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Abstract: Reversible data hiding (RDH) is a technique that embeds secret data into digital media while
preserving the integrity of the original media and the secret data. RDH has a wide range of application
scenarios in industrial image processing, such as intellectual property protection and data integrity
verification. However, with the increasing prevalence of color images in industrial applications,
traditional RDH methods for grayscale images are inadequate to meet the requirements of image
fidelity. This paper proposes an RDH method for color images based on channel reference mapping
(CRM) and adaptive pixel prediction. Initially, the CRM mode for a color image is established
based on the pixel variation correlation between the RGB channels. Then, the pixel local complexity
context is adaptively selected using the CRM mode. Next, each pixel value is adaptively predicted
based on the features and characteristics of adjacent pixels and reference channels, and then data is
embedded by expanding the prediction error. Finally, we compare seven existing RDH algorithms
on the standard image dataset and the Kodak dataset to validate the advantages of our method.
The experimental results demonstrate that our approach achieves average peak signal-to-noise ratio
(PSNR) values of 63.61 and 60.53 dB when embedding 20,000 and 40,000 bits of data, respectively.
These PSNR values surpass those of other RDH methods. These findings indicate that our method
can effectively preserve the visual quality of images even under high embedding capacities.

Keywords: reversible data hiding; industrial color image; channel reference mapping; information
security

MSC: 94A08

1. Introduction

Color images constitute a vital component of digital information transmission and
storage [1–3]. With the rapid advancement of digital technology and the advent of the
Industry 4.0 era [4–6], the scope of applications for color images continues to expand. They
are widely popular in the entertainment sector and play a pivotal role in the industrial
domain. Industrial applications typically require high-quality transmission and storage
of color images to support decision-making [7], quality control [8], and monitoring pro-
duction processes [9]. However, safeguarding sensitive information contained within
images presents challenges due to the complexity of industrial environments and the strin-
gent requirements for accurate information transmission. Reversible data hiding (RDH)
technology has garnered significant attention within information security [10–13]. This
technology’s fundamental attribute lies in its capacity to embed confidential data into
images without compromising the original image’s integrity, a crucial feature in industrial
applications necessitating the restoration of the original image. In particular, we need
to deal with a large amount of color image data in the industrial field, such as images
captured by surveillance cameras, product inspection images, and quality control images.
These images often contain critical industrial process information and production details,
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making the utilization of RDH to safeguard sensitive information within industrial images
notably valuable. Consequently, this paper proposes a novel RDH method explicitly de-
signed for color images, which enables the concealment of industrial secrets within color
images while ensuring both the reversibility of data embedding and extraction and the
enhancement of color image fidelity. Furthermore, it safeguards the integrity and security
of industrial information.

RDH techniques for grayscale images have been extensively researched, primarily
categorizing four categories: methods based on lossless compression [14], histogram shift-
ing (HS) [15], difference expansion (DE) [16], and prediction error expansion (PEE) [17].
Although extensive research and development has been done on RDH for grayscale images,
color images are more prevalent in daily life and industrial production. Some researchers
have directly applied RDH methods for grayscale images to color images. Nevertheless,
this approach neglects the correlation between the three color channels in color images,
resulting in a reduced capacity for data embedding. Therefore, in recent years, RDH meth-
ods tailored to color images that leverage inter-channel correlations have been proposed.
For instance, Yang et al. [18] designed a high-capacity data embedding and extraction
method based on the characteristics of color filter array images. In the paper [19], Li et al.
utilized an improved predictor to predict each channel of a color image and employed inter-
channel correlation for adaptive data embedding, thereby enhancing embedding efficiency.
Yao et al. [20] employed guided filtering for prediction in color images and utilized PEE
for data embedding, further improving pixel prediction accuracy. The approach proposed
by Ou et al. [21] customized effective payload distribution based on the characteristics of
each color channel to optimize the process. It also adopted an adaptive embedding strategy
to enhance data hiding capacity while minimizing image distortion. Hou et al. [22] intro-
duced a method that maintains grayscale invariance while achieving RDH in color images,
ensuring that hidden data can be extracted without affecting the perceived brightness of the
image. In the latest research results, Chang et al. [23] dynamically adjusted the embedding
mappings of three prediction error histograms based on the inter-channel correlations, thus
optimizing embedding performance and image quality. Kong et al. [24] presented an RDH
model based on multi-channel difference value ordering. Mao et al. [25] combined the
concept of channel unity embedding with pixel value ordering (PVO). Bhatnagar et al. [26]
proposed an RDH method for color images based on skewed histograms and cross-channel
correlation. Kumar et al. [27] proposed a color image steganography scheme using gray
invariant in AMBTC compression domain. In [28], Kumar et al. discussed and reviewed
the existing pixel predictors.

While some progress has been made, there remains a need for a deeper exploration of
inter-channel correlations in RDH methods for color images to enhance their embedding
capacity. The current research exhibits three primary limitations:

1. Most methods are extensions of single-channel RDH approaches and need to ade-
quately consider the correlations among color image channels, resulting in limited
improvements in embedding capacity.

2. Many approaches rely solely on techniques such as prediction error and PVO for data
embedding, failing to leverage the untapped potential of other data hiding spaces
within color images, such as color space transformation and color quantization.

3. The majority of methods employ fixed pixel prediction strategies and parameter set-
tings without dynamic adjustments based on specific image pixel conditions, leading
to an imbalance between embedding capacity and pixel distortion.

The preceding analysis indicates that RDH techniques for color images hold significant
potential for applications in industrial production and information security. However,
existing RDH algorithms for color images still need to be revised, including restricted
data embedding capacity, increased image distortion, and underutilized inter-channel
correlations. Therefore, our work aims to improve the RDH algorithm’s performance and
achieve a balance between the embedding capacity and the visual quality of the images.
This goal involves improving the local complexity calculation method and using channel
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reference mapping and an adaptive pixel prediction strategy. This paper proposes a novel
RDH method for color images that addresses these challenges based on channel reference
mapping and adaptive pixel prediction. The primary innovations and contributions of our
paper are delineated as follows:

1. A novel channel reference mapping (CRM) method is proposed, leveraging trends
and correlations among the pixels in the three channels to establish inter-channel
reference relationships. These reference relationships are incorporated into pixel-wise
local complexity computation and pixel value prediction, thus effectively exploiting
the inherent inter-channel connections and reducing pixel distortion during data
embedding.

2. An adaptive local complexity computation algorithm is proposed. Based on the
CRM mode, the current channel’s pixel-wise local complexity computation context
is adaptively selected according to the values of reference channel pixels. Adaptive
context selection leads to a more accurate assessment of local complexity.

3. An adaptive pixel prediction strategy is proposed. By considering each pixel’s neigh-
borhood features and channel characteristics, appropriate predictors and prediction
contexts are chosen, thereby enhancing the accuracy of pixel prediction while mitigat-
ing image distortion.

The rest of this paper is structured as follows. Section 2 briefly overviews the related
works. Section 3 presents the proposed CRM-based RDH method in detail. Section 4
reports the experimental comparison results and analysis that compare our method with
other existing algorithms. Section 5 summarizes the paper.

2. Related Work

This section briefly overviews the local complexity method proposed for color images
in [21], as detailed in Section 2.1. Additionally, we introduce the pixel prediction method
proposed in [19], and specific details can be found in Section 2.2.

2.1. Local Complexity Calculation Method [21]

The selection of pixels for data embedding is a pivotal factor influencing RDH perfor-
mance, impacting indicators such as data embedding capacity, embedding distortion, and
security. While embedding strategies differ between grayscale and color images, opting
for low-complexity pixels is generally advantageous as data carriers. This choice has the
potential to enhance the overall performance of RDH algorithms. Ou et al. [21] employed
inter-channel correlation for computing pixel complexity. The pixel smoothness can be
described more accurately by considering the texture similarity among the channels. To
reduce pixel distortion, pixels with lower complexity are prioritized for data embedding.
Px and its surrounding eight pixels are illustrated in Figure 1. The complexity calculation
for each channel’s pixel Px is as:

∆x = |P1 − P3|+ |P2 − P4|+ |P1 + P2 − P3 − P4|+ |P2 + P3 − P1 − P4|, (1)

where ∆x represents the complexity of Px. The local complexity calculation methods for
the R, G, and B channels are the same. To further enhance the accuracy of pixel complexity
calculation, the concepts of the current channel and reference channels are introduced. The
current channel is the channel in which the pixel for calculating local complexity is located,
and the other two channels are reference channels. With the introduction of reference
channels, the local complexity of the current channel pixel Px is denoted as LC(x) and is
given by:

LC(x) = 2∆c
x + ∆r1

x + ∆r2
x , (2)

where ∆c
x represents the complexity of the current channel, and ∆r1

x and ∆r2
x represent

the complexities of reference channels. ∆c
x, ∆r1

x , and ∆r2
x are calculated by Equation (1).

Ou et al.’s [21] local complexity calculation method uses a fixed channel ratio, which is not
conducive to adapting to different color image features. Therefore, how to adjust the local
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complexity calculation method adaptively according to the channel correlation of the image
is a worthwhile research problem.

Figure 1. Px and its eight adjacent pixels.

2.2. Pixel Prediction Method [19]

Li et al. [19] proposed a pixel prediction method based on the similarity of edge
information across channels. They applied different prediction strategies for edge textures
with varying levels of complexity. The edge texture, depicted in Figure 1, is accomplished
through the pixel’s eight adjacent pixels as:

W =
8

∑
u=1
|(Pr

u − Pr
x)/8|, (3)

where Pr
x represents the pixel of the reference channel, and Pr

u represents the eight adjacent
pixels of Pr

x.
To account for the variation of texture complexity in different directions, Li et al. [19]

computed the texture complexity for four directions, namely, horizontal, vertical, southeast,
and southwest, as: 

Wh =
∣∣(Pr

2 + Pr
4)/2− Pr

x
∣∣

Wv =
∣∣(Pr

1 + Pr
3)/2− Pr

x
∣∣

Wes =
∣∣(Pr

3 + Pr
4)/2− Pr

x
∣∣

Wws =
∣∣(Pr

2 + Pr
1)/2− Pr

x
∣∣ . (4)

Let Wd denote the minimum value among Wh, Wv, Wes, and Wws, expressed as
Wd = min{Wh, Wv, Wes, Wws}.

A threshold θ is set to quantify the local complexity of pixels. If (W −Wd) ≤ θ, the
current pixel Pc

x is smooth, and the four pixels adjacent to Pc
x are used for pixel prediction.

The prediction formula for pixel P̂c
x is:

P̂c
x = (Pc

1 + Pc
2 + Pc

3 + Pc
4)/4, (5)

where Pc
1 , Pc

2 , Pc
3 , and Pc

4 are the four pixels adjacent to Pc
x .

If (W −Wd) > θ, the current pixel Pc
x is rough, and the texture in a particular direction

may be relatively smooth. In such instances, we use the pixels in the direction with
the minimum texture complexity to calculate the pixel prediction value. For example,
if Wd = Wh, the predicted pixel P̂c

x is expressed as P̂c
x = (Pc

2 + Pc
4)/2. This method

determines the pixel prediction value and expands the prediction errors to embed the data.
Li et al.’s [19] pixel prediction strategy utilizes the similarity of edge information between
channels, but ignores the difference of texture information within channels. Therefore, how
to adjust the pixel prediction strategy dynamically according to the channel texture of the
image is a worthwhile research problem.

3. Proposed Method

In this section, we provide an extensive exposition of our proposed method, encom-
passing an overview of the CRM-based RDH framework, the formulation of channel
reference mapping, the computation of local complexity, adaptive pixel prediction, and the
implementation procedure.



Mathematics 2024, 12, 517 5 of 17

3.1. An Overview of the CRM-Based RDH Framework

The proposed CRM-based RDH framework is composed of two main components: an
embedding process and an extraction process. Figure 2 furnishes an illustrative depiction
of the CRM-based RDH framework.

Figure 2. An overview of the CRM-based RDH framework.

On the sender side, we propose a data hiding method based on channel reference
mapping (CRM) and adaptive pixel prediction. First, we use the correlation between the
three channels of the cover color image I to construct a CRM mode. Next, we calculate the
local complexity of each pixel adaptively according to the CRM mode and select the pixels
with low complexity for data embedding. After that, we perform adaptive pixel prediction
on them and embed data into them. Then, we embed auxiliary information to ensure the
reversibility of data hiding. Finally, we combine the pixels of the three channels to obtain
the marked color image I′.

On the receiver side, we reverse the process on the sender side. First, we recover
the auxiliary information from the received color image I′ with hidden data and use it to
reconstruct the CRM mode. Then, we calculate the local complexity of each pixel adaptively
according to the CRM mode and recover the pixels with low complexity. After that, we use
the pixels with low complexity to perform pixel prediction and extract the embedded data.
Finally, we recombine the pixels of the three channels to restore the cover color image I.

3.2. Channel Reference Mapping Establishment

The characteristics and texture structures among RGB channels exhibit remarkable
similarities, manifested as a fundamental consistency in the pixel value variations across
the three channels. This similarity has been extensively validated through a plethora of
experiments. We take the images “Lena” and “Peppers” as examples and select 500 pixels
from each image. As depicted in Figure 3, the pixel value trends of these pixels show
similar monotonicity in the RGB channels.

(a) Lena (b) Peppers

Figure 3. The monotonicity of pixel values at the same positions in the RGB channels.
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To analyze the correlation among the RGB channels, we employed the Pearson corre-
lation coefficient as an evaluation metric. The Pearson correlation coefficient is a commonly
used statistical method that quantifies the strength and direction of the linear relationship
between two variables. Its formula is presented as Equation (6), where cor(X, Y) represents
the correlation coefficient between the X and Y channels. The size of the color image
is M rows by N columns, with M × N denoting the total number of pixels in the color
image. Xt and Yt correspond to the pixel values of the X and Y channels at the t-th position,
while X and Y denote the means of all pixels in the X and Y channels, respectively. The
value of cor(X, Y) ranges from −1 to 1. Positive values indicate a positive correlation,
negative values indicate a negative correlation, and a value of zero indicates no correla-
tion. The larger the absolute value of cor(X, Y), the stronger the correlation between X
and Y. The Pearson correlation coefficients between the RGB channels are denoted as
cor(R, G), cor(R, B), and cor(G, B), respectively. We represent these three coefficients a set
K, specifically K = {cor(R, G), cor(R, B), cor(G, B)}.

cor(X, Y) =

M×N
∑

t=1
(Xt − X)(Yt −Y)√

M×N
∑

t=1
(Xt − X)2

√
M×N

∑
t=1

(Yt −Y)2

(6)

We denote the maximum and second maximum values in the set K as Kmax and Ksmax,
respectively. Subsequently, we use the functions chan(Kmax) and chan(Ksmax) to calculate
the two channels involved when the correlation coefficients take the values Kmax and Ksmax,
respectively. We express chan(Kmax) and chan(Ksmax) as{

chan(Kmax) = (ch1, ch2), s.t. cor(ch1, ch2) = Kmax
chan(Ksmax) = (ch3, ch4), s.t. cor(ch3, ch4) = Ksmax

, (7)

where ch1 and ch2 represent the two channels involved when the correlation coefficient takes
the value Kmax, while ch3 and ch4 correspond to the two channels associated with Ksmax.

As detailed in Table 1, we can construct six mapping modes between the three channels
of a color image, denoted by M1 to M6. Each mapping mode consists of three mapping func-
tions describing the relationship between the current and reference channels. Specifically,
the function f1(X) = Y represents the first mapping function, indicating the correspon-
dence between the current channel X and the reference channel Y. The function f2(Y) = Z
represents the second mapping function, illustrating the association between the current
channel Y and the reference channel Z. The function f3(Z) = X′ constitutes the third
mapping function employed to describe the relationship between the current channel Z
and the reference channel X′. Since data embedding performs in the sequence of channels
X, Y, and Z, channel X has already completed data embedding and is denoted as X′ when
data embedding is performed on channel Z.

Table 1. Six channel reference mapping modes for color images.

M1 :


f1(R) = G

f2(G) = B

f3(B) = R′

M2 :


f1(R) = B

f2(B) = G

f3(G) = R′

M3 :


f1(G) = B

f2(B) = R

f3(R) = G′

M4 :


f1(G) = R

f2(R) = B

f3(B) = G′

M5 :


f1(B) = R

f2(R) = G

f3(G) = B′

M6 :


f1(B) = G

f2(G) = R

f3(R) = B′
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We describe the process of selecting a suitable CRM mode for a color image from six
mapping modes (from M1 to M6) using Algorithm 1. First, we calculate the Pearson correla-
tion coefficients between the three channels according to Equation (6) and store the results
in set K. Then, we calculate the maximum value Kmax and the second largest value Ksmax in
set K. Subsequently, we determine the channels ch1 and ch2 corresponding to Kmax and the
channels ch3 and ch4 corresponding to Ksmax based on Equation (7). After that, we search
for the mappings Mδ(1) and Mδ(2) that satisfy f1(ch1) = ch2 or f1(ch2) = ch1 in the six map-
ping modes, where δ(1) ∈ {1, 2, 3, 4, 5, 6}, δ(2) ∈ {1, 2, 3, 4, 5, 6}, and δ(1) ̸= δ(2). Finally,
we identify the mapping Mδ(3) from Mδ(1) and Mδ(2) that satisfies either f2(ch3) = ch4 or
f2(ch4) = ch3, where δ(3) = δ(1) or δ(3) = δ(2). Currently, Mδ(3) becomes the CRM mode
established for the cover color image.

Algorithm 1 CRM establishment algorithm

Input:
R, G, B: the pixel values of the RGB channels;
M1, M2, M3, M4, M5, M6: six channel reference mapping modes;

Output:
Mδ(3): the established CRM mode;

1: calculate cor(R, G), cor(R, B), and cor(G, B) by Equation (6);
2: K ← {cor(R, G), cor(R, B), cor(G, B)};
3: Kmax ← max(K);
4: Ksmax ← max(K− {Kmax});
5: (ch1, ch2)← chan(Kmax) s.t. cor(ch1, ch2) = Kmax;
6: (ch3, ch4)← chan(Ksmax) s.t. cor(ch3, ch4) = Ksmax;
7: for each Mα in {M1, M2, M3, M4, M5, M6} do
8: if f1(ch1) = ch2 then
9: Mδ(1) ← Mα;

10: end if
11: if f1(ch2) = ch1 then
12: Mδ(2) ← Mα;
13: end if
14: end for
15: for each Mβ in {Mδ(1), Mδ(2)} do
16: if f2(ch3) = ch4 or f2(ch4) = ch3 then
17: Mδ(3) ← Mβ;
18: end if
19: end for
20: return Mδ(3).

3.3. Adaptive Local Complexity Calculation

After obtaining the CRM mode, the data embedding is performed in a per-channel,
per-pixel order while scanning the color image from left to right and top to bottom. We
employ a method based on local complexity to select suitable embedding pixels, which
ensures both image quality and the effectiveness of the concealment. Local complexity
is an indicator that measures the extent of change for each pixel, effectively reflecting
image details and texture characteristics. A higher local complexity value indicates more
information at a particular location, potentially leading to more significant distortions.
Therefore, we select pixels with lower local complexity for data embedding to reduce
distortion. There are various methods for local complexity calculation, among which the
simplest method is to use the difference between the maximum and minimum values in
the local complexity context of that pixel. However, this method only considers the four
neighboring pixels of the current pixel, disregarding pixel variations over a more extensive
range, potentially failing to capture local image features accurately. Hence, we propose an
adaptive local complexity computation method leveraging the CRM mode to resolve this
limitation, which considers the influence of the current channel and the reference channel
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over a more extensive range. This method dynamically adjusts parameters according to
different image characteristics, leading to a more accurate reflection of pixel complexity.

We denote the current channel being processed as C and the reference channel for
the current channel as S. Specifically, the current pixel being processed is Ci,j, where i
and j represent the row and column numbers, respectively. Similarly, Si,j denotes the
pixel in the reference channel at row i and column j. To more accurately denote the
local complexity of Ci,j, we extend its local complexity context to a 3 × 3 pixel block
centered at Ci,j. Likewise, the local complexity context of Si,j in the reference chan-
nel is denoted as a 3 × 3 pixel block centered at Si,j. The local complexity contexts of
Ci,j, and Si,j are shown in Figure 4a,b, respectively. The local complexity contexts for
Ci,j and Si,j are denoted as NC(Ci,j) and NS(Si,j), and each of them contains 8 pixels,
i.e., NC(Ci,j) = {Ci−1,j, Ci,j+1, Ci+1,j, Ci,j−1, Ci−1,j+1, Ci+1,j+1, Ci+1,j−1, Ci−1,j−1} and
Si,j = {Si−1,j, Si,j+1, Si+1,j, Si,j−1, Si−1,j+1, Si+1,j+1, Si+1,j−1, Si−1,j−1}. Within NC(Ci,j), the maxi-
mum and minimum values are represented as NCmax and NCmin, while within NS(Si,j),
they are represented as NSmax and NSmin. We integrate the pixel variation in the local
complexity contexts of the current channel and the reference channel and define the local
complexity LC(Ci,j) of the current pixel Ci,j as

LC(Ci,j) = λ1(NCmax − NCmin) + λ2(NSmax − NSmin), (8)

where λ1 and λ2 represent the influence weight of the current channel and the reference
channel, respectively, λ1 ∈ [0, 1], λ2 ∈ [0, 1], and satisfy λ1 + λ2 = 1.

(a) Current channel C (b) Reference channel S

Figure 4. The local complexity contexts of Ci,j and Si,j.

We introduce a parameter named local complexity threshold, denoted by T, to deter-
mine whether a pixel is suitable for data embedding. When the local complexity satisfies
LC(Ci,j) ≤ T, it indicates that the pixel Ci,j has smooth characteristics and is suitable for
data embedding. On the contrary, Ci,j belongs to the rough category and is unsuitable for
data embedding.

3.4. Adaptive Pixel Prediction

We employ the PEE [17] and pixel-based PVO [29] for data embedding. PEE entails
an initial prediction of smooth pixels, from which prediction errors are obtained, followed
by the subsequent concealment of secret data within these prediction errors. To enhance
prediction accuracy and augment the embedding capacity of prediction errors, we propose
an adaptive pixel prediction approach. This method automatically selects appropriate
prediction contexts based on varying pixel features.

The diamond predictor is a widely used pixel prediction technique to obtain the pre-
diction context of the current pixel Ci,j, which includes the four adjacent pixels located
at the current pixel’s top, bottom, left, and right. However, the prediction range of the
diamond predictor is limited and cannot capture a wider range of pixel relationships,
especially in complex image scenes. Some pixels may be affected by more distant or
complex pixels, but these pixels are not considered, resulting in inaccurate predictions.
We propose an adaptive prediction context generation method based on a diamond pre-
dictor to address this issue. The diamond prediction context of the current pixel Ci,j is
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denoted as Rh(Ci,j), and the diamond prediction context of the reference pixel Si,j is de-
noted as Rh(Si,j). Initially, Rh(Ci,j) includes the four adjacent pixels of the current pixel,
i.e., Rh(Ci,j) = {Ci−1,j, Ci,j+1, Ci+1,j, Ci,j−1}, and Rh(Si,j) includes the adjacent pixels of the
reference pixel, i.e., Rh(Si,j) = {Si−1,j, Si,j+1, Si+1,j, Si,j−1}. To further expand the scope
of the prediction context and consider the consistency of pixel value change trends be-
tween the reference channel and the current channel, we utilize the diamond prediction
context of the reference channel to assist in the generation of the prediction context of the
current channel. We employ MaxRh(Si,j) and MinRh(Si,j) to represent the maximum and
minimum values in Rh(Si,j), respectively, and use Pos(MaxRh(Si,j)) and Pos(MinRh(Si,j))
to represent their positions in the channel. Specifically, Pos(MaxRh(Si,j)) = (τ1, τ2) and
Pos(MinRh(Si,j)) = (τ3, τ4). Subsequently, we use the position information of the maxi-
mum and minimum values in the reference channel’s diamond prediction context to expand
the current channel’s diamond prediction context. This extension is denoted as Rh(Cτ1,τ2)
and Rh(Cτ3,τ4). Afterwards, PC(Ci,j) is utilized to represent the prediction context of the
current pixel, defined as

PC(Ci,j) = Rh(Ci,j) ∪ Rh(Cτ1,τ2) ∪ Rh(Cτ3,τ4)− {Ci,j}. (9)

To provide a more detailed explanation of the prediction context generation strategy,
we illustrate the generation of PC(Ci,j) as an example in Figure 5. Suppose that the
maximum and minimum values in the reference channel Rh(Si,j) are Si−1,j and Si+1,j,
respectively, we have Pos(MaxRh(Si,j)) = (τ1, τ2) = (i − 1, j) and Pos(MinRh(Si,j)) =
(τ3, τ4) = (i + 1, j). In this case, Rh(Cτ1,τ2) = Rh(Ci−1,j) in the current channel, which
includes the pixels Ci−2,j, Ci−1,j−1, Ci−1,j+1, and Ci,j, i.e., the pixels marked in yellow in
Figure 5a. Similarly, Rh(Cτ3,τ4) = Rh(Ci+1,j) in the current channel, which includes the
pixels Ci+1,j−1, Ci+1,j+1, Ci+2,j, and Ci,j, i.e., the pixels marked in orange in Figure 5a. In
summary, the prediction context PC(Ci,j) for Ci,j consists of Ci−2,j, Ci−1,j−1, Ci−1,j, Ci−1,j+1,
Ci,j−1, Ci,j+1, Ci+1,j−1, Ci+1,j, Ci+1,j+1, and Ci+2,j, as indicated by the purple-bordered box
in Figure 5b, excluding Ci,j itself.

(a) Current channel C (b) Reference channel S

Figure 5. Adaptive pixel prediction context generation fot Ci,j.

The pixel prediction context, denoted as PC(Ci,j), is a set comprising neighboring
pixels surrounding the current pixel, employed for predicting the current pixel. We use
PCmax and PCmin to denote the maximum and minimum values in the prediction context
set, which represent the upper and lower bounds of Ci,j. To ensure the reversibility of data
embedding and extraction, we categorize Ci,j into one of four sets as

Q1 = {Ci,j | PCmax ̸= PCmin, Ci,j ≥ PCmax}
Q2 = {Ci,j | PCmax ̸= PCmin, Ci,j ≤ PCmin}
Q3 = {Ci,j | PCmax = PCmin, Ci,j ≤ PCmin, PCmin ̸= 254}
Q4 = {Ci,j | PCmax = PCmin, Ci,j ≥ PCmax, PCmax = 254}

. (10)
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If Ci,j does not belong to any of these four sets, then the pixel will not be used for data
embedding. This approach helps prevent image distortion during data embedding. In such
cases, the predicted value of Ci,j can be represented by

Ĉi,j =

{
PCmax, if Ci,j ∈ Q1 ∪Q4
PCmin, if Ci,j ∈ Q2 ∪Q3

, (11)

where Ĉi,j represents the predicted value of Ci,j.

3.5. Data Embedding and Data Extraction

On the sender side, we utilize the reference channel’s pixel information to calculate
the current pixel’s local complexity and perform pixel prediction for the smooth pixels.
Subsequently, we expand the prediction error to embed secret data. The prediction error of
Ci,j, denoted as ei,j, can be calculated as

ei,j = Ci,j − Ĉi,j. (12)

If Ci,j falls within Q1 or Q4, we observe that ei,j ≥ 0. If Ci,j falls within Q2 or Q3,
then we have ei,j ≤ 0. We select the prediction errors with the highest distribution in
the prediction error histograms for expansion to maximize the embedding capacity of the
cover color image. Specifically, we use the bins with ei,j = 0 for data embedding, and the
prediction error expansion is defined as

ẽi,j =


ei,j + b, if Ci,j ∈ Q1 ∪Q4 and ei,j = 0
ei,j + 1, if Ci,j ∈ Q1 ∪Q4 and ei,j > 0
ei,j − b, if Ci,j ∈ Q2 ∪Q3 and ei,j = 0
ei,j − 1, if Ci,j ∈ Q2 ∪Q3 and ei,j < 0

, (13)

where ẽi,j represents the expanded prediction error and b denotes the secret data to be
embedded, with b ∈ {0, 1}. Finally, the marked pixel C̃i,j is calculated as

C̃i,j = Ĉi,j + ẽi,j. (14)

The process of data extraction is the reverse of data embedding. On the receiving end,
we utilize the same CRM mode as data embedding to extract secret data pixel by pixel
and channel by channel. The channel order for extraction is the reverse of that used for
embedding. Similarly, data extraction for each channel follows a bottom-to-top and right-
to-left sequence. For each pixel, we initially calculate the local complexity of the current
channel’s pixels by leveraging the reference channel, following the same approach as used
in embedding. Subsequently, we adaptively compute the prediction context PC(C̃i,j) for
smooth pixels, with PC′max and PC′min represent the maximum and minimum values within
PC(C̃i,j). Afterwards, we categorize C̃i,j into one of the following sets:

Q1 = {C̃i,j | PC′max ̸= PC′min, C̃i,j ≥ PC′max}
Q2 = {C̃i,j | PC′max ̸= PC′min, C̃i,j ≤ PC′min}
Q3 = {C̃i,j | PC′max = PC′min, C̃i,j ≤ PC′min, PC′min ̸= 254}
Q4 = {C̃i,j | PC′max = PC′min, C̃i,j ≥ PC′max, PC′max = 254}

. (15)

Consequently, we predict the pixel value and derive the predicted pixel value Ĉi,j as

Ĉi,j =

{
PC′max, if C̃i,j ∈ Q1 ∪Q4

PC′min, if C̃i,j ∈ Q2 ∪Q3
. (16)
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The subsequent step entails the computation of the expanded prediction error, denoted
as ẽi,j, and it is formulated as

ẽi,j = C̃i,j − Ĉi,j. (17)

Currently, the original prediction error, represented as ei,j, can be restored using

ei,j =


ẽi,j, if ẽi,j = 0
ẽi,j − 1, if ẽi,j > 0
ẽi,j + 1, if ẽi,j < 0

. (18)

Simultaneously, the secret data b = 0 is extracted when ẽi,j = 0 and b = 1 when
ẽi,j ∈ {0, 1}. Finally, the original pixel value Ci,j is restored to

Ci,j = Ĉi,j + ei,j. (19)

3.6. Implementation of the Proposed CRM-Based Method

At the sending end, the data embedding process is specified as follows.
(1) Pretreatment and LM generation. To avoid the pixel value overflow and underflow

caused by data embedding, we design three location maps (LMr, LMg, and LMb), corre-
sponding to the red, green, and blue channels of the cover color image, respectively. Each
location map shares the same dimensions as the cover color image, i.e., M× N. Initially, all
elements of the location maps are set to 0. Then, we perform pixel-by-pixel preprocessing
on each channel of the cover color image, changing the pixel values from 255 to 254, chang-
ing the pixel values from 0 to 1, and setting the elements of the corresponding location
map to 1.

(2) Payload embedding. After obtaining the location maps (LMr, LMg, and LMb) for
three channels, we employ arithmetic coding algorithms to compress these maps. The
lengths of the compressed location maps are denoted as Lcr, Lcg, and Lcb, and their total
length is represented as Lclm, where Lclm = Lcr + Lcg + Lcb. The payload consists of two
parts, the first part is the secret data, and the second part is a binary sequence derived
from the least significant bits (LSBs) of the first (150 + Lclm) pixels from the top and bottom
two rows of each channel in the cover color image. According to the established CRM
mode Mδ(3), we embed the payload into the cover color image in a channel-by-channel and
pixel-by-pixel manner.

(3) Auxiliary information and compressed LM embedding. After completing the em-
bedding of the payload, we use the LSB replacement method to embed the auxiliary
information into the first 150 pixels of the first row of the red channel of the cover color
image. The auxiliary information consists of the following parts: Lcr (20 bits), Lcg (20 bits),
Lcb (20 bits), Mδ(3) (10 bits), T (8 bits), and the positions where the payload embedding
ends in the three channels, denoted by (Rr, Rc), (Gr, Gc), and (Br, Bc), respectively. Each
of the six position information occupies 12 bits, totaling 72 bits. Following the auxiliary
information, we embed the compressed LM into the cover color image.

At the receiving end, the processing steps for data extraction are detailed below.
(1) Auxiliary information and compressed LM extraction. Initially, we extract auxiliary

information from the red channel of the marked color image by the LSB replacement
method, which is located in the first row’s first 150 pixels. Then, we utilize the extracted
Lcr, Lcg, and Lcb to extract the compressed LM.

(2) Payload extraction and pixel recovery. We employ arithmetic coding algorithms to
decompress LM. Following the CRM mode Mδ(3), we extract the payload pixel by pixel in
reverse order from the point where data embedding concluded. Simultaneously, we restore
the original cover pixels.

(3) Image recovery. We separately restore the secret data and the LSBs of the original
pixels from the extracted payload. Additionally, we perform LSB replacement for the first
150 pixels of the red channel. This process ultimately achieves the full restoration of the
original color image and the secret data.
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4. Experimental Results and Analysis

In this section, we evaluate the performance of the proposed CRM-based RDH method
on various color images. First, we verify the method’s effectiveness on six classic color
images. Then, we perform performance tests on the method using the Kodak dataset.
Finally, we analyze and summarize the performance of the method.

4.1. Color Image Datasets

We use the USC-SIPI (http://sipi.usc.edu/database/database.php?volume=misc (ac-
cessed on 20 December 2023)) and Kodak (http://r0k.us/graphics/kodak/ (accessed on 20
December 2023)) datasets as experimental images to evaluate the algorithm’s performance.
We compare the proposed algorithm with the state-of-the-art algorithms, measuring image
fidelity using peak signal-to-noise ratio (PSNR) values. Figure 6 illustrates six classic color
images of size 512× 512 from the USC-SIPI dataset: Lena, Airplane, Lake, Peppers, Splash,
and House. The Kodak dataset contains 24 color images of size 512× 768 or 768× 512, on
which we test the algorithm’s performance. The secret data used in the experiments is a bit
sequence composed of 0 and 1 generated by a random function. We run our method and
the compared methods on a PC equipped with Intel Core i7-9700K CPU (Intel Corporation,
Santa Clara, CA, USA), 16 GB memory, and Windows 10 operating system, using MATLAB
R2020a environment.

(a) Lena (b) Airplane (c) Lake

(d) Peppers (e) Splash (f) House

Figure 6. Six classic USC-SIPI images with size 512× 512.

4.2. Performance Comparison on Classic Color Images

To assess the performance of CDPP [21], GF-CI [20], GI-CI [22], BRG-EP [30], AT-
DHM [23], OPC-PVO [31], and the proposed CRM-based RDH method in terms of image
fidelity, we performed a set of comparison experiments on six classic USC-SIPI images
shown in Figure 6. We utilize the PSNR in decibels (dB) to gauge the fidelity between
the cover color image and the marked color image. A higher PSNR value signifies higher
similarity and superior image quality. We embed 20,000 and 40,000 bits of secret data in
each of the six images shown in Figure 6, respectively, and present the PSNR values after
data embedding in Tables 2 and 3. The results from Tables 2 and 3 demonstrate that our
proposed method achieves higher image quality on most images with the same payload.
Our method exhibits superior image quality compared to the GI-CI and BRG-EP. For ex-

http://sipi.usc.edu/database/database.php?volume=misc
http://r0k.us/graphics/kodak/
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ample, when embedding 20,000 bits, our method yields an average PSNR improvement
of 11.18 dB over GI-CI and 6.54 dB over BRG-EP across the six images. This superiority is
attributed to our method’s comprehensive exploitation of the relationships between the
RGB channels and the establishment of appropriate reference relationships, which excel in
local complexity computation and pixel prediction. However, the recently proposed OPC-
PVO method could perform better than our method on the Peppers and Splash images.
Our method adopts pixel-by-pixel data embedding after establishing the channel reference
relationship. In contrast, the OPC-PVO method adopts a pixel-block embedding method,
which controls the size of the pixel block to ensure higher pixel quality.

Table 2. Comparisons in terms of PSNR (dB) on six classic color images with a payload of 20,000 bits.

Image CDPP GF-CI GI-CI BRG-EP ATDHM OPC-PVO Proposed

Lena 60.58 62.15 48.85 51.08 61.58 62.33 62.62

Airplane 64.72 65.36 55.58 60.49 65.48 64.71 65.74

Lake 60.34 62.68 50.58 57.29 62.72 62.76 62.92

Peppers 57.10 58.23 46.12 50.54 57.79 62.50 59.91

Splash 62.28 62.15 54.96 58.93 63.21 64.36 63.50

House 66.01 65.96 58.46 64.10 66.72 64.05 66.97

Average 61.84 62.76 52.43 57.07 62.92 63.45 63.61

Table 3. Comparisons in terms of PSNR (dB) on six classic color images with a payload of 40,000 bits.

Image CDPP GF-CI GI-CI BRG-EP ATDHM OPC-PVO Proposed

Lena 57.85 59.24 46.14 48.23 58.96 59.18 59.31

Airplane 61.87 62.35 53.05 57.18 62.54 62.34 62.58

Lake 56.46 58.65 46.47 52.34 58.03 58.72 58.89

Peppers 54.64 55.66 43.45 47.68 55.44 58.27 56.87

Splash 60.15 60.52 52.14 55.89 60.18 61.82 61.16

House 63.29 63.24 54.28 60.03 64.09 61.75 64.35

Average 59.04 59.94 49.26 53.56 59.87 60.35 60.53

To further validate the superiority of our proposed method in terms of image fidelity,
we conduct an experiment in which we plot the PSNR values against the amount of data
embedded. The experiment starts with 20,000 bits, increasing in increments of 2000 bits, as
depicted in Figure 7. This figure illustrates the trend of PSNR values with respect to data
embedding quantities. Our method consistently maintains a high PSNR value even as the
volume of embedded data increases. This observation implies that our method effectively
preserves image quality and mitigates the distortion resulting from data embedding. Our
method outperforms other methods on six classic USC-SIPI images. For example, when we
embed 30,000 bits of data into the Lena image, our method achieves a PSNR of 60.82 dB, sig-
nificantly surpassing the performance of competing methods. Specifically, it outperforms
CDPP [21], GF-CI [20], and ATDHM [23] by 1.74, 0.27, and 0.69 dB, respectively. These
results underscore the efficacy of our approach in leveraging inter-channel correlations
within the RGB color space and intra-channel pixel-level correlations. Ultimately, this
approach enhances both image quality and data-hiding capabilities. The aforementioned
experiments contribute to a more comprehensive understanding of the proposed algo-
rithm’s performance under varying data loads. Additionally, they assist in determining the
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optimal data embedding capacity for achieving the highest image fidelity. These findings
will further substantiate the effectiveness of our algorithm in practical applications.
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Figure 7. Performance comparison measured with PSNR between CDPP [21], GF-CI [20], AT-
DHM [23], and the proposed method.

4.3. Performance Comparison on Kodak Images

To further validate the effectiveness of the proposed method in data embedding, we
conduct an extensive experiment using the Kodak dataset. Specifically, we compare our
method with two other methods, GF-CI [20] and CUE [25], by measuring PSNR values.
We conduct the experiment with an embedding capacity of 30,000 bits and present the
comparative results in Figure 8. Figure 8 illustrates a clear advantage of our proposed
method in terms of fidelity for most images. In particular, when embedding 30,000 bits
of data, our method outperforms GF-CI [20] and CUE [25] by an average of 1.10 dB and
0.93 dB, respectively, across 24 images. As shown in Figure 8, the PSNR value of the GF-CI
algorithm on the 20-th image is significantly lower than that of the other images, mainly due
to the complex texture features of the image. During pixel preprocessing, more auxiliary
information is needed to prevent the pixel values from overflowing or underflowing,
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increasing the image’s distortion. Notably, for the 6-th, 15-th, and 24-th images, our method
exhibits slightly lower PSNR values compared to CUE. This is attributed to the prominent
texture features in these images, where the accuracy of pixel prediction in our adaptive
approach is not as high as in smoother images, leading to lower PSNR values in these cases.
Nonetheless, when we consider overall performance, our method demonstrates superior
image fidelity compared to existing methods.

In addition to PSNR values, we also use running time as an indicator to evaluate the
performance of the algorithms. We compared six algorithms on 24 color images from the
Kodak dataset, including GF-CI [20], GI-CI [22], BRG-EP [30], ATDHM [23], OPC-PVO [31],
and the proposed method. Table 4 shows the running time of each algorithm when the
embedding capacity is 10,000 bits. The running time in Table 4 is the average of multiple
experiments, including the time for data embedding and extraction. From Table 4, we can
see that the running time of the proposed method is close to that of the GF-CI and GI-CI
methods and much lower than that of the BRG-EP, ATDHM, and OPC-PVO methods. These
results indicate that our method has high running efficiency while achieving high-quality
data embedding.
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Figure 8. PSNR performance of the proposed method and existing methods on Kodak images with
30,000 bits of data.

Table 4. Comparisons in terms of running time (unit: ms) on Kodak dataset for GF-CI [20], GI-CI [22],
BRG-EP [30], ATDHM [23], OPC-PVO [31], and the proposed method with the payload of 10,000 bits.

Method GF-CI GI-CI BRG-EP ATDHM OPC-PVO Proposed

Running time 3425 3658 4215 6251 3925 3750

4.4. Performance Analysis

Our proposed CRM-based method has significant advantages in image fidelity, mainly
benefiting from our full use of pixel value monotonicity between channels and establishing
the reference mapping relationship between the three channels of the color image. At the
same time, using the established CRM mode, we adaptively calculate the local complexity
and predicted pixel values, improving the accuracy of pixel complexity calculation and
prediction. Of course, our method also has some limitations. In some images with apparent
texture features, selecting smooth pixels for data embedding could be more conducive,
which reduces image fidelity. Improving the fidelity of texture images is the direction we
need to improve and optimize in the future.

5. Conclusions

This paper proposes a CRM-based RDH method for color images, which includes
the channel reference mapping method, the adaptive local complexity computation algo-
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rithm, and the adaptive pixel prediction strategy. The method proficiently utilizes reference
mappings among the RGB channels to attain efficient data embedding and extraction.
Furthermore, it adaptively selects suitable pixels for data embedding based on local com-
plexity and predicted pixel values. The experimental results demonstrate that our approach
consistently achieves high PSNR values across the majority of datasets, indicating its ef-
fectiveness in preserving the visual quality of images. The proposed method exhibits a
notable advantage in image fidelity, primarily attributed to the establishment of a reference
mapping relationship among the three color channels of the color image. This leverages
the monotonicity of pixel values between channels, establishes channel correlations, and
adaptively computes local complexity and predicted pixel values, enhancing both pixel
complexity and prediction accuracy. Nevertheless, our method has some limitations. In
images with pronounced texture features, it is challenging to select smooth pixels for data
embedding, leading to a reduction in image fidelity. Therefore, we plan to explore local
complexity calculation methods in our future research, such as the method based on local
entropy, to improve the accuracy and robustness of local complexity. In addition, we
intend to optimize the pixel prediction strategy, including improving the channel reference
mapping method and adjusting the parameters of adaptive pixel prediction to enhance the
accuracy and flexibility of pixel prediction. In our future research, we will devote ourselves
to further improving the algorithm’s performance and expanding the depth and breadth of
our research.
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