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Abstract: Music genre classification is significant to users and digital platforms. To enhance the clas-

sification accuracy, this study proposes a hybrid model based on VMD-IWOA-XGBOOST for music 

genre classification. First, the audio signals are transformed into numerical or symbolic data, and 

the crucial features are selected using the maximal information coefficient (MIC) method. Second, 

an improved whale optimization algorithm (IWOA) is proposed for parameter optimization. Third, 

the inner pa�erns of these selected features are extracted by IWOA-optimized variational mode de-

composition (VMD). Lastly, all features are put into the IWOA-optimized extreme gradient boosting 

(XGBOOST) classifier. To verify the effectiveness of the proposed model, two open music datasets 

are used, i.e., GTZAN and Bangla. The experimental results illustrate that the proposed hybrid 

model achieves be�er performance than the other models in terms of five evaluation criteria. 

Keywords: music genre classification; feature extraction; decomposition; optimization 

MSC: 68U01 

 

1. Introduction 

Mobile devices and streaming services have revolutionized music access, making it 

more convenient for users. The abundance of digital music poses a significant challenge 

for music information retrieval (MIR), particularly in swiftly locating preferred tracks 

within vast libraries based on genres. Music genre classification (MGC) is a popular ap-

plication for MIR, and music genres are vital labels for organizing and retrieving music, 

which is essential for solving classification challenges [1,2]. 

Most of the early music genre classification and labeling was performed manually, 

which required worker expertise. Music streaming platforms often employ music special-

ists to conduct music tagging, leading to high accuracy, albeit at a substantial expense. At 

times, platforms permit non-professional users to contribute tags by making the tagging 

feature accessible, and these user-generated tagging data are incorporated into the music 

tags. While this approach reduces costs, it often results in numerous instances of misla-

beling within categories [3]. Therefore, it is necessary to achieve music genre classification 

by computational methods. Currently, the mainstream classification of music genres is 

divided into two classification methods: image classification, based on music spectro-

grams, and symbolic description music classification, based on symbolic data types [4]. 

For the first classification method, most studies perform the short-time Fourier trans-

form (STFT) on the raw data, visualizing the raw data as spectrograms, or obtain Meier 

spectrograms so as to acquire deeper acoustic features to improve the classification accuracy 
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of the subsequent model. With the breakthrough of computer vision (CV), researchers have 

carried out a series of studies on music genre classification based on deep learning (DL) [5]. 

Since the spectrogram of audio is similar to that of red-green-blue (RGB) images, most CV 

models can be applied in the field of MGC. In view of this, Oliveira et al. [6] transformed 

audio signals into spectrograms and extracted features from images. Yang et al. [7] proposed 

a novel method for music genre classification that can be applied to the spectrograms. By 

considering the possible differences between spectra, he proposed an attention mechanism 

model based on the bidirectional recurrent neural network (BRNN) for music genre classi-

fication, and experiments showed that the proposed model outperformed the traditional 

model. Cheng et al. [8] combined the music genre classification with the YOLO architecture. 

In their work, extracted visual Meier spectrograms were used as the input features, and 

higher accuracy was achieved. Laiali et al. [9] transformed audio data into spectrograms 

using STFT, the audio features were extracted using Mel-frequency cepstral coefficients 

(MFCCs) for classification, and the experimental results showed that AlexNet demonstrated 

the best performance among the group of convolutional neural network (CNN) classifiers. 

Costa et al. [10] proposed a novel method to transform audio signals into spectrograms and 

extract texture features from image time-frequency features; this method surpassed the best 

results in the MIREX2010 competition in the LMD dataset. Gan [11] found that the CNN-

based method ignores the temporal characteristics of the audio itself; therefore, he combined 

the convolutional structure with a bidirectional recurrent neural network and proposed a 

convolutional recurrent neural network classification architecture. Accurate results on the 

GTZAN dataset were obtained. Balachandra [12] improved the moth algorithm IMOF and 

successfully applied it to the task of music genre classification. He achieved good classifica-

tion results by optimizing the weights of a deep belief network (DBN) and performing clas-

sification. Wang et al. [13] used bidirectional long short-term memory (BiLSTM) for feature 

extraction and VGG-16Net to achieve better results on the MSD-I, GTZAN, and ISMIR2004 

datasets. Rui [14] found that manual parameter setting could not achieve good results in 

music emotion classification. Therefore, Rui proposed the quantum particle swarm optimi-

zation (QPSO) algorithm to optimize the parameters of the CNN-RF model. Li et al. [15] 

found that a traditional CNN attempts to classify the input spectrograms with a softmax 

layer that lacks the ability to distinguish the deeper features of the music. In response to 

inadequate discrimination caused by softmax loss, an angular margin and cosine margin 

softmax loss (AMCM-Softmax) approach is proposed to augment the discriminative efficacy 

of deep features. 

For the second classification method, as these music features are rooted in musical 

symbols, prevalent formats such as Music Digital Interface (MIDI), MusicXML, and MEI 

are frequently utilized [16]. In order to capture more features when performing classifica-

tion, some scholars began to use symbolic data types. For example, as early as 2003, Tzane-

takis and Cook used a duration histogram (DH) to capture rhythmic information for clas-

sification, and, at the same time, they established one of the most widely used publicly 

available datasets, GTZAN [17]. Karydis captured the pitch information characteristics of 

music to classify genres and achieved good performance [18]. In 2004, McKay and Fuji-

naga extracted 109 high-level musical features from MIDI files, which are related to the 

strength, instrumentation, pitch, melody, rhythm, and chords of music. The number of 

features was expanded in the literature [19] to 160, which were used to automatically clas-

sify music genres; good classification results were obtained. Jorge et al. [20] incorporated 

conventional musical a�ributes, such as note histograms and statistical moments, along-

side innovative features extracted from MIDI files to classify genres using a traditional 

machine learning classifier. Their findings indicate that regular-kNN surpasses other tra-

ditional machine learning models in performance. Lee et al. [21] expanded their analysis 

by incorporating additional musicological features, blending musical instrument data 

with raw audio and MIDI phrases as input variables for classification. They employed 

traditional machine learning algorithms, such as support vector machines (SVM), decision 

trees, and random forest (RF), for their classification tasks. Qiu et al. [22] introduced an 
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unsupervised latent music representation learning method based on a deep 3D convolu-

tional denoising autoencoder (3D-DCDAE) for music genre classification. This method 

aims to learn common representations from a large amount of unlabeled data to improve 

the performance of music genre classification. This not only minimizes training time com-

pared to partial models but also achieves superior classification accuracy. Cheng et al. [23] 

used Librosa to classify raw audio by measuring its key features such as the correspond-

ing Mel-spectrum, which greatly improved the convenience of feature extraction. Mean-

while, Sakinat O. et al. [24] utilized publicly available Nigerian songs to extract audio fea-

tures using Librosa. They introduced the ORIN dataset, making it publicly accessible. In 

addition, kNN, SVM, extreme gradient boosting (XGBOOST), and RF were employed. Ex-

perimental results revealed that XGBOOST outperformed other methods, achieving supe-

rior classification accuracy. 

Given the above analysis, the existing studies achieved competitive performance in 

music genre classification. However, some issues still need to be addressed: (i) In terms of 

feature extraction, various feature selection algorithms are used to capture the powerful fea-

tures, but the intrinsic pattern of original features can be further extracted. (ii) Regarding 

parameter optimization, machine learning models rely on the parameter setting in classifi-

cation tasks, but traditional parameter optimization methods (such as grid search, PSO al-

gorithm, etc.) always obtain a local optimization solution, resulting in limited performance. 

In view of this, this paper introduces a hybrid model for music genre classification. 

The original audio is transformed into numerical data first; then, the maximum infor-

mation coefficient (MIC) is used for feature selection. Subsequently, variational mode de-

composition (VMD) is employed to extract the inner pa�ern of the top-five features. To 

reduce the complexity and capture effective information from original features, in this 

paper, we adopt the decomposition-based approach for classification. The main contribu-

tions are outlined as follows: 

1. A hybrid model with VMD-IWOA-XGBOOST is proposed for music genre classifica-

tion. MIC is used to screen out high-correlation features, VMD is chosen to extract 

the key information of features, an Improved Whale Optimization Algorithm 

(IWOA) is proposed to improve the parameter se�ing, and XGBOOST is utilized as 

the classification model. 

2. An IWOA is proposed for parameter optimization. By refining the search process, 

contracting encircling, and altering the spiral position, comparative analysis reveals 

the superiority of the IWOA. 

The remainder of the paper is organized as follows: Section 2 describes the method-

ology; Section 3 describes the experimental results and analytics; Section 4 summarizes 

the conclusions. 

2. Methodology 

2.1. Feature Extraction 

In this paper, we extract features from time and frequency domains for the GTZAN 

dataset, and the following main musical features have a large difference in classification 

of musical genres: zero-crossing rate (ZCR), spectral centroid, spectral roll-off, spectral 

bandwidth, chroma frequency, root-mean-square energy (RMSE), delta, Mel-spectro-

gram, tempo, and Mel-frequency cepstral coefficients (MFCCs) [25]. Below, we provide 

descriptions of features extracted from the frequency domain: 

(1) The zero-crossing rate is the rate of change of a signal symbol, i.e., the probability of 

changing from a negative or opposite number to a positive number [26]. The over-

zero rate is an important feature in the field of speech recognition and music infor-

mation retrieval, and its defining formula is provided below: 
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(1)

where  is the signal length , and the  function assigns a value of 1 when {} 

is true, and 0 otherwise. 

(2) The spectral center of mass is a critical physical parameter elucidating the timbral 

characteristics of a sound signal. It delineates the frequency-weighted average of en-

ergy distribution within a specified frequency band, functioning as the locus of grav-

ity for its constituent frequencies. Consequently, it offers pivotal insights into the fre-

quency and energy distributions inherent to the sound signal. It represents the bright-

ness of the signal spectrum and is regarded as the cross-section of the STFT amplitude 

spectrum. The following is its defining formula: 

  

(2)

where  is the spectrum of the DFT (discrete Fourier transform) at moment  

of amplitude. 

(3) Spectral roll-off generally means that the frame center frequency is below the default 

threshold of the spectrum (typically 85%). This is another a�ribute used to estimate 

the spectral pa�ern. Spectral roll-off points serve as discriminative indicators within 

audio signals, facilitating the identification of distinct sounds, including the timbral 

nuances exhibited by various instruments. These features, typically integrated with 

other descriptors such as MFCCs, zero-crossing rate, and bandwidth measures, are 

employed synergistically to enhance the efficacy of audio processing tasks. The cal-

culation formula is provided below: 

  (3)

(4) Spectral bandwidth refers to a fundamental parameter in signal processing and spec-

troscopy, representing the range of frequencies encompassed by a signal or a spectral 

distribution. It is calculated with the following formula: 

  

(4)

(5) Chroma frequency is used to indicate the energy of each tone level between musical 

signals, providing a metric characteristic in cases where there is a great similarity be-

tween musical segments. 

(6) RMSE is a method of characterizing the energy of a signal. It is expressed in Equation 

(5), while its rooted calculation is shown in Equation (6). 

  

(5)

where  denotes the discrete time node signal. 
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(6)

(7) In the case of Mel-frequency cepstral coefficients (MFCCs), the vast majority of its 

parameters are related to the amplitude of the frequency. The MFCC is an important 

feature of audio signals and it is used for rapid speech recognition [27]. Its equation 

is as follows: 

  (7)

(8) The harmonic and percussive harmonic will reveal more horizontal or pitch-depend-

ent changes. The percussive harmonic will show more vertical or time-dependent 

changes. These features are generally obtained using a fast Fourier transform (FFT). 

(9) Tempo is a fundamental aspect of music theory and analysis, denoting the rate or speed 

at which a musical piece progresses, typically measured in beats per minute (BPM). 

2.2. The Maximal Information Coefficient 

Reshef et al. proposed the maximum information coefficient, which can not only 

measure the linear and nonlinear relationship between data variables but can also mine 

the non-functional dependence between variables [28]. 

The calculation of MIC is very simple; if there exist two variables  = { },  = 

1, 2, …, and  = { },  = 1, 2, …, n, both of which are related in some way, and if 

those variables  and ,  = 1, 2, …, n, can be formed into a set  { , }, 

then the calculation for determining the relationship between the two sides of the above 

is as follows: 

(1) Firstly,  and  are arranged in ascending order, and, subsequently, an  ×  

grid  is defined as a sequence partition, where each sample point of  is parti-

tioned into   parts, each sample point of   is partitioned into   parts, and 

some cells are allowed to be empty sets. 

(2) The probability distribution function  of all cells of the grid  species is de-

rived; at this time, the maximum mutual information value obtained is  

, and the value of its identity matrix is , as shown in Equation (8): 

 
(8) 

where  represents the joint probability density function of elements  and 

  within grid  .   and   denotes the edge density distribution func-

tions of and , respectively.  is the number of cell samples falling in the  

th row and the  th column of the grid , and  is the total number of samples. 

(3) Since different grids  lead to different probability distribution functions , the 

maximum mutual information coefficients MIC of the variables   and   are 

searched for the optimal grid  by the exhaustive method for the feature matrix: 

 (9)
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where  represents the probability distribution function encompassing all el-

ements within the grid .  is the maximum grid for an exhaustive search. 

The final MIC obtained is assigned values between [0, 1]; the greater the correlation 

of the variables, the greater the MIC value, and vice versa. 

2.3. Variational Mode Decomposition 

VMD is a non-recursive signal processing method which can decompose the original 

signal f(t) into a series of intrinsic mode function (IMF) with finite bandwidth by itera-

tively searching for the optimal solution of the variational modes. The method has good 

noise immunity and can effectively overcome the mode aliasing problem of empirical 

mode decomposition (EMD) [29]. The essential idea of VMD is to computationally solve 

the variational problem. The computational steps are as follows: 

(1) The analytical signal of each mode is solved by the Hilbert transform, and the spec-

trum is constructed at the same time. Finally, the analytical signal of each decom-

posed mode component  at time t is obtained: 

 (10)

(2) The predicted center frequency is multiplied with the resolved signal of each IMF 

component for frequency correction, and the spectrum of each decomposed IMF 

component is shifted to the corresponding frequency band: 

 (11)

where  is the Hilbert transform functor and  is the correction factor. 

(3) The variational problem with constraints is constructed by using the above-demod-

ulated signal, calculating the bias, and then estimating the bandwidth from its 

squared paradigm, as shown below: 

 (12)

where  is the set of IMF components for each decomposition,  denotes 

the set of center frequencies for each mode component,  denotes the bias operation 

on the variable t,  denotes the unit-pulse signal function, * denotes the convolu-

tion operation,  denotes the original signal, and  denotes the L2 paradigm. 

(4) In order to transform the constrained variational problem into an   variational 

problem without constraints, the original problem can be converted into a problem 

of solving the Lagrange function maximum by introducing the Lagrange multiplier 

a with the quadratic penalty factor , which has the following expression: 

(13)
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where  denotes the Lagrange multiplier,  denotes the quadratic penalty factor, 

and  denotes the dot product operation. 

(5) The optimal solution of the constrained variational model is solved by updating , 

 , and   in the frequency domain using the alternating direction multiplier 

method, and the updated equation is shown below: 

  

(14)

 

(15)

 

(16)

 

(17)

where   is the number of iterations;  ,  , and   are the Fourier 

transforms of , , and , respectively; is the Wiener filtering 

of each component of IMF after Fourier transform; is the noise tolerance limit; 

 is the center frequency of the th mode component at the th iteration; 

and   is the set threshold of convergence accuracy. Using Equations (12)–(14), 

, , and  are continuously updated until the termination condi-

tion of Eq. (17) is satisfied; then, the iteration is terminated. 

2.4. Improved Whale Optimization Algorithm 

The WOA algorithm is a bionic intelligent optimization algorithm that has been de-

veloped to simulate the unique foraging style of whales. It assumes that the current indi-

vidual is the prey, and all other individuals in the group approach the optimal individual. 

The WOA is divided into three main phases: searching for foraging, contraction of encir-

clement, and helical updating of the position [30]. The underlying WOA formula can be 

found in the literature [30]. This study proposes an improved whale optimization algo-

rithm, as described below. 

(1) Adaptive weighting 

First, we choose the number of iterations t to constitute the adaptive inertia weights, 

as shown in Equation (18), based on the variation of the number of update iterations in 

the whale optimization algorithm: 

 (18)

The improved whale optimization algorithm position is updated as follows: 
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 (19)

(2) Variable helix position 

The parameter b is designated as a variable that changes with the number of itera-

tions to dynamically adjust the shape of the spiral during whale searching, and after com-

bining the adaptive weights, the new spiral position is updated as follows: 

  (20)

  (21)

(3) Differential variance scale factor 

We found that the algorithm will generate new feasible solutions around the optimal 

solution when it is close to the optimal solution, which will cause premature convergence 

as the number of iterations increases. To solve this problem, we borrowed the idea of var-

iance perturbation factor for use in the differential evolutionary algorithm and introduced 

this variance perturbation factor in the process of shrinking the surroundings to form the 

optimal solution, which can make the algorithm jump out of the local optimum and im-

prove the optimization accuracy of the local optimum [31]. The variance perturbation fac-

tor is shown in Equation (22): 

 
(22)

where � is the variance perturbation factor. 

2.5. XGBOOST 

Extreme gradient boosting tree (GBDT) is an optimization of the boosting algorithm, 

which combines multiple regression tree classifiers into a single powerful classifier with 

the advantages of fast training speed with high generalization ability [32]. It generates 

new trees to fit the residuals of the previous tree by iterating continuously, and its accu-

racy improves as the number of iterations increases. The simplified form of its objective 

function after Taylor expansion is shown in (23): 

  

(23)

where  is the objective function, T is the number of leaves in the regression tree,  

is the first order derivative,  is the second order derivative,  is the regularization 

parameter, and  is the learning rate. 

2.6. The Proposed VMD-IWOA-XGBOOST Model 

In this section, we describe the framework of the VMD-IWOA-XGBOOST model. The 

modeling framework is shown in Figure 1. The details are elaborated as follows: 

Step1: the original GTZAN audio dataset is processed through Librosa (version of 

Librosa is 0.9.1). 

Step2: critical features are selected through MIC, the highest features are obtained 

first, and decomposition techniques are used to reduce the complexity of selected features. 
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Step3: we optimize the parameters of VMD and XGBOOST using the IWOA. 

Step4: we carry out feature decomposition using the IWOA-optimized VMD method. 

Step5: the decomposed modes are divided into a training set and a test set with 80% 

in the training set and 20% in the test set. 

Step6: IWOA-optimized XGBOOST is used to classify. 
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Figure 1. Music genre classification framework. 

3. Experiment 

3.1. Data Set 

We used two open datasets (GTZAN and Bangla) for the experiment. GTZAN is a 

classical dataset that includes a collection of 10 Western music genres, including but not 

limited to hip-hop, country, metal, blues, jazz, rock, disco, etc. Each of these genres con-

tains 100 pieces of music, and each piece of music (a total of 1000 songs) is in a 30-s WAV 

audio format with 16-bit audio files in 22,050 HZ mono [24]. Considering the richness and 

diversity of Bangla music, we selected a Bangla music dataset for music genre classifica-

tion, following the work of Mamun [26] et al., by selecting six classic Bangla music genres, 

each with approximately 250–300 songs of music. We named this the Bangla Music Da-

taset and made it available. 

3.2. Evaluation Criteria 

In order to verify the generalization of our proposed model, we employ the GTZAN and 

Bangla datasets. We adopted  ,  ,  , 

 , and   to evaluate experimental results. Firstly, we introduced the basic 

, , ,  and . Equation (24) is the  for-

mula,  is the true example, and  is the false positive example. Precision can be inter-

preted as the ability of the classifier to predict only true samples as positive and actually 

correct. Equation (25) is the recall formula,  is the false negative example, and recall 

can be understood as the percentage of the number of test samples that are true positive 

examples that are actually classified as positive. Equation (26) is the formula for 

  calculation, and   is the harmonic mean coefficient between  
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and ; if the  and  are higher, then the value of  will be higher. 

Equation (27) is the formula for ,  is the true counterexample, and the pur-

pose of calculating  is to find the ratio of the number of correct judgments to 

all judgments. In order to achieve a fairer experimental result, we will use  , 

, and  to find their respective average values. The calculation formula 

is shown in Equations (28)–(30). 

 

(24)

 

(25)

 (26)

 

(27)

 (28)

 (29)

 

(30)

 (31)

3.3. Parameter Se�ings 

This experiment was conducted using the Windows 11 operating system, an 11th Gen 

Intel (R) Core (TM) i5-11300H @ 3.10 GHz 3.11 GHz processor, and a 16 GB RAM computer 

based on the Python version 3.9.18 runtime environment. This environment provides suf-

ficient arithmetic power, as well as experimental stability. 

In the model training, the two classifiers were used (BP and long short-term memory 

(LSTM)) and, using the Adam optimizer, iterations were set to 10,000, and batch size was 

set to 512. For XGBOOST, adaptive boosting (AdaBoost), RF, and GBDT, which are not 

optimized by IWOA, their n_estimators were set to 100, and their learning_rate was set to 

0.01. The specific experimental parameters are shown in Table 1. 
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Table 1. Model parameters. 

Model  Parameters Values 

BP epoch, batch_size 10,000, 512 

LSTM epoch, batch_size 10,000, 512 

AdaBoost n_estimators, learning_rate 100, 0.01 

GBDT n_estimators, learning_rate, max_depth 100, 0.01, 5 

XGBOOST gamma, n_estimators, learning_rate, max_depth 0, 100, 0.01, 5 

RF n_estimators, max_depth, min_samples_leaf 100, 5, 2 

WOA-XGBOOST gamma, n_estimators, learning_rate, max_depth 

[0~10] 

[50~5000] 

[0.01~0.5] 

[1~20] 

VMD-IWOA-XGBOOST 
K, alpha, gamma, n_estimators, learning_rate, 

max_depth 

[3~100] 

[100~25,000] 

[0~10] 

[50~5000] 

[0.01~0.5] 

[1~20] 

3.4. Experiment Results 

3.4.1. Feature Selection Results 

In this section, we describe the feature selection that was conducted with the MIC 

method. The resultant graphs are shown in Figure 2, and the values of each weight are 

shown in Table 2. 

 

Figure 2. MIC feature selection. 

Figure 2a shows the MIC feature selection results for the GTZAN dataset, and Figure 2b 

shows the feature selection results for the Bangla dataset. 
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Table 2. Feature selection. 

Data Features Weight 

GTZAN 

spectral_bandwidth_mean 0.2556 

rolloff_mean 0.2473 

mfcc2_mean 0.2201 

spectral_centroid_mean 0.2165 

mfcc1_mean 0.2150 

mfcc9_mean 0.1650 

Mfcc7_mean 0.1512 

spectral_centroid_var 0.1403 

rolloff_var 0.1318 

Mfcc4_mean 0.1275 

Mfcc8_mean 0.1244 

chroma_stft_mean 0.1183 

Mfcc6_var 0.1172 

Mfcc4_var 0.1125 

Mfcc5_mean 0.1123 

Mfcc6_mean 0.1066 

Mfcc3_mean 0.1012 

Mfcc12_mean 0.1006 

Mfcc7_var 0.0984 

Mfcc13_mean 0.0973 

Mfcc11_mean 0.0938 

spectral_bandwidth_var 0.0929 

Mfcc8_var 0.0876 

Mfcc5_var 0.0823 

Mfcc19_mean 0.0755 

Mfcc15_mean 0.0754 

Mfcc10_var 0.0747 

Mfcc9_var 0.0714 

Mfcc17_mean 0.0709 

Mfcc10_mean 0.0688 

Mfcc14_mean 0.0672 

Mfcc13_var 0.0636 

Mfcc12_var 0.0624 

Mfcc3_var 0.0598 

Mfcc16_mean 0.0539 

tempo 0.0519 

Mfcc2_var 0.0518 

Mfcc1_var 0.0475 

Mfcc20_mean 0.0456 

Rms_mean 0.0450 

Mfcc20_var 0.0401 

Mfcc15_var 0.0387 

Mfcc11_var 0.0377 

Mfcc19_var 0.0352 

Mfcc16_var 0.0313 

Mfcc18_var 0.0294 

Mfcc14_var 0.0290 

Mfcc18_mean 0.0270 

length 0.0256 

Mfcc17_var 0.0241 

zero_crossing_rate_mean 0.0184 

chroma_stft_var 0 
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Rms_var 0 

zero_crossing_rate_var 0 

harmony_mean 0 

harmony_var 0 

perceptr_mean 0 

Bangla 

spectral_1width 0.3569 

chroma_frequency 0.2854 

spectral_rolloff 0.2682 

mfcc1 0.2579 

mfcc2 0.2421 

spectral_centroid 0.2141 

Mfcc7 0.2038 

Mfcc5 0.1764 

Mfcc9 0.1603 

Mfcc0 0.1586 

Mfcc4 0.1456 

Mfcc11 0.1437 

Mfcc13 0.1204 

Mfcc10 0.1099 

Mfcc3 0.0965 

zero_crossing 0.0923 

Mfcc12 0.0771 

Mfcc17 0.0710 

Mfcc19 0.0697 

Mfcc15 0.0664 

Mfcc14 0.0564 

Mfcc6 0.0555 

Mfcc8 0.0528 

Mfcc16 0.0483 

tempo 0.0434 

melspectogram 0.0415 

Mfcc18 0.0396 

rmse 0.0370 

delta 0 

perceptr_var 0 

3.4.2. Decomposition Results 

In this subsection, we selected the five features with the highest weight values for 

decomposition to reduce the accuracy impact of the high complexity and non-linearity of 

the data. Since the number of decompositions and the penalty factor alpha have a more 

obvious effect on the decomposition, the parameters of VMD needed to be optimized. We 

first optimized the K value and alpha of the VMD through IWOA to ensure the best de-

composition effect and then set the population of IWOA to 10 and the number of iterations 

to 30. The optimization process is shown in Figures 3 and 4, and the decomposition pro-

cess of the VMD is shown in Figures 5 and 6. 

Figure 5 illustrates the VMD decomposition process, showcasing the decomposition 

of features with the highest weight from GTZAN selected by MIC. From Figure 5a–e, the 

IMF components depict a progressive reduction in data volatility, indicating a continuous 

decrease in signal complexity throughout the process. 

Figure 6 displays the VMD decomposition process of Bangla’s corresponding fea-

tures. As depicted in Figure 6a–e, the complexity of the data continues to diminish, indi-

cating a clear reduction in complexity throughout the decomposition process. 
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Figure 3. IWOA optimize VMD for GTZAN. 

 

Figure 4. IWOA optimize VMD for Bangla. 
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(c) (d)

(e)  

Figure 5. VMD decomposition for GTZAN. 
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Figure 6. VMD decomposition for Bangla. 

3.4.3. Analysis of Classification Results 

In order to verify the performance and generalization of the VMD-IWOA-XGBOOST 

model, in this section, we set up a comparison test using different classifiers for compari-

son. The classification results of the various models are presented in the form of confusion 

matrices. As illustrated in Figures 7 and 8, the summation of matrix elements yields the 

aggregate count of songs within the test set. In the confusion matrix representation, the x-

axis denotes the sequential indexing of predicted music genres, while the y-axis signifies 

the sequential indexing of actual music genres. The diagonal elements represent the count 

of accurately classified genres. 
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Figure 7. Confusion matrix of the GTZAN experiments. 
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Figure 8. Confusion matrix of the Bangla experiments. 
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Figure 7a shows the confusion matrix using the AdaBoost classifier experiment 

weights on the GTZAN test set, where the accuracy value is 0.335, the macro-precision is 

0.276, the macro-recall is 0.319, and the macro-F1-score value is 0.271. Figure 8a shows the 

confusion matrix using the AdaBoost classifier experiment weights on the Bangla test set, 

where the accuracy value is 0.438, the macro-precision is 0.427, the macro-recall is 0.447, and 

the macro-F1-score value is 0.405. The classification outcomes derived from the AdaBoost 

classifier exhibit a notable deficiency in performance, failing to produce satisfactory results. 

Figure 7b shows the confusion matrix using the BP neural network classifier experi-

ment weights on the GTZAN test set. The classification outcomes are summarized as fol-

lows: the accuracy value is 0.625, the macro-precision is 0.648, the macro-recall is 0.639, 

and the macro-F1-score value is 0.639. Figure 8b shows the confusion matrix using the BP 

neural network classifier experiment weights on the Bangla test set, and the accuracy 

value is 0.647, the macro-precision is 0.637, the macro-recall is 0.638, and the macro-F1-

score value is 0.636. From this result, we can conclude that the performance of our pro-

posed model surpasses that of the AdaBoost model. Moreover, Figure 9 depicts the accu-

racy versus loss function curve of the BP neural network. 

 

Figure 9. Accuracy and loss curves of the BP experiments training. 

Figure 7c shows the confusion matrix using the LSTM neural network classifier ex-

periment weights on the GTZAN test set. The results can be summarized as follows: the 

accuracy value is 0.645, the macro-precision is 0.661, the macro-recall is 0.653, and the 

macro-F1-score value is 0.647. Figure 8c shows the confusion matrix using the LSTM neu-

ral network classifier experiment weights on the Bangla test set; the accuracy value is 

0.679, the macro-precision is 0.645, the macro-recall is 0.669, and the macro-F1-score value 

is 0.667. In comparison, based on the experimental results, LSTM demonstrates superior 

performance over the BP neural network, a�ributed to its heightened ability in feature 

extraction across variables, which enhances classification accuracy. Moreover, Figure 10 

depicts the accuracy versus loss function curve of the LSTM neural network. 
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Figure 10. Accuracy and loss curves of the LSTM experiments training. 

Figure 7d shows the confusion matrix using the GBDT classifier experiment weights 

on the GTZAN test set. The classification outcomes can be summarized as follows: the 

accuracy value is 0.64, the macro-precision value is 0.649, the macro-recall is 0.661, and the 

macro-F1-score value is 0.642. Figure 8d shows the confusion matrix using the GBDT clas-

sifier experiment weights on the Bangla test set. The classification outcomes are summa-

rized as follows: the accuracy value is 0.679, the macro-precision is 0.676, the macro-recall 

is 0.676, and the macro-F1 score value is 0.673. In contrast, according to the experimental 

findings, GBDT exhibits similar classification performance to LSTM while offering quicker 

training speeds. 

Figure 7e shows the confusion matrix using the RF classifier experiment weights on the 

GTZAN test set. The classification results are summarized as follows: the accuracy value of 

the RF classifier is 0.655, the macro-precision value is 0.687, the macro-recall is 0.673, and the 

macro-F1-score is 0.659. Figure 8e shows the confusion matrix using the GBDT classifier 

experiment weights on the Bangla test set, and the accuracy value is 0.653, the macro-preci-

sion is 0.653, the macro-recall is 0.659, and the macro-F1-score value is 0.659. Based on these 

findings, RF not only outperforms LSTM and GBDT in classification but also provides 

quicker training speeds, making it a good choice for classification modeling. 

Figure 7f shows the confusion matrix using the XGBOOST classifier experiment 

weights on the GTZAN test set. The classification outcomes can be summarized as follows: 

the accuracy value of the XGBOOST classifier is 0.665, the macro-precision is 0.678, the 

macro-recall is 0.686, and the macro-F1-score is 0.665. Figure 8f shows the confusion ma-

trix using the XGBOOST classifier experiment weights on the Bangla test set, where the 

accuracy value is 0.689, the macro-precision is 0.674, the macro-recall is 0.675, and the 

macro-F1 score value is 0.672. These results exceed those of all previously mentioned mod-

els, establishing it as our benchmark model for optimization. 

We enhanced XGBOOST to achieve higher classification accuracy, leveraging its ex-

ceptional performance among numerous classification models as a guiding factor. Using 

the WOA algorithm, we optimized the parameters of XGBOOST, including the number of 

estimators, maximum depth, learning rate, and gamma, aiming to enhance its classifica-

tion performance. The optimized results surpassed those of XGBOOST without WOA 
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optimization. Figure 7g shows the confusion matrix using the WOA-XGBOOST classifier 

experiment weights on the GTZAN test set, where the accuracy was 0.765, the macro-

precision was 0.767, the macro-recall was 0.776, and the macro-F1-score was 0.767. Figure 

8g shows the confusion matrix using the XGBOOST classifier experiment weights on the 

Bangla test set. The classification results are summarized as follows: the accuracy is 0.767, 

the macro-precision is 0.759, the macro-recall is 0.759, and the macro-F1-score value is 

0.759. The results above demonstrate that the optimized XGBOOST exhibits enhanced 

proficiency in genre classification. 

Recognizing the intricate and volatile nature of numerical music features, we em-

ployed decomposition techniques to alleviate the complexity of features, thereby improv-

ing classification accuracy. Initially, we identified the five most heavily weighted features 

using MIC. Following that, we utilized VMD to optimize the decomposition parameters, 

such as the decomposition number “K” and penalty factor “alpha”, employing the IWOA 

to a�ain optimal decomposition performance. After decomposition, the dataset was split 

into training and test sets with a 0.8:0.2 ratio. Subsequently, XGBOOST was optimized 

using the IWOA for final classification. Figure 7h shows the confusion matrix using the 

VMD-IWOA-XGBOOST classifier experiment weights on the GTZAN test set. The follow-

ing is a summary of the classification outcomes: the accuracy value of VMD-IWOA-

XGBOOST is 0.855, the macro-precision is 0.854, the macro-recall is 0.866, and the macro-

F1-score value is 0.855. Figure 8h shows the confusion matrix using the VMD-IWOA-

XGBOOST classifier experiment weights on the Bangla test set. In summary, the accuracy 

is 0.785, the macro-precision is 0.782, the macro-recall is 0.782, and the macro-F1-score 

value is 0.780. These results illustrate the significantly enhanced performance of the de-

composed and reclassified model compared to other comparative models, highlighting its 

superior generalization ability, and providing a novel reference framework for tackling 

music classification challenges. 

From Figure 9a,b, it can be observed that when the training loss decreases but re-

mains unchanged, while the test loss continues to rise, overfi�ing may be occurring. This 

indicates that the model performs admirably on the training set, yet demonstrates subpar 

performance on the test data, signifying a lack of generalizability to novel datasets. 

Figure 10a indicates that after a decrease in training loss, the testing loss continues to 

rise, indicating a certain degree of overfi�ing, resulting in poor classification and general-

ization performance of the model on the testing dataset. In figure 10b, the test loss initially 

rises, then declines and tends to stabilize, while the training loss remains unchanged.  

This indicates a bo�leneck in the learning process, with suboptimal performance on the 

test set, resulting in weaker performance in music genre classification. 

The comparative results are shown in Table 3. It can be shown that the proposed 

model is superior to the other benchmark models in terms of four evaluation metrics on 

two datasets. 

Table 3. Comparison between the results using the proposed method and the results using other 

methods. 

Data Model  Accuracy MCC Macro-Precision Macro-Recall Macro-F1-Score 

GTZAN 

AdaBoost 0.335 0.265 0.276 0.319 0.271 

BP 0.625 0.588 0.648 0.639 0.641 

LSTM 0.645 0.660 0.661 0.653 0.647 

GBDT 0.640 0.601 0.649 0.661 0.642 

RF 0.655 0.620 0.687 0.673 0.659 

XGBOOST 0.665 0.630 0.678 0.686 0.665 

WOA-XGBOOST 0.785 0.760 0.787 0.796 0.790 

VMD-IWOA-XGBOOST 0.855 0.844 0.854 0.866 0.855 
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Bangla 

AdaBoost 0.438 0.339 0.427 0.447 0.405 

BP 0.647 0.583 0.637 0.638 0.636 

LSTM 0.679 0.643 0.645 0.669 0.667 

GBDT 0.679 0.616 0.677 0.676 0.673 

RF 0.653 0.585 0.652 0.652 0.648 

XGBOOST 0.689 0.618 0.674 0.675 0.672 

WOA-XGBOOST 0.767 0.720 0.759 0.759 0.759 

VMD-IWOA-XGBOOST 0.785 0.742 0.782 0.782 0.780 

To underscore the superiority of the model proposed in this paper, we conducted a 

t-test to assess its significance. Utilizing 10-fold cross-validation, we obtained experi-

mental results for each model, followed by t-test analysis to ascertain their significance. 

Additionally, we measured the running time of each model for comparative reference. 

Table 4 presents the significant results of the t-test. 

Table 4. Model t-test experiment and runtime analysis. 

Data Model  Running Time (s) p-Values 

GTZAN 

AdaBoost 6.675 0.000 

BP 329.710 0.027 

LSTM 1422.501 0.010 

GBDT 90.445 0.003 

RF 4.588 0.003 

XGBOOST 4.742 0.011 

WOA-XGBOOST 2382.100 0.350 

VMD-IWOA-XGBOOST 1017.203 / 

Bangla 

AdaBoost 6.125 0.000 

BP 448.431 0.556 

LSTM 2104.9 0.041 

GBDT 55.12 0.044 

RF 4.322 0.001 

XGBOOST 5.235 0.037 

WOA-XGBOOST 2879 0.376 

VMD-IWOA-XGBOOST 1854.5 / 

As depicted in Table 4, the 10-fold cross-validation results of the model proposed in 

this paper exhibit significant superiority compared to other models, as indicated by the t-

test. While the difference may not be pronounced when compared to WOA-XGBOOST, 

the model’s running speed significantly outpaces that of WOA-XGBOOST. 

4. Conclusions 

In this paper, we propose a hybrid model which uses signal decomposition, the op-

timization algorithm, and the machine learning model for music genre classification. 

Librosa is used to transform the original audio into numerical or symbolic features, MIC 

is used for feature selection, VMD is employed to reduce the complexity of the original 

features, IWOA is proposed to optimize the parameters of VMD and XGBOOST, and 

XGBOOST is used for prediction. In this experimental study, two datasets, GTZAN and 

Bangla, are used as sample data, and eight different models are selected for comparative 

experiments. The experimental results for our proposed hybrid model were significantly 

be�er than those achieved with other models. The contributions of this paper are summa-

rized as follows: 

1. A hybrid model with VMD-IWOA-XGBOOST is proposed for music genre classifica-

tion. MIC is used to screen out five high-correlation features, the signal decomposi-

tion technique VMD is chosen to extract the key information of features, IWOA is 
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proposed to improve parameter optimization, and XGBOOST is utilized as the clas-

sification model. 

2. An IWOA is developed by refining the search process, contracting encircling, and 

altering the spiral position. We propose using an IWOA for parameter optimization. 

Comparative analysis reveals that the IWOA outperforms the WOA algorithm in 

terms of four evaluation metrics. 
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