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Abstract: Geomagnetic field measurements indicate that at present we may be on the brink of the
Earth’s magnetic field reversal, potentially resulting in all the accompanying negative consequences
for the mankind. Mathematical modelling is necessary in order to find precursors for reversals and
excursions of the magnetic field. With this purpose in mind, following the Podvigina scenario for the
emergence of the reversals, we have studied convective flows not far (in the parameter space) from
their onset and the onset of magnetic field generation, and found a flow demonstrating reversals of
polarity of some harmonics comprising the magnetic field. We discuss a simulated regime featuring
patterns of behaviour that apparently indicate future reversals of certain harmonics of the magnetic
field. It remains to be seen whether reversal precursors similar to the observed ones exist and might
be applicable for the much more complex geomagnetic dynamo.
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1. Introduction

The Earth’s magnetic field is predominantly a dipole, which is almost coaxial with
the axis of rotation of the Earth (the angle between the axes is approximately 10◦). It is
now accepted that the field is generated by the hydromagnetic dynamo in the melted outer
core [1]. The paleomagnetic analyses [2] provided evidence of its existence already as long
as 4.2 billion years ago and of a period of efficient generation by convection 4.1–4.0 billion
years ago.

Paleomagnetic data also revealed the dynamic nature of the geomagnetic field (see,
e.g., the review [3]). The discovery of magnetic anomalies, which have a “zebra-like”
stripe structure and are roughly parallel to mid-ocean ridges, and which are interpreted
as the record of the Earth’s magnetic field reversals in the ocean floor minerals, turned
out to be the conclusive proof leading to full acceptance of the theory of plate tectonics [4].
During the last forty million years, typically once in several hundred thousand – one
million years, a reversal of the field happens, in which its polarity changes to the opposite
one [1]. The duration of epochs of constant polarity varies randomly. In earlier times, its
variability was higher, and the so-called superchrones, i.e., periods of stable polarity that
can be up to several dozen million years long, are encountered. A polarity reversal can
take up to 10–20 thousand years. As witnessed by the marine paleomagnetic record, rever-
sals and excursions are usually accompanied by collapses of the geomagnetic dipole [5],
during which the geomagnetic dipole moment decreases by a factor of 2–5 relative to its
temporal mean [6]; in the course of the recent Laschamp excursion, the total field reduced
by a factor of 10 [7].

The last reversal started ∼795 thousand years ago and ended 22 thousand years
later [8,9]. Although on geological time scales reversals occur almost instantaneously, they
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are complex phenomena. For instance, the last reversal featured fluctuations of the virtual
magnetic pole position, departures from the dipole configuration of the field and variation
in the geomagnetic field intensity. The actual switching of polarity within this process
could have happened as fast as in just 100 years [10].

The observed behaviour of the geomagnetic field may indicate that a new reversal
or excursion is at present in preparation. The field intensity has been decaying by 5% per
century since at least 1840, when regular measurements of the geomagnetic field began,
or even since 1500 [11], while the quadrupole moment significantly increased since 1800 [1].
The first determination of the North magnetic pole position (defined as a location where
the magnetic field is vertical) was carried out in 1831 in the Arctic Canada. Since then, the
pole has been moving towards Siberia with the speed of 0–15 km/year, which increased
between 1990 and 2005 to the present values of 50–60 km/year. By extrapolation [12],
over the decade of the 2020s it will travel 390–660 km further in the direction of Siberia.
The trajectory of the magnetic pole is not so straight on longer time scales: over the last
7000 years it moved chaotically around the geographic North pole [13].

No consensus has yet been achieved on how to interpret this behaviour of the mag-
netic pole. While the collected data indicate that a new reversal may have now started
unfolding [14], a reversal or an excursion is not expected earlier than in 500–1000 years [15],
and the similarity between the structure of the field at present and prior to the two most
recent excursions, the Laschamp (∼41 thousand years ago) and Mono Lake (∼34 thousand
years ago) excursions, suggests it will not happen in the relatively near future [16].

The presence of the geomagnetic field is necessary for the existence of life on the surface
of the Earth. It prevents the solar wind from blowing off the atmosphere of the Earth and
protects it from high-energy cosmic particles. It is unknown whether the magnetic field
remains strong enough during the entire reversal to keep its dispersive and protective
properties. Accumulated oxygen escape during intervals of an increased reversal rate
could have resulted in catastrophic drops of oxygen content in the atmosphere, causing
the decrease in marine biodiversity for millions of years at the levels characteristic of mass
extinctions [17]. The Laschamp and Mono Lake geomagnetic excursions are synchronous
with the extinction of the Neanderthals; the reduction in the shielding efficiency of the
magnetosphere could yield a significant depletion of the ozone layer, causing an increase in
the UV-B radiation in Europe by at least 15–20% and thus contributing to their demise [18].
By contrast, the numerical estimates of [19] suggest that during the least favourable time
interval of the minimum field and domination of the quadrupole magnetic component
over the dipole one during a reversal, the galactic cosmic ray flux increases at the ground
by factor 3 or less, and the maximum permissible dose of radiation will not be exceeded;
consequently, these authors expect a magnetic reversal to be non-fatal for the mankind
and nature. A short review [20] summarises the direct influence of a reduction in the
magnetic field (such as in buildings with steel reinforcement or during space flights) on
living organisms, concluding that while the number of studies is clearly insufficient, some
adverse effects are likely, for instance, on the development of embryons, cell signalling (by
changing the contents of ions, e.g., calcium) and cardiovascular systems.

The advanced technological development of the mankind makes it vulnerable to the
decrease in the geomagnetic field during magnetic pole excursions and dipole reversals.
The increasing solar and cosmic radiation during the periods of unfavourable space weather
are likely to adversely affect the everyday life of every human, to induce a negative
impact on the economic infrastructure (e.g., causing failures of communication systems and
electrical power grids), to inflict harm on agriculture and food supply, and to compromise
national security. “The combined effects of losses in the satellite, electrical and agricultural
infrastructures resulting from a worst-case CME [Sun’s coronal mass ejections] event hitting
the Earth during a reversal could spell disaster for the nation’s [US] economy. . . . It is
very likely the real economic loss would be at least several trillion dollars in the first year
alone” [21]. The study concludes that “The nation [USA] is ill prepared to handle a disaster
on the scale of a CME direct hit during a geomagnetic reversal”. Although some statements
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in [21] are scientifically wrong (such as “The geodynamo theory will remain unproven
until enough research and scientific advancements occur to determine the origin of the
magnetic field”), it is difficult to disagree with its recommendation to increase significantly
the funding for geomagnetism monitoring and research. (It is notable that these issues are
within the scope of the US Air Force research interests.)

This implies the practical significance of studying the process of a reversal. Modelling
the Earth’s dynamo proved to be a very resource-consuming numerical problem because
of the extreme parameter values involved (see, e.g., the review [22] and an account of the
latest developments in the geodynamo modelling [23]). Nevertheless, the occurrence of the
dipole reversals was encountered in simulations. The first one was found by Glatzmaier
and Roberts [24,25], and subsequently several reversals were found in [26–28].

A computational model of a dynamo in a rotating spherical shell driven by compo-
sitional convection was used to simulate over 6 million years of paleomagnetic time [29].
It mimicked the main features of the Earth’s magnetic field evolution: a predominantly
dipole morphology of the external field exhibiting stable polarity epochs; these epochs are
interrupted by dipole collapses; some of the collapses give rise to reversals or excursions.
Two dipole collapses, one resulting and another one not resulting in a reversal, were anal-
ysed in detail. The dipole mode reduction was found to be several times stronger before a
reversal than in its absence. Initially, the reversed field is generated inside the fluid layer
due to the convective intermittency, and subsequently patches of the reversed magnetic
flux appear on the boundary and move towards the poles. The behaviour of the Earth’s
magnetic field since 1840 is compatible with this picture, but the high-latitude reversed flux,
which is observed in the geomagnetic field, is too weak to forecast an imminent reversal.
Other approaches (such as [30–33]) to the problem of the geomagnetic reversal prediction
rely on the fact that a significant reduction in the axial dipole close to a reversal is observed
in the paleomagnetic data and do not suggest that a reversal will occur within the next
10 thousand years.

In contrast with other approaches known in the literature, we do not aim to advance
as close as possible to the range of parameters describing the conditions in the outer core
of the Earth; rather, we use the parameter values that do not demand excessive numerical
resources (the CPU time and memory for computing regimes with an adequate spatial
resolution and of a duration sufficient for analysis) for obtaining regimes with the magnetic
field reversals. In line with this philosophy, we consider the dynamo problem in a plane
layer. This emphasises the fundamental properties of solutions not related to a specific
geometry (a spherical layer) of the volume of the electrically conducting fluid in the outer
core of the Earth and significantly simplifies the computations.

From the dynamical systems point of view, a reversal may be linked to the symme-
try reversing the direction of magnetic field and to the presence of heteroclinic cycles
connecting weakly unstable magnetohydrodynamic (MHD) regimes with the magnetic
field of the opposite polarity. A scenario (i.e., a sequence of bifurcations) taking an MHD
dynamical system to a regime involving magnetic field reversals was proposed in [34].
Briefly, on increasing a control parameter (for instance, the magnetic Prandtl number)
upon the onset of magnetic field generation, this nonlinear dynamical system follows the
standard sequence of bifurcations yielding a steady state, a periodic orbit, a two-frequency
quasiperiodic regime and a chaotic attractor. Close (in the parameter space) to the onset of
chaos, the chaotic attractors are not wide in the “magnetic direction”, but they grow in size
as the control parameter is further increased. Since the system possesses the magnetic field
reversal symmetry, initially there exist two separate attractors related by this symmetry (or
more, due to other symmetries, which may be present in the system), but at some point
they become so large that they touch each other and join into a single one, thus giving rise
to a regime with magnetic field reversals.

Dynamo simulations reveal that stronger convection, slower rotation and lower elec-
trical conductivity are beneficial for reversals [35].
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Guided by these ideas, we have attempted to find convective MHD regimes involving
the magnetic field reversals. The statement of the problem and the numerical methods
used are described in the next section. In Section 3 we present a convective hydromagnetic
dynamo that demonstrates a heteroclinic behaviour. The reversals of magnetic harmonics
that it features are discussed in Section 4 together with the behaviour peculiarities of certain
harmonics that seem to be of a prognostic value. Finally, the last section contains some
remarks and conclusions.

2. Statement of the Problem

We consider thermal convection in a plane layer of electrically conducting incom-
pressible fluid in the presence of a generated magnetic field. No external magnetic field
is imposed. The fluid is rotating about the vertical axis. The Boussinesq approximation is
assumed. The flow velocity, v, is governed by the Navier–Stokes equation that involves
the Archimedes (buoyancy), Coriolis and Lorentz forces. The magnetic field, b, obeys the
magnetic induction equation. The temperature deviation from the steady linear profile at
equilibrium, θ = T − T0 − (T1 − T0)x3, satisfies the heat transfer equation. In the reference
frame co-rotating with the layer of fluid, 0 ≤ x3 ≤ 1, the nondimensionalised equations
take the following form:

∂v
∂t

= v× (∇× v) + P∇2v + PRaθe3 + Pτv× e3 −∇p− b× (∇× b), (1a)

∂b
∂t

=∇× (v× b) +
P

Pm
∇2b, (1b)

∂θ

∂t
= − (v · ∇)θ + v3 +∇2θ. (1c)

Here, p is the modified pressure; T0 and T1 are constant temperatures at the horizontal
boundaries x3 = 0 and x3 = 1, respectively; and em are unit vectors of the employed
Cartesian coordinate system; e3 is vertical; the components of vector fields in this basis
are enumerated by superscripts. The usual nondimensional parameters are the Rayleigh
number, Ra; the Prandtl number, P; the magnetic Prandtl number, Pm; and the Taylor
number, Ta (τ/2 =

√
Ta/2 being the nondimensional angular velocity of the fluid rotation

about the vertical axis). The standard procedure [36] of nondimensionalisation is assumed
(which is summarised, e.g., in [37]); we stress, however, that we consider here abstract
convective MHD regimes without bearing in mind any specific physical system. The
equations are supplemented by the solenoidality conditions

∇ · v = 0, ∇ · b = 0. (1d)

We assume stress-free perfectly electrically conducting horizontal boundaries, where
the following conditions are satisfied:

∂v1

∂x3

∣∣∣∣
x3=0,1

=
∂v2

∂x3

∣∣∣∣
x3=0,1

= v3
∣∣∣
x3=0,1

= 0, (2a)

∂b1

∂x3

∣∣∣∣
x3=0,1

=
∂b2

∂x3

∣∣∣∣
x3=0,1

= b3
∣∣∣
x3=0,1

= 0, (2b)

θ
∣∣∣
x3=0,1

= 0. (2c)

In the horizontal directions x1 and x2, the fields are supposed to have the periods L1 and L2,
respectively. The boundary conditions (2) imply the time independence of the horizontal
components of the mean (over the volume of a periodicity cell) flow and magnetic field;
we set them to zero, meaning that no external magnetic field is imposed and the reference
frame co-moving with the horizontal mean flow is used.
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Solutions to the equations have been computed by the standard pseudospectral meth-
ods [38] in the form of truncated Fourier series which satisfy the boundary conditions (2):

v(x, t) =
[N1/2]

∑
n1=−[N1/2]

[N2/2]

∑
n2=−[N2/2]

N3−1

∑
n3=0




v1
n(t) cos(πn3x3)

v2
n(t) cos(πn3x3)

v3
n(t) sin(πn3x3)


e2πi(n1x1/L1+n2x2/L2), (3a)

b(x, t) =
[N1/2]

∑
n1=−[N1/2]

[N2/2]

∑
n2=−[N2/2]

N3−1

∑
n3=0




b1
n(t) cos(πn3x3)

b2
n(t) cos(πn3x3)

b3
n(t) sin(πn3x3)


e2πi(n1x1/L1+n2x2/L2), (3b)

θ(x, t) =
[N1/2]

∑
n1=−[N1/2]

[N2/2]

∑
n2=−[N2/2]

N3−1

∑
n3=0

θn(t) sin(πn3x3)e2πi(n1x1/L1+n2x2/L2). (3c)

Integration in time has been carried out by the third-order Runge-Kutta method ETD3RK [39]
with the exponential time differencing, which was previously successfully used in [37,40,41].

3. The Convective Dynamo Exhibiting a Heteroclinic Behaviour

The dependence of convective MHD regimes on the Taylor number was investigated
in [42] for the parameter values P = 1, Pm = 8, Ra = 2300 and L1 = L2 =

√
8 that had been

previously considered in the study of convective dynamo [43]. For Ta varying from
0 to 2000, an abundance of regimes was encountered in [42], including MHD steady
states (13 branches), time-periodic (8 branches), two-frequency quasiperiodic and chaotic
regimes, as well as a finite Feigenbaum period-doubling sequence of bifurcations of a torus
producing a chaotic regime and a torus with 1/3 of the cascade frequency. Bifurcations
in which these branches emerged and disappeared and the symmetries of the regimes
constituting the branches were identified.

The nonlinear stability of the space-periodic steady state for Ta = 675 from the branch
SR1

8 [42] was studied in [41] allowing for perturbations, whose period in the direction xi is
Mi times larger for integer Mi ≤ 4. The perturbed regime in the unitary periodicity box (for
M1 = M2 = 1) involves the flow comprised of distorted “wavy” rolls capable of magnetic
field generation. The chaotic behaviour in the double periodicity box for M1 = 2, M2 = 1 is
associated with a heteroclinic cycle connecting a generating double-frequency quasiperiodic
regime and a non-generating steady state.

Following the ideas discussed in the Introduction, we have attempted a (rather limited
so far) search for regimes with reversals in the vicinity of the above-mentioned parameter
values by varying the Rayleigh number. Simulations have revealed that a similar behaviour
displaying reversals is shown by some harmonics of the regime for

P = 1, Pm = 8, Ra = 2200, Ta = 675, L1 =
√

32, L2 =
√

8, (4)

which we discuss in the sequel. For these parameter values, the time-stepping with the step
length of 0.001 has been performed for N1 = 255, N2 = 127, N3 = 97 —this resolution was
found sufficient in computations [41].

Figure 1 presents the kinetic, Ev, and magnetic, Eb, energies averaged, like in [41],
over the volume of the periodicity cell as functions of time. We observe that the regime
consists of what we call segments; each such segment starts when the magnetic energy
falls to a local minimum below 10−6. The durations of the segments vary chaotically,
although moderately; the mean duration of a segment is 117 time units. All the segments
follow the same sequence of the so-called phases, which we are now commenting on.

The details of the evolution of the MHD fields are better seen in Figure 2, a blow-up
of Figure 1 for the time interval between 1000 and 1100. A new segment starts at t ≈ 1050.
The magnetic field grows exponentially, while the kinetic energy remains approximately
constant (phase i, see the lower plateau of Ev ≈ 106.9). The end of the plateau is marked
by a sharp decrease in Ev to values below 50 followed by an upsurge of the kinetic energy
giving rise to a plateau at a higher level Ev ≈ 116.2 (phase ii). The coincidence of the
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heights of the first and third plateaux of Ev suggests that essentially this is the same flow,
but nevertheless the magnetic energy exponentially decays, while the kinetic energy is
constant at the first plateau level, but it grows, albeit not exponentially, during the entire
time interval spanned by the third plateau. Figures 3–5 display isosurfaces of the kinetic
energy density (panel (a)) and isolines of the flow velocity components on the horizontal
midplane and on vertical cross-sections of the periodicity box (panels (b)–(d)). The plots
are the flow snapshots at times t = 1042.996 (Figure 3, the first plateau, phase vi), 1052.996
(Figure 4, the second plateau, phase i) and 1056.996 (Figure 5, the third plateau, phase ii).
They attest that in phases i, ii and vi the flow consists of rolls.

Version January 25, 2024 submitted to Mathematics 5 of 20
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Figure 1. The time dependence of the kinetic (lower plot, black curve) and magnetic (upper plot,
blue line) energy.
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[N2/2]

∑
n2=−[N2/2]

N3−1

∑
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

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Figure 3. Visualisation of the rolls parallel to the line x1 = x2, emerging in phases vi of segments of
the dynamo evolution: isosurfaces of the energy density at the level of half the maximum over the
periodicity cell (a); isolines of the vertical flow component v3 on the half [0, L2]

2 of the horizontal
periodicity cell on the mid-plane x3 = 1/2 for the values -13 to 13 step 2 (b); the flow velocity
component (blue intervals) normal to the direction of the rolls axes on a regular mesh and isolines
of the length of the component (c) and isolines of the flow velocity component parallel to the rolls
axes (d) on two vertical rectangles normal to the axes. In (c), the bottom side of the rectangle has
the vertices (L2/2, L2/2, 0) and (L2, 0, 0), and in (d) (0, L2, 0) and (L2, 0, 0). In (c), the red endpoints
indicate the directions of the flow velocity component. Isolines in (c) (in (d)) are plotted for the
values from 1 to 12 step 1 (from -14 to 14 step 2, respectively). In (d), isolines for non-negative
(negative) values are shown by solid (dashed, respectively) lines. Small ticks in (b)–(d) indicate the
direction of the decreasing values.

Figure 3. Visualisation of the rolls parallel to the line x1 = x2, emerging in phase vi of segments of
the dynamo evolution: isosurfaces of the energy density at the level of half the maximum over the
periodicity cell (a); isolines of the vertical flow component v3 on the half [0, L2]

2 of the horizontal
periodicity cell on the midplane x3 = 1/2 for the values −13 to 13 step 2 (b); the flow velocity
component (blue intervals) normal to the direction of the roll axes on a regular mesh and isolines
of the length of the component (c); and isolines of the flow velocity component parallel to the roll
axes (d) on two vertical rectangles normal to the axes. In (c), the bottom side of the rectangle has
the vertices (L2/2, L2/2, 0) and (L2, 0, 0), and in (d) (0, L2, 0) and (L2, 0, 0). In (c), the red endpoints
indicate the directions of the flow velocity component. Isolines are plotted for the values from 1 to
12 step 1 in (c) and from −14 to 14 step 2 in (d). In (d), isolines for non-negative (negative) values
are shown by solid (dashed, respectively) lines. Small ticks in (b–d) indicate the direction of the
decreasing values.
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Figure 4. Visualisation of the rolls, parallel to the axis x2, emerging in phases i of segments of the
dynamo evolution: (a)–(d) same as in Fig. 3, except for in (c) and (d) the bottom side of the shown
rectangle has the vertices (0, 0, 0) and (0, L2, 0) and isolines in (d) are plotted for the values from -10
to 10 step 2.

(Fig. 4, the second plateau, phase i) and 1056.996 (Fig. 5, the third plateau, phase ii). They 201

attest that in phases i, ii and vi the flow is comprised of rolls. 202

During the end phase vi of the previous segment (the first plateau in Fig. 2), the axes 203

of the rolls become parallel to the diagonal x1 = x2 of the rolls square of periodicity (see 204

Fig. 3). The horizontal size of each roll is L1
√
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cell is L2
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2 = 4. It contains two flow periods in this direction, as seen in Fig. 3 (d). In 207

order to increase the resolution of the figure, Fig. 3 (c) shows cross-sections of a pair of 208

adjacent rolls rotating in the opposite directions in a half of this rectangle.) Surprisingly, 209

this orientation of the rolls during phases vi is the same in all segments. (It must be noted 210

that rolls with the axes parallel and normal to the line x1 = x2 are not equivalent – and 211

they have different stability properties, – because rotation by 90◦ is not a symmetry of 212

the system unless the horizontal periodicity cell of the allowed perturbations is a square.) 213

Independent magnetic field computations for the fixed flow attest that they are capable 214

of kinematic magnetic field generation. The fast decay of the magnetic energy Eb during 215

Figure 4. Visualisation of the rolls, parallel to the axis x2, emerging in phase i of segments of the
dynamo evolution: (a–d) same as in Figure 3, except for in (c,d) the bottom side of the shown rectangle
has the vertices (0, 0, 0) and (0, L2, 0), and isolines in (d) are plotted for the values from −10 to 10
step 2.

During the end phase vi of the previous segment (the first plateau in Figure 2), the axes
of the rolls become parallel to the diagonal x1 = x2 of the rolls’ square of periodicity (see
Figure 3). The horizontal size of each roll is L1

√
2/4 = 1. (The length of the bottom side of

the largest vertical rectangle normal to the line x1 = x2 inside the original periodicity cell is
L2
√

2 = 4. It contains two flow periods in this direction, as seen in Figure 3d. In order to
increase the resolution of the figure, Figure 3c shows cross-sections of a pair of adjacent
rolls rotating in opposite directions in a half of this rectangle.) Surprisingly, this orientation
of the rolls during phase vi is the same in all segments. (It must be noted that rolls with the
axes parallel and normal to the line x1 = x2 are not equivalent—and they have different
stability properties—because rotation by 90◦ is not a symmetry of the system unless the
horizontal periodicity cell of the allowed perturbations is a square.) Independent magnetic
field computations for the fixed flow attest that they are capable of kinematic magnetic
field generation. The fast decay of the magnetic energy Eb during phase vi is therefore a
transitory phenomenon: the plateaux are too short for the magnetic field to restructure
itself into the configuration, where the growing magnetic mode(s) becomes dominant so
that Eb starts increasing. The minimum of the magnetic energy heralds the beginning of
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phase i (the lower plateau), the rolls rotate by 45◦, their axes become parallel to the shortest
side of the main rectangle of periodicity (i.e., to the x2 axis) and they become L1/3-periodic
(see Figure 4). (Figure 4 shows a half of the largest side of the periodicity cell, i.e., 3/2 of
the flow period.) Afterwards, their axes rotate further by 45◦ about the vertical axis in the
same direction (see Figure 5) while the kinetic energy Ev switches from the lower to the
upper plateau, marking the transition to phase ii. (The sizes of the rectangles shown in
Figure 5 and of the rolls are now the same as in Figure 5). The two changes in the flow
orientation are illustrated by plots of isolines of the flow velocity components parallel and
perpendicular to the roll axes in panels (b)–(d) of Figures 3–5.
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Figure 5. Visualisation of the rolls, normal to the line x1 = x2, emerging in phases ii of segments of
the dynamo evolution: (a)–(d) same as in Fig. 3, except for in (c) the bottom side of the rectangle has
the vertices (L2/2, L2/2, 0) and (L2, L2, 0), and in (d) (0, 0, 0) and (L2, L2, 0).

Figure 5. Visualisation of the rolls, normal to the line x1 = x2, emerging in phase ii of the segments
of the dynamo evolution: (a–d) same as in Figure 3, except for in (c) the bottom side of the rectangle
has the vertices (L2/2, L2/2, 0) and (L2, L2, 0), and in (d) (0, 0, 0) and (L2, L2, 0).
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Separate computations for b = 0 have revealed that none of the rolls is stable with
respect to convective (amagnetic) perturbations. Examples of a trajectory following a
heteroclinic connection in the Rayleigh–Bénard convection in the rotating layer of fluid and
visiting rolls of different orientation were (in a purely convective setup) discussed in [44];
changes in the roll orientation were attributed to the action of the Küppers–Lortz instability
constrained by the periodicity conditions in the horizontal directions. The same mechanism
is at work in the present case; this explains why the horizontal sizes of the rolls remain
close (being constrained by the spatial periodicity, the sizes of individual rolls change in
phases vi, i, ii from 1 to

√
8/9 and back to 1, respectively).

Upon termination of the three phases vi, i and ii associated with the rolls, a quasiperi-
odic phase iv sets in after a considerably long transitory phase iii (spanning the time interval
roughly 1059 < t < 1074 in Figure 2). In phase iv, the regime involves two basic temporal
frequencies, 0.263 and 1.767; the respective periods, 3.802 and 0.566, are well visible in
Figure 2. The flow generates the magnetic field, and the magnetic energy grows expo-
nentially, experiencing low-amplitude oscillations. The flow involves structures featuring
significantly different spatial scales such as thin filaments and large vortices comparable in
size to the smaller period L1 (see Figure 6). This flow is stable with respect to convective
(amagnetic) perturbations. When the field becomes relatively strong (Eb exceeds 0.1 at
t ≈ 1015 in Figure 2), its kinematic generation cannot be sustained any longer, and phase v
of the saturated field evolution starts. The magnetic energy continues to oscillate near its
highest values, surges to the maximum and engages afterwards in an exponential decay.
This manifests the beginning of a new segment.
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Figure 6. Isosurfaces of the kinetic (left) and magnetic (right) energy densities at the level of 0.35 of
their respective maxima at time t = 848.996 (phase iv).
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In principle, all connections between the heteroclinic nodes might be designated
separate phases of the regime. However, since, unlike phases iii and v, the two transitions
between the rolls are abrupt, introducing separate phases for these heteroclinic connections
seems unjustified. The exact locations of the boundaries between phases are not well
defined. Oscillations with the two basic frequencies of phase iv set in almost immediately
upon termination of phase ii, although initially they are polluted by noise. While in phase
iii the trajectory approaches the invariant quasiperiodic flow in the hydrodynamic subspace
of the phase space from a relatively long distance, in the subsequent phase iv this approach
is gradually offset by an increasing departure in the magnetic subspace.

Thus, in each segment of the evolution of the dynamo at hand, the trajectory in the
phase space follows a heteroclinic cycle, joining four weakly unstable stationary convective
(amagnetic) objects, all generating magnetic field kinematically: the steady states comprised
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of rolls parallel to the x2 axis, or parallel to the diagonals of their horizontal periodicity
square, and a two-frequency quasiperiodic flow. These nodes are always visited by the
heteroclinic cycle in the same order. The first three segments (up to t ≈ 280) are signifi-
cantly further from the heteroclinic cycle than all the subsequent segments: we observe,
for instance, that their duration is smaller than that of the subsequent segments, and their
magnetic energy Eb falls to much higher (order 0.001) values towards the end of a segment
than at the end of the subsequent segments (when the values Eb < 10−6 are admitted).

The nodes of the heteroclinic cycle and the dominant magnetic modes that they can
generate kinematically are characterised by different groups of symmetries. Here is the list
of the independent symmetries that they possess:

• Diagonal rolls (phase vi), whose axes are parallel to the diagonal x1 = x2 of the
horizontal periodicity cell. The flow symmetries: rγx2

L2/2, γx1
α γx2

α (any shift along the
roll axes), s2. The L1/2-periodicity of the rolls in x1 is a consequence of the first two
symmetries: γx1

L1/2 = γx1
L2

γx2
L2
(rγx2

L2/2)
2. The dominant magnetic mode symmetries:

γx1
L1/2 (the mode has the periodicities of the generating rolls), qrγx2

L2/2, s2 (it has the
Bloch structure exp(i(x1 + x2)/L2)B(x1 − x2, x3); the growth rate is 2.15).

• Rolls along the shortest side of the horizontal periodicity box (phase i). The flow
symmetries: γx2

α , rγx1
L1/6, s2. The dominant magnetic mode symmetries: qγx2

L2/2,
qrγx1

L1/6, qs2. Two dominant modes are associated with a real eigenvalue 1.0 and
have the Bloch structure exp(±ix2/L2)B(x1, x3).

• Diagonal rolls (phase ii), whose axes are normal to the diagonal x1 = x2 of the hori-
zontal periodicity cell. The flow symmetries are the same as those of the diagonal rolls
of phase vi. The dominant magnetic mode symmetries: qγx1

L1/2, qrγx2
L2/2, s2 (the mode

has the Bloch structure exp(i(x1 − x2)/L2)B(x1 + x2, x3)); the growth rate is 0.48).
• The time-dependent quasiperiodic regime (phases iii− v). The flow and the dominant

magnetic mode (its growth rate is 0.14) have the symmetry rγx2
L2/2.

We use the same notation for symmetries, as in [41,42]: γxn
α : (x1, x2, x3) 7→ (x1 + α, x2, x3)

for n = 1, 2 are shifts in the directions of the horizontal Cartesian axes xn (above, the shift α
is arbitrary); s2 : (x1, x2, x3) 7→ (−x1,−x2, x3) is the reflection in horizontal planes about
the origin (an appropriate horizontal shift of the origin of the coordinate system may be
necessary for detecting this symmetry); and r : (x1, x2, x3) 7→ (x1, x2, 1− x3) is the reflection
about the horizontal midplane. Finally, the symmetry q : (v, θ, b) 7→ (v, θ,−b) reverses the
magnetic field.

The symmetries explain why the magnetic field decays during phase vi: while the
dominant magnetic mode generated in phases iii–v by the quasiperiodic flow has the
symmetry rγx2

L2/2, in the subsequent phase vi the dominant magnetic mode has the opposite
symmetry qrγx2

L2/2; the field component having this symmetry is significantly inhibited
during the preceding phases iii–v.

4. Polarity Reversals of Harmonics and Their Precursors

Individual harmonics constituting the magnetic field (more precisely, their coefficients
in the expansions (3), but we will not make this distinction in what follows) feature
significantly different patterns of behaviour shown in Figure 7: either they “burst” shortly
after a segment begins, have a small amplitude and decay fast (for instance, Im b3

1,1,2 shown
in the upper panel) or are activated near the middle of a segment and oscillate, having a
substantial amplitude that varies in time significantly until the field demise at the end of the
segment; the oscillations are either almost symmetric about zero (e.g., Im b3

1,1,1, the middle
panel) or show a major trend towards non-zero values of a specific sign (e.g., Im b2

4,0,0,
the lower panel). The prevailing sign of the coefficient of a harmonic of the latter type
varies between the segments seemingly randomly; it is natural to interpret the change in
the sign as the occurrence of a polarity reversal of the respective harmonic.
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Figure 7. Three major types of the temporal evolution of magnetic field harmonics: Im b3
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For this reason, the convective dynamo regime under discussion has attracted our at-
tention as a testbed for the investigation of the problem whether the forecasting of magnetic
reversals is possible. While the study [29] suggests a positive answer, it proved impossible
to find precursors of reversals in the paleomagnetic data. This question, therefore, remains
so far open.

Figure 8 shows the evolution of the coefficients of two harmonics: Re b1
0,1,0 (blue) and

Re b1
0,2,0 (black and red colours). The former one is averaged over intervals of 10 time

units to obtain a clear indication of the prevailing sign of this harmonic (this operation
is analogous to integrating a harmonic over a segment to find its prevailing sign, like we
proceed for the harmonic Re b1

0,2,0). It is activated in the beginning of a segment, when
the rolls parallel to the x2-axis persist, as a part of the magnetic field generated by these
rolls, decreases almost to zero during the transition between phases i and ii, again grows
exponentially during phase ii, but quickly decays and stays at the noise level until the end
of the segment. The latter one, Re b1

0,2,0, is excited when the transition to the quasiperiodic
regime in phase iii begins. This harmonic has a preferred polarity, clearly visible in most
segments (e.g., at 760 < t < 900, segment № 8, the dominant sign of the coefficient is
negative; we assign successive numbers to the segments in the ascending time order),
although not in all (e.g., at 500 < t < 610, segment № 6, and in the next segment, № 7).
For determining the polarity of a harmonic in each segment, we integrate the coefficient
for this harmonic over time from the beginning of the segment of interest (for Re b1

0,2,0 the
integrals are shown in green in Figure 8), and the sign of the integral at the end of the
segment is interpreted as the preferred polarity of the harmonic in this segment. A change
in polarity at the turn of a segment is regarded as a reversal (in Figure 8, in segments ending
with reversals, the plot of Re b1

0,2,0 is shown in red).
Version January 25, 2024 submitted to Mathematics 13 of 20
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Figure 8. Temporal evolution of two magnetic field harmonics: Re b1
0,1,0 (blue line, right vertical axis)

averaged over 10 time units and Re b1
0,2,0 (left vertical axis, black and red lines), and the integral of

Re b1
0,2,0 over time from the beginning of a segment (left vertical axis, green lines). The segments that

are followed by a reversal of the magnetic field harmonic Re b1
0,2,0 are shown in red.
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We do not use the first three segments for testing the regularities potentially prognostic
for reversals, since during this initial time interval the regime has not yet saturated: for
instance, the minimum magnetic energy does not fall off to the standard values below 10−6

in the beginning of these segments (Figure 1), and the bursts of Re b1
0,1,0 are anomalously

strong (Figure 8). Out of the total of 11 full segments (the last segment № 15 is incomplete)
available for the analysis, 8 segments end up in a reversal of Re b1

0,2,0.
The following pattern is notable: a reversal of Re b1

0,2,0 occurs at the end of segment
№ N if and only if in segments № N-1 and № N the spikes of Re b1

0,1,0 are of different signs.
This regularity is violated only once: in the beginning of segments № 6 and № 7 (the red
segments № 3 and № 4 in Figure 8), the spikes of Re b1

0,1,0 have the same sign, but a reversal
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occurs at the end of segment № 7 (this may just reflect the fact that in both segments the
integrals are significantly less than their typical values in other segments and thus the
polarity of Re b1

0,2,0 is not sufficiently well defined).
This pattern of the magnetic field behaviour is apparently associated with the structure

of the heteroclinic network (which is complex due to the presence of many symmetries)
in the phase space of the dynamical system under consideration. It appears that the
trajectory chooses early on the symmetry subspace and the heteroclinic cycle it will follow,
and this choice is reflected both in what will be the sign of the harmonic Re b1

0,1,0 and which
symmetry subspace will be selected in the next segment affecting the prevailing sign of
Re b1

0,2,0. It remains to be understood, however, why this mechanism operates with a delay
of two segments.

The collapse of the dipole component of the magnetic field in the numerical model [29]
was preceded by the emergence of magnetic flux spots of reverse polarity on the surface
of the Earth and their poleward migration. The mathematical nature of this precursor,
formulated in physical terms in [29], may be similar to the one identified here: some time
before the reversal, a change in sign occurs in a group of harmonics of wave numbers larger
than unity, which an observer perceives as the appearance of a magnetic flux spot or spots
of reverse polarity.

Similarly, necessary conditions for reversals of individual magnetic field harmonics
have been identified, which are also formulated in terms of the behaviour of certain
harmonics prior to the reversals. We discuss now two potentially prognostic regularities
of this kind, one involving a magnetic field harmonic only and another one involving
flow harmonics.

The temporal evolution of the harmonic Re b1
0,0,1 is shown in Figure 9. Four reversals

occur during the time span of the 11 segments of the computed time series that are amenable
for the analysis; the segments that terminate in a reversal of this harmonic are shown in
red. (The prevailing signs of the harmonic in each segment are well defined, and we
do not show the plots of the sign-detecting integrals.) Figure 10 presents the plot of
the increments per the computational time step h of this harmonic (i.e., the differences
Re δb1

0,0,1(t) =Re (b1
0,0,1(t + h)− b1

0,0,1(t))), which coincide with the Euler approximations
of the derivative of the harmonic up to the constant factor 1/h, where h is the time step
used in the computations (h = 0.001). Figure 11, a blow-up of the plot in Figure 10, displays
this quantity in detail in segments № № 8–11. We use in Figures 10 and 11 the same colour
coding as in Figure 9 to emphasise the segments that are followed by a harmonic polarity
reversal. We find that a segment ends up in a reversal only if it involves an interval of
oscillations where the envelope curve of the increments has a smooth parabolic shape. Two
such intervals are seen in Figure 11, roughly 866 < t < 900 and 1155 < t < 1170, preceding
the reversals in which the two “red” segments terminate. Similar, albeit shorter structures
are also present in the two remaining “red” segments (the structure in the last such segment
№ 13 is slightly less recognisable). The presence of this prognostic pattern is not sufficient
for a reversal to happen: similar parabolic shapes are seen in segments № № 6, 12 and 14,
which finish without reversals.

We illustrate the third characteristic pattern of a possible prognostic value by Figure 12
showing the temporal behaviour of the flow harmonics Re v1

0,0,1 and Re v2
0,0,1. Like the

prognostic pattern just discussed, it is a necessary but not sufficient condition for a reversal
of the magnetic field harmonic Re b1

0,0,1 (displayed in Figure 9). We observe that a reversal
of Re b1

0,0,1 happens at the end of segment № N (such segments are again shown in red in
Figure 12) only if the flow harmonics Re vm

0,0,1 have the opposite polarity in segments № N-1
and № N-2, and this happens for both m = 1 and 2. (The polarity of the flow harmonic is
perfectly visible for Re v1

0,0,1; for Re v2
0,0,1, we show the time integral from the beginning of

the segment as an indicator of the polarity).
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Figure 11. A blow-up of the plot in Figure 10 of increments per time step of the magnetic field
harmonic Re b1

0,0,1 (segments №№ 8–11). The segments followed by a reversal of this harmonic are
shown in red.
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Again, both necessary conditions can be tentatively interpreted as structural features
of the dynamical system. It appears that a reversal of Re b1

0,0,1 requires that the trajectory
passes along a heteroclinic connection a region of the phase space, where the evolution of
the system is accompanied by the formation of a structure with the characteristic parabola-
shaped envelope of oscillations of the increments Re δb1

0,0,1(t), and follows in advance two
heteroclinic cycles with the opposite polarity of both flow harmonics Re v1

0,0,1 and Re v2
0,0,1.
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Figure 12. Temporal evolution of the flow harmonics Re v1
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5. Remarks and Conclusions

We have studied a regime of the magnetic dynamo sustained by thermal convection in
a rotating layer of electrically conducting fluid. For the specific choice (4) of the governing
parameters, we have obtained a regime of the dynamo, whose evolution is a succession
of segments of randomly varying duration. In each segment, the simulated trajectory
in the phase space visits four weakly unstable amagnetic convective regimes involving
flows that are steady rolls of three different orientations of the axes and a quasiperiodic
flow possessing two incommensurate temporal frequencies. All these flows are capable
of kinematic magnetic field generation, the rolls are unstable with respect to convective
(amagnetic) perturbations (the Küppers–Lortz instability controlling the lifespan of the
flows) and the quasiperiodic flow is stable.

The harmonics constituting the magnetic field exhibit three main distinct patterns of
behaviour. The prevailing, over a segment duration, polarity of some of the harmonics
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varies between the segments seemingly randomly. We have focused on monitoring the
prevailing signs of the coefficients for individual basis functions in the expansion (3b)
regarding the sign change upon the start of the next segment as a polarity reversal of the
respective harmonic.

Certain parallels may be drawn between the behaviour of harmonics in the convective
dynamo under consideration and those constituting the geomagnetic field. The behaviour
of the main harmonic of the Earth’s magnetic field, a dipole, is not fully correlated with the
behaviour of other constituent harmonics. The non-dipole components are much weaker
than the dipole and evolve more rapidly (on the time scale of decades rather than of cen-
turies for the dipole) [1]. Partially, this can be explained by the location of observers of
the geomagnetic field on or over the surface of the Earth, i.e., at a distance of about half a
radius of the planet from the core–mantle boundary, inside which the dynamo acts in the
melted outer core: Since the mantle is largely dielectric, the field outside the core can be
approximated as a gradient of a harmonic potential (see, for instance, a discussion in [45]).
When the potential is expanded in spherical harmonics, the components proportional
to harmonics of degree n decay at distance r from the centre as r−n−1, implying that all
non-dipole components decay faster than the dipole ones. The structure of the field on the
core–mantle boundary differs significantly from the simple dipolar one (see, e.g., [16]) due
to the important role the higher harmonics play. This suggests that forecasting reversals of
any given individual harmonic is the underlying general problem to be addressed when
studying the problem of the Earth’s magnetic field reversal. Furthermore, the geomagnetic
field may consist of harmonics of different types of behaviour: like in the convective dy-
namo under consideration, some harmonics may experience oscillations that are symmetric
about zero, and thus the symmetry reversing the magnetic field, b → −b, which plays
the crucial role in the Podvigina scenario [34] for the occurrence of reversals, does not
necessarily affect the behaviour of all constituent harmonics.

We have used the dynamo regime under consideration to investigate the predictability
of reversals of the prevailing polarity for some harmonics of the magnetic field. We have
presented three regularities linking the reversals of some harmonics to the behaviour of
other quantities (such as other magnetic harmonics, their increments, or the flow harmon-
ics), which represent necessary conditions for the reversals (one such precursor appears
to provide also a sufficient condition, but it is not faultless). It must be noted that while
we use the examples of two specific harmonics, Re b1

0,2,0 and Re b1
0,0,1, to discuss precursors

for reversals of their prevailing signs, we have identified many similar pairs of reversing
and forecasting harmonics. The observed patterns demonstrating a potential prognostic
value have a natural hypothetical interpretation in terms of possible specific features of the
underlying dynamical system.

Thus, we have resolved the fundamental question of the predictability of reversals:
Our results demonstrate that the preparation of polarity reversals of some harmonics is a
long process, which can extend backwards well beyond the previous reversal. The reversals
can be associated with significantly earlier reversals of other hydrodynamic or magnetic
harmonics, or with a characteristic behaviour of some other quantities, and thus can
be predicted.

However, our convective dynamo is distinct from the geodynamo: the parameter
values are significantly different, as well as the geometries of the fluid reservoirs. We have
explored the problem of reversal predictability in the abstract statement. The structure
of the respective dynamical system in the phase space controls not just the occurrence of
polarity reversals of some harmonics but the collective behaviour of all of them; our results
indicate that the trajectories close to the attractor of the convective dynamo equations may
show a peculiar behaviour of harmonics well ahead of the reversals of other harmonics,
and these peculiarities can therefore forecast well in advance of the event that a reversal
will follow. While in this formulation our results appear universal, by their nature they are
not intended for a detailed comparison with other predictions for reversals of the Earth’s
magnetic dipole—such comparisons are unlikely to reveal any similarities beyond the most
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general ones. For instance, a significant reduction in the dipole mode accompanying the
Earth’s magnetic reversals (see [5,6,29–33]) is not mirrored in our dynamo. Unlike in [30],
our potential precursors are not probabilistic.

Our study gives rise to a large number of further fundamental questions: The patterns
that we have found, will they remain precursors when tested for a longer evolution of
the dynamo or if the evolution is simulated for other values of the governing parameters
(including when the parameter values are significantly modified so that no underlying
heteroclinic connection exists that is responsible for the natural division of the evolution
history into segments like in the present case)? If a large set of similar patterns predicting
reversals is assembled, would it be possible to combine them in groups of patterns used
simultaneously (using the ideas of pattern recognition, for instance) for minimising the pre-
diction errors? It is of interest to study in detail which properties of the dynamical system
representing the considered convective dynamo are responsible for the identified regulari-
ties that are apparently prognostic. How can all these ideas and results be transferred to
other geometries, including for application to the problem of prediction of reversals of the
dipole generated in a spherical shell mimicking the Earth’s outer core?
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