGi(
−→x ) +

q

∑
j=1

bj Hj(
−→x )

)
Gi(

−→x ) = max
(
0, gi(

−→x )
)η

Hj(
−→x ) =

∣∣hj(
−→x )
∣∣λ

(13)

Gi(
−→x )is the inequality constraint, Hj(

−→x ) is the equality constraint, p is the number
of inequality constraints, q is the number of equality constraints, ai and bj are constant, η
and λ is equal to 1 or 2. For this penalty method, when the candidate solution violates any
constraint, the value of the objective function increases, pushing the population into the
feasible region from the infeasible solution [67].

5.6.1. Pressure Vessel Design

The goal of the pressure vessel design problem is to minimize the cost of fabrica-
tion [68]. As shown in Figure 10, L is the section length of the cylinder part without
considering the head, R is the inner wall radius of the cylinder part, Ts and Th are the wall
thicknesses of the cylinder part and the head, respectively [68]. Therefore, Ts, Th, R and
L are the four optimization variables. The mathematical formulation and four constraint
functions are shown in Equation (14). The optimal results of the six comparison algorithms
are summarized in Table 7, and the convergence curves of the objective function on this
problem are shown in Figure 11.

Figure 10. Pressure vessel design problem.



Mathematics 2024, 12, 435 24 of 35

X = [x1, x2, x3, x4] = [Ts, Th, R, L]

minimize f (X) = 0.6224x1x3x4 + 1.7781x2x2
3

+ 3.1661x2
1x4 + 19.84x2

1x3

s.t. g1(X) = −x1 + 0.0193x3 ≤ 0

g2(X) = −x2 + 0.00954x3 ≤ 0

g3(X) = −πx2
3x4 − 4πx3

3/3 + 1296000 ≤ 0

g4(X) = x4 − 240 ≤ 0

where 0 ≤ xi ≤ 100, i = 1, 2; 10 ≤ xi ≤ 200, i = 3, 4

(14)

Table 7. Results for pressure vessel design problem.

Algorithm
Optimal Values for Variables

Optimal Cost
Ts Th R L

COA 0.78425309 0.38785440 40.63463345 195.95592683 5902.85656647
EDO 0.77997855 0.38558510 40.38924403 199.85289900 5909.44930611
OMA 0.77827133 0.38470014 40.32491200 199.92634333 5885.51298728
SHO 0.78255188 0.38700919 40.54668188 196.86310662 5893.43974421
SCSO 0.79522133 0.38960618 40.66736096 195.21548366 5976.11395352
MSBBO 0.77816864 0.38464916 40.31961873 200 5885.33277894

Figure 11. Optimal convergence curves on pressure vessel design problem.

As can be seen from Table 7 and Figure 11, our work achieves a smaller objective
function value (5885.33277894) than the other five new technologies, which further op-
timizes the pressure vessel design problem. Under the condition of satisfying various
constraints, MSBBO gives a new and better solution: [Ts, Th, R, L] = [0.77816864, 0.38464916,
40.31961873, 200].

5.6.2. Tension/Compression Spring Design

The tension/compression spring design problem is to minimize the weight of the
spring while meeting the constraints of minimum deflection, vibration frequency, and shear
stress [69]. As shown in Figure 12, it consists of three variables: the wire diameter (d),
the mean coil diameter (D) and the number of active coils (P). The mathematical model is
given in Equation (15). The results are summarized in Table 8, and the convergence curves
are shown in Figure 13. It is not difficult to find that MSBBO finds the value of the objective
function (0.01266959) with higher precision when all variables conform to the constraint.
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In contrast, the results of COA, EDO and SHO are also very close to our algorithm. As new
optimization techniques, they also provide reliable solutions.

Figure 12. Tension/compression spring design problem.

X = [x1, x2, x3] = [d, D, P]

minimize f (X) = (x3 + 2)x2x2
1

s.t. g1(X) = 1 −
x3

2x3

71785x4
1
≤ 0

g2(X) =
4x2

2 − x1x2

12566
(
x2x3

1 − x4
1
) + 1

5108x2
1 − 1

≤ 0

g3(X) = 1 − 140.45x1

x2
2x3

≤ 0

g4(X) =
x1 + x2

1.5
− 1 ≤ 0

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.

(15)

Table 8. Results for tension/compression spring design problem.

Algorithm
Optimal Values for Variables

Optimal Cost
d D P

COA 0.05122526 0.34565821 12.14215544 0.01269823
EDO 0.05190445 0.36182344 11.22500450 0.01267212
OMA 0.05356063 0.40339534 8.53973118 0.01272961
SHO 0.05058048 0.33062883 13.22719241 0.01268814
SCSO 0.05718457 0.50390409 5.53685327 0.01318243
MSBBO 0.05120413 0.34516305 12.26044071 0.01266959

Figure 13. Optimal convergence curves on tension/compression spring design problem.



Mathematics 2024, 12, 435 26 of 35

5.6.3. Welded Beam Design

The objective of the welding beam design problem is to obtain the minimum manufac-
turing cost [70]. As shown in Figure 14, this optimization problem has four variables that
need to be calculated: the thickness of the weld (h), the length of the attached part of the bar
(l), the height of the bar (t), and the thickness of the bar (b). Then, there are seven constraints
that need to be satisfied in this optimization design [70]. These constraints include shear
stress (τ), bending stress in beam (σ), deflection of beam end (δ) and buckling load of
bar (Pb). The mathematical model of this problem is given in Equation (16). Similarly,
Table 9 shows the optimal results of the six comparison algorithms, and Figure 15 shows
the convergence curves of the objective function on the welded beam design problem.

Figure 14. Welded beam design problem.

x⃗ = [x1x2x3x4] = [h, l, t, b]

minimize f (x⃗) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2),

g1(x⃗) = τ(x⃗)− τmax ⩽ 0,

g2(x⃗) = σ(x⃗)− σmax ⩽ 0,

g3(x⃗) = δ(x⃗)− δmax ⩽ 0,

g4(x⃗) = x1 − x4 ⩽ 0,

g5(x⃗) = P − Pc(x⃗) ⩽ 0,

g6(x⃗) = 0.125 − x1 ⩽ 0,

g7(x⃗) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)− 5.0 ⩽ 0

0.1 ⩽ x1 ⩽ 2,

0.1 ⩽ x2 ⩽ 10,

0.1 ⩽ x3 ⩽ 10

0.1 ⩽ x4 ⩽ 2

τ(x⃗) =
√
(τ′)2 + 2τ′τ′′ x2

2R
+ (τ′′)2,

τ′ =
p√

2x1x2
, τ′′ =

MR
J

, M = P
(

L +
x2

2

)
,

R =

√
x2

2
4

+

(
x1 + x3

2

)2

,

J = 2

{
√

2x1x2

[
x2

2
4

+

(
x1 + x3

2

)2
]}

,

σ(x⃗) =
6PL
x4x2

3
, δ(x⃗) =

6PL3

Ex2
3x4

Pc(x⃗) =
4.013E

√
x2

3 x6
4

36
L2

(
1 − x3

2L

√
E

4G

)
,

P = 6000 lb, L = 14 in., δmax = 0.25 in.,

E = 30 × 106 psi, G = 12 × 106 psi,

τmax = 13, 600 psi, σmax = 30, 000 psi

(16)
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Table 9. Results for welded beam design problem.

Algorithm
Optimal Values for Variables

Optimal Cost
h l t b

COA 0.18479628 3.68381216 9.22577702 0.19867497 1.69837299
EDO 0.19793629 3.36058378 9.18941514 0.19902434 1.67299413
OMA 0.19883231 3.33736530 9.19202432 0.19883231 1.67021773
SHO 0.17440082 3.86323716 9.20290796 0.19878156 1.70196639
SCSO 0.17898507 3.68017384 9.47591891 0.19754191 1.72245954
MSBBO 0.19883231 3.33736530 9.19202432 0.19883231 1.67021773

Figure 15. Optimal convergence curves on welded beam design problem.

According to the experimental results, MSBBO and OMA search for the same optimal
solution: [h, l, t, b] = [0.19883231, 3.33736530, 9.19202432, 0.19883231]. The values of the
variables obtained by the two algorithms are exactly equal (1.67021773). This shows that
the performance of the two methods is not significantly different on the welded beam
design problem. As a newly proposed optimization technique, OMA has been fully tested
theoretically. Therefore, it can be considered that the solving ability of MSBBO on this
problem has reached the level of advanced optimization technology.

5.6.4. Speed Reducer Design

The purpose of the speed reducer design problem is to minimize the cost when the
11 constraints are met [71]. The problem consists of seven decision variables as shown in
Figure 16. Its mathematical model is shown in Equation (17). Similarly, six optimization
methods are used to search for optimal decision variables and objective function values
for this problem. The experimental results and convergence curves are shown in Table 10
and Figure 17, respectively. It can be found that MSBBO also obtains the optimal objective
function value of the six algorithms. In addition, the EDO, OMA and SHO calculations are
also very close to our work, and the solutions they provide are also worth referring to.

Figure 16. Speed reducer design problem.
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x⃗ = [x1, x2, x3, x4, x5, x6, x7] = [b, m, z, l1, l2, d1, d2]

minimize
f4(x⃗) = 0.7854x1x2

2
(
3.3333x2

3 + 14.9334x3 − 43.0934
)

−1.508x1
(
x2

6 + x2
7
)
+ 0.7854x1

(
x4x2

6 − x5x2
7
)
.

g1(x⃗) =
27

x1x2
2x3

− 1 ≤ 0,

g2(x⃗) =
397.5

x1x2
2x2

3
− 1 ≤ 0,

g3(x⃗) =
1.93x2

4
x2x4

6x3
− 1 ≤ 0,

g4(x⃗) =
1.93x2

5

x2x4
7x3

− 1 ≤ 0,

g5(x⃗) =

((
74x4
x2x3

)2
+ 16.9 × 106

)0.5

110x3
6

− 1 ≤ 0,

g6(x⃗) =

((
745x5
x2x3

)2
+ 157.5 × 106

)0.5

85x3
7

− 1 ≤ 0,

g7(x⃗) =
x2x3

40
− 1 ≤ 0,

g8(x⃗) =
5x2

x1
− 1 ≤ 0,

g9(x⃗) =
x1

12x2
− 1 ≤ 0,

g10(x⃗) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x⃗) =
1.1x7 + 1.9

x5
− 1 ≤ 0.

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3,

2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

(17)

Table 10. Results for the speed reducer design problem.

Algorithm
Optimal Values for Variables

Optimal Cost
b m z l1 l2 d1 d2

COA 3.50000068 0.7 17 7.3 8.007338125 3.354940375 5.286998297 3002.176768192
EDO 3.50025780 0.70000066 17 7.3 7.723941215 3.350658886 5.286670403 2994.758133972
OMA 3.5 0.7 17 7.3 7.715319911 3.350540949 5.286654465 2994.424465758
SHO 3.50004682 0.7 17 7.30178682 7.715591607 3.350558567 5.286654691 2994.469209053
SCSO 3.51205842 0.7 17 7.3 7.766370701 3.351151796 5.286672013 3000.448065947
MSBBO 3.50000001 0.7 17 7.30000014 7.715320035 3.350540986 5.286654467 2994.424489954
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Figure 17. Optimal convergence curves on the speed reducer design problem.

5.6.5. Step-Cone Pulley Problem

This problem requires the design of a step-cone pulley based on the values of five
decision variables [72]. Among them, the four design variables are the diameter of each
step (d1, d2, d3, d4), and the last design variable is the width of the pulley (w) as shown
in Figure 18. The problem consists of 11 constraint adjustments, of which 3 are equality
constraints and 8 are inequality constraints, to ensure that all step sizes, tension ratios,
and belt transfer power are the same. Its mathematical model is shown in Equation (18).

For the sake of discussion, Table 11 shows the optimal results of all comparison
algorithms, and Figure 19 shows their convergence curves on this problem. According to
the results in Table 11, it can be concluded that MSBBO can still obtain the ideal optimal
solution in several advanced algorithms on the step-cone pulley problem. In addition,
OMA also obtains the same precision as the MSBBO objective function value (8.18149598).
In Figure 19, the MSBBO convergence curve is at the bottom and coincides with the OMA
convergence curve. But they have different decision variable values. This shows that
the optimal solution of the same problem is not unique, and our work provides new
design parameter values for the step-cone pulley problem: [d1, d2, d3, d4, w] = [16.96572695,
28.25753037, 50.79673307, 84.49572374, 89.99999337].

Figure 18. The step-cone pulley problem.
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minimize: f (x̄) = ρω

[
d2

1

{
11 +

(
N1

N

)2
}
+ d2

2

{
1 +

(
N2

N

)2
}

+d2
3

{
1 +

(
N3

N

)2
}
+ d2

4

{
1 +

(
N4

N

)2
}]

h1(x̄) = C1 − C2 = 0,

h2(x̄) = C1 − C3 = 0,

h3(x̄) = C1 − C4 = 0

gi=1,2,3.4(x̄) = −Ri ≤ 2,

gi=1,2,3.4(x̄) = (0.75 × 745.6998)− Pi ≤ 0

Ci =
πdi

2

(
1 +

Ni
N

)
+

(
Ni
N − 1

)2

4a
+ 2a, i = (1, 2, 3, 4)

Ri = exp
(

µ

{
π − 2 sin−1

{(
Ni
N

− 1
)

di
2a

}})
, i = (1, 2, 3, 4)

Pi = st!(1 − Ri)
πdi Ni

60
, i = (1, 2, 3, 4), t = 8 mm

s = 1.75 MPa, µ = 0.35, ρ = 7200 kg/m3, a = 3 mm

(18)

Table 11. Results for step-cone pulley problem.

Algorithm
Optimal Values for Variables

Optimal Cost
d1 d2 d3 d4 w

COA 17.43376313 29.03743308 50.95003894 89.57133620 89.72893135 8.80527504
EDO 17.00069596 28.33533123 50.82602160 84.55984091 89.95618331 8.19564986
OMA 16.96572313 28.25752810 50.79671071 84.49571607 90 8.18149598
SHO 17.12626161 28.25787354 50.79728294 84.49688761 89.99901887 8.19717274
SCSO 18.25834926 28.68767069 51.89516285 88.88993899 88.65129296 8.75660602
MSBBO 16.96572695 28.25753037 50.79673307 84.49572374 89.99999337 8.18149598

Figure 19. Optimal convergence curves on the step-cone pulley problem.

5.6.6. Robot Gripper Problem

The optimization goal of the robot gripper problem is to minimize the difference
between the maximum and minimum force [73]. It is by the gripper end displacement
of the range applied to the gripper. This problem consists of seven consecutive decision
variables: a, b, c, d, e, f and δ as shown in Figure 20. The robot gripper problem needs to
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satisfy seven inequality constraints, which is complex. Its mathematical model is shown in
Equation (19). As with the other problems, the results of the six comparison algorithms
are summarized in Table 12, and Figure 21 shows their convergence curves. It is not
difficult to see that MSBBO, as an enhanced variant of BBO, is significantly better than
the other five new meta-heuristic algorithms when seven inequality constraints are met.
This shows that our improvement strategies have effectively enhanced the application
value of BBO. Therefore, MSBBO can also be widely used on engineering constrained
optimization problems.

Figure 20. The robot gripper problem.

minimize f (x) = max
z

Fk(x, z)− min
z

Fk(x, z)

g1(x) = Ymin − y(x, Zmax) ≥ 0,

g2(x) = y(x, Zmax) ≥ 0, g3(x) = y(x, 0)− Ymax ≥ 0,

g4(x) = YG − y(x, 0) ≥ 0, g5(x) = (a + b)2 − l2 − e2 ≥ 0,

g6(x) = (l − Zmax)
2 + (a − e)2 − b2 ≥ 0,

g7(x) = l − Zmax ≥ 0,

g =
√
(l − z)2 + e2, α = arccos

(
a2 + g2 − b2

2ag

)
+ ϕ

β = arccos
(

b2 + g2 − a2

2bg

)
− ϕ

ϕ = arctan
(

e
l − z

)
+ ϕ, Fk =

(
Pb sin(α + β)

2c cos(α)

)
y(x, z) = 2(e + f + c sin(β + δ))

Ymin = 50, Ymax = 100, P = 100

YG = 150, Zmax = 100, P ≤ 0 ≤ c ≤ 200

10 ≤ a, b, f ≤ 150, 100 ≤ c ≤ 1 ≤ δ ≤ 3.14

0 ≤ e ≤ 50, 100 ≤ l ≤ 300, 1 ≤ δ

(19)

Table 12. Results for the robot gripper problem.

Algorithm
Optimal Values for Variables

Optimal Cost
a b c d e f δ

COA 149.99754208 149.65008561 159.71207516 0.00198394 10.06515284 115.49379010 1.57052121 3.49048709
EDO 149.96736172 98.92864085 199.99158377 49.94588624 150 124.89353758 2.86707789 3.55150434
OMA 147.04217688 134.34472269 200 12.48032203 149.35062039 106.73574813 2.44307744 2.84065650
SHO 144.95148508 144.77644040 100.00021186 0.05032617 11.72681600 100.42656588 1.36167252 5.26168942
SCSO 149.14088858 148.88101175 148.11100725 0.04507554 60.56845351 108.40010554 1.99300044 3.63308379
MSBBO 149.61527355 149.39619170 199.20669308 8.60E-16 149.63248094 108.80577404 2.42474600 2.69788610
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Figure 21. Optimal convergence curves on the robot gripper problem.

6. Conclusions

This paper proposes a comprehensive multi-strategy enhanced BBO variant. Firstly,
the example chasing strategy is proposed to effectively maintain the population diversity.
Then, the heuristic crossover strategy is designed to enhance the search ability of the
algorithm. Finally, the prey search–attack strategy is designed to balance the exploration
and exploitation of the algorithm, which improves the convergence accuracy and speed
effectively. MSBBO makes BBO suitable for high-dimensional optimization environments.
Compared to other BBO variants (PRBBO, BBOSB, HGBBO, FABBO, BLEHO, MPBBO
and BBOIMAM), MSBBO uses only three improvement strategies to greatly improve the
BBO convergence performance, which enables it to effectively solve high-dimensional
optimization problems and has simpler computational complexity than the original BBO.
At the same time, MSBBO is compared with seven latest meta-heuristic algorithms (GWO,
WOA, SSA, ChOA, MPA, GJO and BWO). Experimental results show that MSBBO has
better performance than all compared algorithms and is more suitable for solving large-
scale optimization problems. Further, MSBBO and five new optimization techniques (COA,
EDO, OMA, SHO and SCSO) are used to solve six engineering problems, and the results
show that our work is also more competitive than these new optimization techniques.

Because the algorithm can effectively balance exploration and exploitation, and can
adapt to high-dimensional optimization environments, it is expected to perform well in
multi-objective problems. In addition, in the case of hardware equipment, we can try to
implement this algorithm in a distributed way and solve more complex practical problems.
Therefore, we plan to implement it in a distributed manner in future studies. Moreover, it
can also be combined with other techniques in the search area of optimization problems,
such as local or global search methods, to improve its performance. Meanwhile, it can
be used to solve many complex problems, such as feature selection, image segmentation,
job-shop scheduling and vehicle routing problems, as well as optimization node positioning
problems in systems. Therefore, we will pay more attention to the application of the MSBBO
algorithm for complex optimization problems in the future.
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