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Abstract: With the development of the intelligent vision industry, ship detection and identification
technology has gradually become a research hotspot in the field of marine insurance and port logistics.
However, due to the interference of rain, haze, waves, light, and other bad weather, the robustness
and effectiveness of existing detection algorithms remain a continuous challenge. For this reason, an
improved YOLOv8n algorithm is proposed for the detection of ship targets under unforeseen environ-
mental conditions. In the proposed method, the efficient multi-scale attention module (C2f_EMAM)
is introduced to integrate the context information of different scales so that the convolutional neural
network can generate better pixel-level attention to high-level feature maps. In addition, a fully-
concatenate bi-directional feature pyramid network (Concatenate_FBiFPN) is adopted to replace
the simple superposition/addition of feature map, which can better solve the problem of feature
propagation and information flow in target detection. An improved spatial pyramid pooling fast
structure (SPPF2+1) is also designed to emphasize low-level pooling features and reduce the pooling
depth to accommodate the information characteristics of the ship. A comparison experiment was
conducted between other mainstream methods and our proposed algorithm. Results showed that our
proposed algorithm outperformed other models by achieving 99.4% of accuracy, 98.2% of precision,
98.5% of recall, 99.1% of mAP@.5, and 85.4% of mAP@.5:.95 on the SeaShips dataset.

Keywords: ship detection; YOLOv8; multi-scale attention; bi-directional; spatial pyramid pooling fast

MSC: 68T45

1. Introduction

As an important part of human comprehensive transportation, water transportation
has become the main mode of bulk cargo transportation because of its advantages of low
cost, small pollution, large loading capacity, and long average transport distance. How-
ever, with the increasing number of ships, with the increasingly complex water transport
environment, ship collision, illegal escape, overloading, illegal berthing, and other acci-
dents occurring frequently, great threats might consequently be caused to social economy,
ecological, environmental protection, and people’s property safety. At present, in real
ocean surveillance, due to the huge amount of video information, manual monitoring can
no longer meet the needs of ship detection. In recent years, with the rapid development
of GPU and artificial intelligence, researchers have applied image processing technol-
ogy to the field of maritime supervision for ship detection and identification. Different
from land traffic, the existing ship detection methods are prone to errors or neglect be-
cause of background interference such as waves and clutters, as well as the scale change
of different ships. Therefore, effective monitoring and positioning of ships in complex
situations is an important challenge that urgently needs to be addressed in the field of
computer vision.
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Currently, traditional ship detection algorithms are mainly classified into background
modeling [1,2], temporal difference [3,4], optical flow [5,6], and template matching [7,8].
Most of these algorithms are bottom-up and differentiate targets from background regions
by designing a large number of image-related features (such as grayscale, texture, edges,
etc.), resulting in generally unsatisfactory performance in a complex environment. In
the past decade, research of convolutional neural networks has been thriving throughout
various fields, and a large number of object detection algorithms based on deep learning
have emerged, such as Faster R-CNN [9], SSD [10], and YOLO [11]. Inspired by these
technologies, Lin et al. [12] proposed an improved Faster R-CNN network, which further
increases detection performance by using squeeze and excitation mechanisms. Later, con-
sidering the dense distribution and different size constraints, Zhou et al. [13] proposed an
R-Libra CNN approach that could better integrate higher-level feature semantic informa-
tion with lower-level features. Based on the principle of relay amplification, Li et al. [14]
proposed a lightweight Faster R-CNN, which has better real-time performance. Similarly,
Wen et al. [15] proposed a multi-scale SSD network, which effectively enhanced the feature
representation capability and detection efficiency. Yang et al. [16] optimized the prediction
frame suppression strategy of SSD to effectively solve the problem of occlusion or missed
detection of small targets. Compared with Faster R-CNN and SSD, YOLO is the first
single-stage target detection method, which divides the input image into grids according
to the size of the feature map and sets different numbers of anchor boxes for each grid,
so it has better real-time performance. Subsequently, researchers added a new feature
extraction network, straight-through layer, feature pyramid, and other operations to the
original YOLO and proposed Lira-YOLO [17], LMO-YOLO [18], LK-YOLO [19] and a series
of improved versions for ship detection, which further improved target detection accuracy
and reduced reasoning time.

Although the abovementioned algorithms have achieved fair results in ship detection,
they still face challenges in practical application, mainly including (1) interference of rain,
haze, wave, illumination, and other bad weather; (2) diversification of dimensions such as
size and aspect ratio; (3) the complexity of orientation, position, posture, and other factors;
(4) interference of background areas such as floating objects, shorelines, buildings. As
shown in Figure 1, under these conditions, the detection accuracy of ship targets would be
greatly affected.

In order to address these problems, we propose an improved YOLOv8n network to
better detect ships from numerous misleading targets. In our algorithm, there are three
advanced modules: efficient multi-scale attention module, fully connected weighted feature
fusion mechanism, and spatial pyramid pooling fast structure. The combination of these
modules has efficient processing performance, and it can achieve 99.4% accuracy, 98.2%
precision, 98.5% recall, 99.1% mAP@.5, and 85.4% mAP@.5:.95. The contributions of this
study are shown as follows:

1. The proposed efficient multi-scale attention module (C2f_EMAM) achieves the fusion
of contextual information at different scales and significantly improves the attention
of high-level feature maps;

2. The fully-concatenate bi-directional feature pyramid network (Concatenate_FBiFPN)
is used to optimize the classification and regression structure to better solve the
problem of feature propagation and information flow in target detection;

3. The spatial pyramid pooling fast structure (SPPF2+1) is redesigned to emphasize the
low-level pooling features and learn the target features more comprehensively;

4. The ablation study of C2f_EMAM, Concatenate_FBiFPN, and SPPF2+1 is conducted,
and the experimental results verified the feasibility and effectiveness of these modules.
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Figure 1. Challenges and limitations of ship detection. The first row: interference of rain, haze, wave, 
illumination and other bad weather; The second row: diversification of dimensions such as size and 
aspect ratio; The third row: the complexity of orientation, position, posture and other factors; The 
last row: interference of background areas such as floating objects, shorelines, buildings. 

2. Materials and Methods 
2.1. Overview of the Improved YOLOv8n 

YOLOv1 (You Only Look Once) [11] is the initially developed version of the YOLO 
series, which was proposed by Redmon et al. in 2015. Compared with traditional target 
detection methods, it essentially transforms the target border positioning problem into a 
regression problem, which utilizes the whole graph as the network input to directly return 
the position and category of the bounding box in the output layer. More recently, YOLOv5 
[20] and YOLOv7 [21] have become two of the most trending algorithms in the YOLO 
series. The main difference between them is that YOLOv5 is a lightweight target detection 
model compared to the more complex architecture of YOLOv7; it adopts the backbone 
network structure based on the feature pyramid network and the anchor-free detection 
mode. This method reduces the computational complexity and the number of parameters 
and greatly enhances the speed and accuracy. As a new training strategy, YOLOv7 adopts a 
deeper network structure and introduces some new technical means, such as the bottleneck 
attention module, which can significantly improve the accuracy and generalization ability of 
the target detector. In 2023, the Ultralytics team launched the latest version of YOLOv8 (Ultra-
lytics, Frederick, MD, USA) [22]. By optimizing the C3 module in YOLOv5, removing the con-
volutional structure in the up-sampling stage, and using a new loss strategy, YOLOv8 has a 
faster detection speed and can detect and locate the target object more accurately. 

  

Figure 1. Challenges and limitations of ship detection. The first row: interference of rain, haze, wave,
illumination and other bad weather; The second row: diversification of dimensions such as size and
aspect ratio; The third row: the complexity of orientation, position, posture and other factors; The
last row: interference of background areas such as floating objects, shorelines, buildings.

2. Materials and Methods
2.1. Overview of the Improved YOLOv8n

YOLOv1 (You Only Look Once) [11] is the initially developed version of the YOLO
series, which was proposed by Redmon et al. in 2015. Compared with traditional target
detection methods, it essentially transforms the target border positioning problem into
a regression problem, which utilizes the whole graph as the network input to directly
return the position and category of the bounding box in the output layer. More recently,
YOLOv5 [20] and YOLOv7 [21] have become two of the most trending algorithms in the
YOLO series. The main difference between them is that YOLOv5 is a lightweight target
detection model compared to the more complex architecture of YOLOv7; it adopts the
backbone network structure based on the feature pyramid network and the anchor-free
detection mode. This method reduces the computational complexity and the number
of parameters and greatly enhances the speed and accuracy. As a new training strategy,
YOLOv7 adopts a deeper network structure and introduces some new technical means,
such as the bottleneck attention module, which can significantly improve the accuracy and
generalization ability of the target detector. In 2023, the Ultralytics team launched the latest
version of YOLOv8 (Ultralytics, Frederick, MD, USA) [22]. By optimizing the C3 module
in YOLOv5, removing the convolutional structure in the up-sampling stage, and using a
new loss strategy, YOLOv8 has a faster detection speed and can detect and locate the target
object more accurately.

Because of these advantages, we chose the lightweight version YOLOv8n (Ultralytics,
Frederick, MD, USA) as the baseline, which mainly includes feature extraction modules
(backbone and neck networks), a recognition branch, and a detection branch. The network
architecture of the improved YOLOv8n is shown in Figure 2. Firstly, replacing the original
C2f convolutional with C2f_EMAM lightweight structure can aggregate multi-scale spa-
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tial structure information; thereby, the convolutional neural network can generate better
pixel-level attention to advanced feature maps. Secondly, using an efficient bi-directional
connection and weighted feature fusion strategy, the neck network is improved to Con-
catenate_FBiFPN so that the feature information can be propagated in both top-down and
bottom-up directions. Finally, the SPPF structure has been improved by using two Max-
pool 5 in parallel and performing secondary pooling on one of the pooling features. This
has attracted more attention to low-level pooling features while also taking into account
different receptive field features. The introduction details of each module are as follows.
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Figure 2. The network architecture of the improved YOLOv8n. 

  

Figure 2. The network architecture of the improved YOLOv8n.

2.2. Architecture of C2f_EMAM

According to the literature [22], the CSP structure of YOLOv5 was replaced by the
C2f structure in YOLOv8, which added more residual connections and thus enriched the
gradient flow. However, due to different ship types and complex weather disturbances,
the robustness and effectiveness of the YOLOv8 algorithm remain problematic. In deep
learning and computer vision, the proposal of attention mechanisms is proven to be a
very effective way to help models focus on important parts of the input. However, the
traditional attention mechanism often works in a certain spatial scope and cannot obtain
information from the global context. Inspired by Ouyang et al. [23], we add an efficient
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multi-scale attention module to C2f and propose a new C2f_EMAM structure. Specifically,
C2f_EMAM performs a convolution operation on input features, followed by the split
function and EMAM, and then enters the last half into a bottleneck block and finally
concatenates it through a convolution output; the overall structure of C2f_EMAM is shown
in Figure 3. By fusing attention mechanisms, convolution nuclei of different sizes, and
grouping convolution, C2f_EMAM aims to improve model performance while maintaining
computational efficiency.
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ary fusion path on the basis of FPN. On the basis of PANet, BiFPN removes nodes with 
only one input edge to simplify the network and adds an extra path from the original 
input to the output node on the same horizontal route. Since different input feature maps 
have different effects on the fused multi-scale feature maps, the Concatenate_FBiFPN 
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2.3. Architecture of Concatenate_FBiFPN

Concatenate_FBiFPN is a unique feature pyramid network that combines the bidi-
rectional cross-scale connections and weighted feature fusion strategies of FPN, PANet,
and BiFPN, as shown in Figure 4. The feature information can be propagated from top
to bottom and connected efficiently according to certain rules, which can accomplish the
aggregation of deep and shallow features easily and quickly. FPN uses a simple top-down
approach to combine multi-scale features, while PANet adds a simple bottom-up secondary
fusion path on the basis of FPN. On the basis of PANet, BiFPN removes nodes with only
one input edge to simplify the network and adds an extra path from the original input to
the output node on the same horizontal route. Since different input feature maps have
different effects on the fused multi-scale feature maps, the Concatenate_FBiFPN structure is
the solution to tackle this problem. By incorporating more features without increasing the
number of parameters and computational cost, Concatenate_FBiFPN adds a skip connec-
tion between some input nodes and output nodes to achieve adequate multi-scale feature
information fusion.

2.4. Architecture of SPPF2+1

The SPPF module is the spatial pyramid pooling module used in YOLOv5. Its mech-
anism is to pool feature maps of different scales without changing the size of the feature
maps so as to improve the accuracy of receptor field extraction and target detection. The
original SPPF is pooled three times layer by layer and concatenated at the end. Although
shallow semantic features are considered in the final concatenate, the concatenated features
are weakened. Considering that the shallow semantics contain more image features, we
parallel two Maxpools 5 and only perform secondary pooling on one of the first pooling
and concatenate the various features to obtain SPPF2+1. In this way, more attention is paid
to the pooling characteristics of the lower layers, and different receptive field characteristics
are also taken into account, as shown in Figure 5.
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3. Results

The convolutional neural network is needed for training object detection models, so
it is necessary to build an operating environment based on the Pytorch deep learning
framework. In the Windows 10 environment, we use 24GB NVIDIA RTX6000 GPU memory
and support CUDA to accelerate the model during the training process. In the training
process, Adam Optimizer [24] and Tensorboard were used as a training visualization tool
to visualize the training state of the model based on the Pytorch framework by reading the
generated training log. The batch size was adjusted to 16, the learning rate was 0.001, and
the number of iterations was 300. We used the publicly available SeaShips [25] dataset to
verify the effect of the object detection methods. The images in the dataset were divided
into three parts by the ratio of 3:1:1, which were respectively used as the training set,
validation set, and test set. The data set contains a total of six classes: ore carrier, bulk
cargo carrier, general cargo ship, container ship, fishing boat, and passenger ship, which
can generally cover the main types of ships encountered at sea.
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3.1. Evaluation Metrics

To evaluate the performance of these methods, accuracy, precision [26], recall [27],
mAP@.5 [28], and mAP@.5:.95 [29] are used; equations are as follows:

Accuracy =
TP + TN

TP + FN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

AP =
∫ 1

0
P(R)dR (4)

mAP@.5 =
∑N

i=1 APi

N
, IoU = 0.5 (5)

mAP@.5 : .95 =
∑N

i=1 APi

N
, IoU ∈ [0.5, 0.95] (6)

where TP and TN are the counts of positive and negative pixels that are correctly classified.
FP and FN are the counts of misclassified positive and negative pixels. mAP@.5 means
that when IoU is set to 0.5, the AP of all images in each category is calculated, and then
all categories are averaged. mAP@.5:.95 represents the average mAP across different IoU
thresholds ranging from 0.5 to 0.95 with steps of 0.05.

3.2. Results of the Improved YOLOv8n

As shown in Figure 6, the loss of the training set and verification set and the change
of evaluation index in the training process of our method were illustrated. Observing
Figure 6a–c, after 200 epochs, although the training set index showed a continuous down-
ward trend, the loss of the validation set had become flat, which indicates that the model
reached a convergence state within 300 epochs. In Figure 6d, it is shown that although
precision and recall continue to show oscillations after 200 epochs, mAP has become flat.

Table 1 shows the detection indexes of various types of ships, and the results indicate
that the detection of the proposed method is not lower than 0.988 at mAP@.5 for all types
of detection. Figure 7 shows that the model can accurately locate and classify each type
of ship.

3.3. Ablation Experiment
3.3.1. C2f_EMAM

Table 2 shows the comparison between the recognition results of C2f integrated with
EMAM structure and the original C2f. The results show that the comprehensive index of
C2f_EMAM is improved by 0.002 compared with the original Yolov8n model mAP@.5 and
mAP@.5:.95.

Figure 8 shows the change values of the recall of each ship type before and after the
integration of EMAM, and it is found that the model integrated with EMAM improves the
Recall of all types of ships.

In order to better show the role of the EMAM mechanism, we demonstrate the change
of characteristic heatmap of passing the C2f_EMAM layer through Grad-CAM. As shown
in the first row of Figure 9, after the EMAM structure is added, the extracted features
are mostly focused around the ship, while the original structure still distributes a lot of
attention on the sea surface and coast. As shown in the second line, the EMAM structure
can improve the ability to search for small targets. Compared with the original structure, the
EMAM has a higher attention level on the main object–the ships, on the images. However,
even for some seemingly undistributed heat, the background features are suppressed away
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from background areas, as shown in the last line of Figure 9. In summary, the C2f structure
integrated into EMAM improves the feature extraction ability of the model.
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Table 1. Performance results of the model on test set.

Ships Accuracy Precision Recall mAP@.5 mAP@.5:.95

Ore carrier 0.996 0.986 0.989 0.994 0.863
general cargo ship 0.995 0.987 0.994 0.993 0.875
bulk cargo carrier 0.992 0.968 0.979 0.989 0.873

Container ship 0.996 0.993 0.995 0.995 0.886
Fishing boat 0.992 0.970 0.965 0.989 0.801

Passenger ship 0.991 0.989 0.988 0.988 0.818
Average 0.994 0.982 0.985 0.991 0.854

3.3.2. Concatenate_FBiFPN

The evaluation metrics of three Concatenate structures are shown in Table 3, and the
results show that the proposed Concatenate_FBiFPN structure effectively improves general
performance of the model. Among them, mAP@.5 is increased by 0.002, mAP@.5:.95 is
increased by 0.004.

Figure 10 shows the heatmap of a randomly selected testing sample image being
processed by Layer 4 and Layer 13 after passing through different Concatenate structures.
The results show that compared with the original Concatenate and Concatenate_BiFPN
structure, Concatenate_FBiFPN has a higher attention level for the two tested objects judg-
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ing from the higher density of the highlighted areas. This indicates that Concatenate_BiFPN
can have heavier and more concentrated weights than the target.
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Table 2. Comparison of detection results of different C2f structures.

Structure Accuracy Precision Recall mAP@.5 mAP@.5:.95

Yolov8n-C2f 0.990 0.982 0.979 0.988 0.848
Yolov8n-C2f_EMAM 0.993 0.981 0.982 0.990 0.950

3.3.3. SPPF2+1

Table 4 shows the influence of four SPPF structures on the detection accuracy. The data
shows that compared to the original SPPF structure, the SPPF2+1 structure significantly
improves the detection accuracy of the model. However, after further deepening the model
structure, the detection accuracy is relatively low, as shown in the test indexes of SPPF3+1
and SPPF3+3.

From the heat map shown in Figure 11, we can observe that the SPPF2+1 structure
focuses highly on the detected object. However, SPPF3+1 focuses on more features in the
background region, and SPPF3+3 makes the features of the tested region biased or even
missing due to the excessive hybridity of features. The results show that the proposed
SPPF2+1 structure can effectively adapt to ship target detection and distribute the weight
of the detected area well.
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Table 3. Comparison of detection results of different Concatenate structures.

Structure Accuracy Precision Recall mAP@.5 mAP@.5:.95

Yolov8n-Concatenate 0.989 0.982 0.979 0.988 0.848
Yolov8n-Concatenate_BiFPN 0.991 0.981 0.980 0.989 0.851

Yolov8n-Concatenate_FBiFPN 0.992 0.983 0.981 0.990 0.852

Table 4. Comparison of detection results of different SPPF structures.

Structure Accuracy Precision Recall mAP@.5 mAP@.5:.95

Yolov8n-SPPF 0.989 0.982 0.979 0.988 0.848
Yolov8n-SPPF2+1 0.992 0.980 0.982 0.990 0.951
Yolov8n-SPPF3+1 0.987 0.979 0.978 0.985 0.837
Yolov8n-SPPF3+3 0.988 0.978 0.979 0.985 0.838
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4. Discussion

To test the performance of the model more comprehensively, our improved YOLOv8n
was compared with some classic object detection methods based on the same dataset, and
the results are shown in Table 5. The data shows that the mAP@.5 of our YOLOv8n gets
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0.991 on the data set, which is much higher than other models. In terms of detection speed,
its FPS score of 83.33 is also the highest. In addition, the number of parameters and the
size of GFLOPs are kept to a minimum. The results show that our YOLOv8n on SeaShips
dataset has better general performance.

Table 5. Comparison of detection results of different models.

Models mAP@.5 mAP@.5:.95 Parameters (M) GFLOPs (G) FPS

Faster RCNN 0.850 0.698 39.56 101.80 20.40
EfficientDet-D1 0.950 0.761 6.67 12.43 19.62

Yolov5s 0.960 0.754 6.74 16.50 78.56
Yolov5m 0.975 0.760 20.10 50.70 64.40
Yolov5l 0.983 0.767 44.50 114.60 41.50
Yolov7 0.986 0.821 35.50 105.53 73.58

Yolov8n 0.988 0.848 2.87 8.21 83.33
Yolov8s 0.990 0.851 10.62 28.71 71.42
Yolov8m 0.991 0.854 24.66 79.1 47.62

Improved Yolov8n 0.991 0.854 2.87 8.30 83.33

5. Conclusions

This paper proposes a deep learning architecture based on YOLOv8n for the objective
of ship detection under complex environmental conditions. Our conclusions are as follows:
firstly, the proposed C2f_EMAM can integrate the context information of different scales
and significantly improve the attention of high-level feature maps. Secondly, the fusion of
Concatenate_FBiFPN into the model can better solve the problem of feature propagation
and information flow in target detection. Finally, the SPPF2+1 is redesigned to emphasize
the low-level pooling features and learn the target features more comprehensively. In the
comparison experiments we conducted between our algorithm and other similar purpose
models, our algorithm achieved 99.4% accuracy, 98.2% precision, 98.5% recall, 99.1% of
mAP@.5 and 85.4% of mAP@.5:.95, which is superior to other traditional detection models.
The results show that our proposed method possesses research significance in the field of
automatic and intelligent ship detection.

However, this study does not fully discuss the representativeness and diversity of the
datasets used, and the robustness of the model is still to be further improved. Currently,
we are building a more comprehensive and diverse ship detection dataset and adopting
more diverse evaluation indicators to improve the generalization ability and practicability
of the model, which is also the focus of research in the future.
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